Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Glutaredoxin-1 mediates NADPH-dependent stimulation of calcium-dependent insulin secretion.

Identifieur interne : 000B23 ( Main/Exploration ); précédent : 000B22; suivant : 000B24

Glutaredoxin-1 mediates NADPH-dependent stimulation of calcium-dependent insulin secretion.

Auteurs : Thomas M. Reinbothe [Suède] ; Rosita Ivarsson ; Dai-Qing Li ; Omid Niazi ; Xingjun Jing ; Enming Zhang ; Lena Stenson ; Ulrika Bryborn ; Erik Renström

Source :

RBID : pubmed:19299446

Descripteurs français

English descriptors

Abstract

Nicotinamide adenine dinucleotide phosphate (NADPH) enhances Ca(2+)-induced exocytosis in pancreatic beta-cells, an effect suggested to involve the cytosolic redox protein glutaredoxin-1 (GRX-1). We here detail the role of GRX-1 in NADPH-stimulated beta-cell exocytosis and glucose-stimulated insulin secretion. Silencing of GRX-1 by RNA interference reduced glucose-stimulated insulin secretion in both clonal INS-1 832/13 cells and primary rat islets. GRX-1 silencing did not affect cell viability or the intracellular redox environment, suggesting that GRX-1 regulates the exocytotic machinery by a local action. By contrast, knockdown of the related protein thioredoxin-1 (TRX-1) was ineffective. Confocal immunocytochemistry revealed that GRX-1 locates to the cell periphery, whereas TRX-1 expression is uniform. These data suggest that the distinct subcellular localizations of TRX-1 and GRX-1 result in differences in substrate specificities and actions on insulin secretion. Single-cell exocytosis was likewise suppressed by GRX-1 knockdown in both rat beta-cells and clonal 832/13 cells, whereas after overexpression exocytosis increased by approximately 40%. Intracellular addition of NADPH (0.1 mm) stimulated Ca(2+)-evoked exocytosis in both cell types. Interestingly, the stimulatory action of NADPH on the exocytotic machinery coincided with an approximately 30% inhibition in whole-cell Ca(2+) currents. After GRX-1 silencing, NADPH failed to amplify insulin release but still inhibited Ca(2+) currents in 832/13 cells. In conclusion, NADPH stimulates the exocytotic machinery in pancreatic beta-cells. This effect is mediated by the NADPH acceptor protein GRX-1 by a local redox reaction that accelerates beta-cell exocytosis and, in turn, insulin secretion.

DOI: 10.1210/me.2008-0306
PubMed: 19299446
PubMed Central: PMC5419284


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Glutaredoxin-1 mediates NADPH-dependent stimulation of calcium-dependent insulin secretion.</title>
<author>
<name sortKey="Reinbothe, Thomas M" sort="Reinbothe, Thomas M" uniqKey="Reinbothe T" first="Thomas M" last="Reinbothe">Thomas M. Reinbothe</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Clinical Sciences, Islet Pathophysiology, Lund University, Clinical Research Centre, Malmö, Sweden. thomas.reinbothe@med.lu.se</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Clinical Sciences, Islet Pathophysiology, Lund University, Clinical Research Centre, Malmö</wicri:regionArea>
<wicri:noRegion>Malmö</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ivarsson, Rosita" sort="Ivarsson, Rosita" uniqKey="Ivarsson R" first="Rosita" last="Ivarsson">Rosita Ivarsson</name>
</author>
<author>
<name sortKey="Li, Dai Qing" sort="Li, Dai Qing" uniqKey="Li D" first="Dai-Qing" last="Li">Dai-Qing Li</name>
</author>
<author>
<name sortKey="Niazi, Omid" sort="Niazi, Omid" uniqKey="Niazi O" first="Omid" last="Niazi">Omid Niazi</name>
</author>
<author>
<name sortKey="Jing, Xingjun" sort="Jing, Xingjun" uniqKey="Jing X" first="Xingjun" last="Jing">Xingjun Jing</name>
</author>
<author>
<name sortKey="Zhang, Enming" sort="Zhang, Enming" uniqKey="Zhang E" first="Enming" last="Zhang">Enming Zhang</name>
</author>
<author>
<name sortKey="Stenson, Lena" sort="Stenson, Lena" uniqKey="Stenson L" first="Lena" last="Stenson">Lena Stenson</name>
</author>
<author>
<name sortKey="Bryborn, Ulrika" sort="Bryborn, Ulrika" uniqKey="Bryborn U" first="Ulrika" last="Bryborn">Ulrika Bryborn</name>
</author>
<author>
<name sortKey="Renstrom, Erik" sort="Renstrom, Erik" uniqKey="Renstrom E" first="Erik" last="Renström">Erik Renström</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2009">2009</date>
<idno type="RBID">pubmed:19299446</idno>
<idno type="pmid">19299446</idno>
<idno type="doi">10.1210/me.2008-0306</idno>
<idno type="pmc">PMC5419284</idno>
<idno type="wicri:Area/Main/Corpus">000B14</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000B14</idno>
<idno type="wicri:Area/Main/Curation">000B14</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000B14</idno>
<idno type="wicri:Area/Main/Exploration">000B14</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Glutaredoxin-1 mediates NADPH-dependent stimulation of calcium-dependent insulin secretion.</title>
<author>
<name sortKey="Reinbothe, Thomas M" sort="Reinbothe, Thomas M" uniqKey="Reinbothe T" first="Thomas M" last="Reinbothe">Thomas M. Reinbothe</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Clinical Sciences, Islet Pathophysiology, Lund University, Clinical Research Centre, Malmö, Sweden. thomas.reinbothe@med.lu.se</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Clinical Sciences, Islet Pathophysiology, Lund University, Clinical Research Centre, Malmö</wicri:regionArea>
<wicri:noRegion>Malmö</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ivarsson, Rosita" sort="Ivarsson, Rosita" uniqKey="Ivarsson R" first="Rosita" last="Ivarsson">Rosita Ivarsson</name>
</author>
<author>
<name sortKey="Li, Dai Qing" sort="Li, Dai Qing" uniqKey="Li D" first="Dai-Qing" last="Li">Dai-Qing Li</name>
</author>
<author>
<name sortKey="Niazi, Omid" sort="Niazi, Omid" uniqKey="Niazi O" first="Omid" last="Niazi">Omid Niazi</name>
</author>
<author>
<name sortKey="Jing, Xingjun" sort="Jing, Xingjun" uniqKey="Jing X" first="Xingjun" last="Jing">Xingjun Jing</name>
</author>
<author>
<name sortKey="Zhang, Enming" sort="Zhang, Enming" uniqKey="Zhang E" first="Enming" last="Zhang">Enming Zhang</name>
</author>
<author>
<name sortKey="Stenson, Lena" sort="Stenson, Lena" uniqKey="Stenson L" first="Lena" last="Stenson">Lena Stenson</name>
</author>
<author>
<name sortKey="Bryborn, Ulrika" sort="Bryborn, Ulrika" uniqKey="Bryborn U" first="Ulrika" last="Bryborn">Ulrika Bryborn</name>
</author>
<author>
<name sortKey="Renstrom, Erik" sort="Renstrom, Erik" uniqKey="Renstrom E" first="Erik" last="Renström">Erik Renström</name>
</author>
</analytic>
<series>
<title level="j">Molecular endocrinology (Baltimore, Md.)</title>
<idno type="eISSN">1944-9917</idno>
<imprint>
<date when="2009" type="published">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Calcium (metabolism)</term>
<term>Cell Survival (drug effects)</term>
<term>Exocytosis (drug effects)</term>
<term>Gene Knockdown Techniques (MeSH)</term>
<term>Gene Silencing (drug effects)</term>
<term>Glucose (pharmacology)</term>
<term>Glutaredoxins (metabolism)</term>
<term>Immunohistochemistry (MeSH)</term>
<term>Insulin (metabolism)</term>
<term>Insulin Secretion (MeSH)</term>
<term>Insulin-Secreting Cells (cytology)</term>
<term>Insulin-Secreting Cells (drug effects)</term>
<term>Insulin-Secreting Cells (enzymology)</term>
<term>Insulin-Secreting Cells (metabolism)</term>
<term>Intracellular Space (drug effects)</term>
<term>Intracellular Space (enzymology)</term>
<term>NADP (metabolism)</term>
<term>Oxidation-Reduction (drug effects)</term>
<term>Protein Transport (drug effects)</term>
<term>Rats (MeSH)</term>
<term>Subcellular Fractions (drug effects)</term>
<term>Subcellular Fractions (enzymology)</term>
<term>Thioredoxins (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Calcium (métabolisme)</term>
<term>Cellules à insuline (cytologie)</term>
<term>Cellules à insuline (effets des médicaments et des substances chimiques)</term>
<term>Cellules à insuline (enzymologie)</term>
<term>Cellules à insuline (métabolisme)</term>
<term>Espace intracellulaire (effets des médicaments et des substances chimiques)</term>
<term>Espace intracellulaire (enzymologie)</term>
<term>Exocytose (effets des médicaments et des substances chimiques)</term>
<term>Extinction de l'expression des gènes (effets des médicaments et des substances chimiques)</term>
<term>Fractions subcellulaires (effets des médicaments et des substances chimiques)</term>
<term>Fractions subcellulaires (enzymologie)</term>
<term>Glucose (pharmacologie)</term>
<term>Glutarédoxines (métabolisme)</term>
<term>Immunohistochimie (MeSH)</term>
<term>Insuline (métabolisme)</term>
<term>NADP (métabolisme)</term>
<term>Oxydoréduction (effets des médicaments et des substances chimiques)</term>
<term>Rats (MeSH)</term>
<term>Survie cellulaire (effets des médicaments et des substances chimiques)</term>
<term>Sécrétion d'insuline (MeSH)</term>
<term>Techniques de knock-down de gènes (MeSH)</term>
<term>Thiorédoxines (métabolisme)</term>
<term>Transport des protéines (effets des médicaments et des substances chimiques)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Calcium</term>
<term>Glutaredoxins</term>
<term>Insulin</term>
<term>NADP</term>
<term>Thioredoxins</term>
</keywords>
<keywords scheme="MESH" qualifier="cytologie" xml:lang="fr">
<term>Cellules à insuline</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Insulin-Secreting Cells</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Cell Survival</term>
<term>Exocytosis</term>
<term>Gene Silencing</term>
<term>Insulin-Secreting Cells</term>
<term>Intracellular Space</term>
<term>Oxidation-Reduction</term>
<term>Protein Transport</term>
<term>Subcellular Fractions</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Cellules à insuline</term>
<term>Espace intracellulaire</term>
<term>Exocytose</term>
<term>Extinction de l'expression des gènes</term>
<term>Fractions subcellulaires</term>
<term>Oxydoréduction</term>
<term>Survie cellulaire</term>
<term>Transport des protéines</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Cellules à insuline</term>
<term>Espace intracellulaire</term>
<term>Fractions subcellulaires</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Insulin-Secreting Cells</term>
<term>Intracellular Space</term>
<term>Subcellular Fractions</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Insulin-Secreting Cells</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Calcium</term>
<term>Cellules à insuline</term>
<term>Glutarédoxines</term>
<term>Insuline</term>
<term>NADP</term>
<term>Thiorédoxines</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Glucose</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Glucose</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Gene Knockdown Techniques</term>
<term>Immunohistochemistry</term>
<term>Insulin Secretion</term>
<term>Rats</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Immunohistochimie</term>
<term>Rats</term>
<term>Sécrétion d'insuline</term>
<term>Techniques de knock-down de gènes</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Nicotinamide adenine dinucleotide phosphate (NADPH) enhances Ca(2+)-induced exocytosis in pancreatic beta-cells, an effect suggested to involve the cytosolic redox protein glutaredoxin-1 (GRX-1). We here detail the role of GRX-1 in NADPH-stimulated beta-cell exocytosis and glucose-stimulated insulin secretion. Silencing of GRX-1 by RNA interference reduced glucose-stimulated insulin secretion in both clonal INS-1 832/13 cells and primary rat islets. GRX-1 silencing did not affect cell viability or the intracellular redox environment, suggesting that GRX-1 regulates the exocytotic machinery by a local action. By contrast, knockdown of the related protein thioredoxin-1 (TRX-1) was ineffective. Confocal immunocytochemistry revealed that GRX-1 locates to the cell periphery, whereas TRX-1 expression is uniform. These data suggest that the distinct subcellular localizations of TRX-1 and GRX-1 result in differences in substrate specificities and actions on insulin secretion. Single-cell exocytosis was likewise suppressed by GRX-1 knockdown in both rat beta-cells and clonal 832/13 cells, whereas after overexpression exocytosis increased by approximately 40%. Intracellular addition of NADPH (0.1 mm) stimulated Ca(2+)-evoked exocytosis in both cell types. Interestingly, the stimulatory action of NADPH on the exocytotic machinery coincided with an approximately 30% inhibition in whole-cell Ca(2+) currents. After GRX-1 silencing, NADPH failed to amplify insulin release but still inhibited Ca(2+) currents in 832/13 cells. In conclusion, NADPH stimulates the exocytotic machinery in pancreatic beta-cells. This effect is mediated by the NADPH acceptor protein GRX-1 by a local redox reaction that accelerates beta-cell exocytosis and, in turn, insulin secretion.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">19299446</PMID>
<DateCompleted>
<Year>2009</Year>
<Month>08</Month>
<Day>11</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>02</Month>
<Day>04</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1944-9917</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>23</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2009</Year>
<Month>Jun</Month>
</PubDate>
</JournalIssue>
<Title>Molecular endocrinology (Baltimore, Md.)</Title>
<ISOAbbreviation>Mol Endocrinol</ISOAbbreviation>
</Journal>
<ArticleTitle>Glutaredoxin-1 mediates NADPH-dependent stimulation of calcium-dependent insulin secretion.</ArticleTitle>
<Pagination>
<MedlinePgn>893-900</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1210/me.2008-0306</ELocationID>
<Abstract>
<AbstractText>Nicotinamide adenine dinucleotide phosphate (NADPH) enhances Ca(2+)-induced exocytosis in pancreatic beta-cells, an effect suggested to involve the cytosolic redox protein glutaredoxin-1 (GRX-1). We here detail the role of GRX-1 in NADPH-stimulated beta-cell exocytosis and glucose-stimulated insulin secretion. Silencing of GRX-1 by RNA interference reduced glucose-stimulated insulin secretion in both clonal INS-1 832/13 cells and primary rat islets. GRX-1 silencing did not affect cell viability or the intracellular redox environment, suggesting that GRX-1 regulates the exocytotic machinery by a local action. By contrast, knockdown of the related protein thioredoxin-1 (TRX-1) was ineffective. Confocal immunocytochemistry revealed that GRX-1 locates to the cell periphery, whereas TRX-1 expression is uniform. These data suggest that the distinct subcellular localizations of TRX-1 and GRX-1 result in differences in substrate specificities and actions on insulin secretion. Single-cell exocytosis was likewise suppressed by GRX-1 knockdown in both rat beta-cells and clonal 832/13 cells, whereas after overexpression exocytosis increased by approximately 40%. Intracellular addition of NADPH (0.1 mm) stimulated Ca(2+)-evoked exocytosis in both cell types. Interestingly, the stimulatory action of NADPH on the exocytotic machinery coincided with an approximately 30% inhibition in whole-cell Ca(2+) currents. After GRX-1 silencing, NADPH failed to amplify insulin release but still inhibited Ca(2+) currents in 832/13 cells. In conclusion, NADPH stimulates the exocytotic machinery in pancreatic beta-cells. This effect is mediated by the NADPH acceptor protein GRX-1 by a local redox reaction that accelerates beta-cell exocytosis and, in turn, insulin secretion.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Reinbothe</LastName>
<ForeName>Thomas M</ForeName>
<Initials>TM</Initials>
<AffiliationInfo>
<Affiliation>Department of Clinical Sciences, Islet Pathophysiology, Lund University, Clinical Research Centre, Malmö, Sweden. thomas.reinbothe@med.lu.se</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ivarsson</LastName>
<ForeName>Rosita</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Dai-Qing</ForeName>
<Initials>DQ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Niazi</LastName>
<ForeName>Omid</ForeName>
<Initials>O</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Jing</LastName>
<ForeName>Xingjun</ForeName>
<Initials>X</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Enming</ForeName>
<Initials>E</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Stenson</LastName>
<ForeName>Lena</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bryborn</LastName>
<ForeName>Ulrika</ForeName>
<Initials>U</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Renström</LastName>
<ForeName>Erik</ForeName>
<Initials>E</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2009</Year>
<Month>03</Month>
<Day>19</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Mol Endocrinol</MedlineTA>
<NlmUniqueID>8801431</NlmUniqueID>
<ISSNLinking>0888-8809</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C516007">Glrx protein, rat</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007328">Insulin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>52500-60-4</RegistryNumber>
<NameOfSubstance UI="D013879">Thioredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>53-59-8</RegistryNumber>
<NameOfSubstance UI="D009249">NADP</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>IY9XDZ35W2</RegistryNumber>
<NameOfSubstance UI="D005947">Glucose</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>SY7Q814VUP</RegistryNumber>
<NameOfSubstance UI="D002118">Calcium</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002118" MajorTopicYN="N">Calcium</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002470" MajorTopicYN="N">Cell Survival</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005089" MajorTopicYN="N">Exocytosis</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055785" MajorTopicYN="N">Gene Knockdown Techniques</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020868" MajorTopicYN="N">Gene Silencing</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005947" MajorTopicYN="N">Glucose</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007150" MajorTopicYN="N">Immunohistochemistry</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007328" MajorTopicYN="N">Insulin</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000078790" MajorTopicYN="N">Insulin Secretion</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D050417" MajorTopicYN="N">Insulin-Secreting Cells</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D042541" MajorTopicYN="N">Intracellular Space</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009249" MajorTopicYN="N">NADP</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D021381" MajorTopicYN="N">Protein Transport</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051381" MajorTopicYN="N">Rats</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013347" MajorTopicYN="N">Subcellular Fractions</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013879" MajorTopicYN="N">Thioredoxins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2009</Year>
<Month>3</Month>
<Day>21</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>3</Month>
<Day>21</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2009</Year>
<Month>8</Month>
<Day>12</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">19299446</ArticleId>
<ArticleId IdType="pii">me.2008-0306</ArticleId>
<ArticleId IdType="doi">10.1210/me.2008-0306</ArticleId>
<ArticleId IdType="pmc">PMC5419284</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Biochem J. 1979 Dec 15;184(3):697-700</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">44196</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Steroid Biochem Mol Biol. 2005 Oct;97(1-2):57-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16061374</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Diabetes. 2008 Apr;57(4):797-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18375442</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1987 Apr 15;262(11):5049-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3031036</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Diabetes. 2005 Jul;54(7):2132-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15983215</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ital J Biochem. 2006 Sep-Dec;55(3-4):189-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17274524</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1994 Jul 15;301 ( Pt 2):523-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8042998</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Diabetes. 2000 Nov;49(11):1751-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11078440</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>JOP. 2002 Jul;3(4):86-108</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12110767</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Neurol. 2008 Jul;212(1):179-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18495118</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 2006 Nov;14(11):1701-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17098195</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 1997;23(1):134-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9165306</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2000 Winter;2(4):811-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11213485</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cardiovasc Diabetol. 2002 Sep 27;1:3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12392600</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Med. 2007 May;4(5):e158</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17472435</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Endocrinol. 1992 May;85(1-2):1-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1526311</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Diabetes. 2000 Mar;49(3):424-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10868964</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1995 May 24;1271(1):265-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7599219</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Diab Rep. 2008 Jun;8(3):192-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18625115</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2008 May;40(5):638-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18372903</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Blood. 1999 Mar 1;93(5):1464-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10029572</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Diabetes. 2008 Apr;57(4):938-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18171713</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Diabetologia. 2006 Jul;49(7):1578-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16752176</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Diabetes. 1999 May;48(5):1006-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10331404</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2004 Feb;6(1):63-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14713336</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Suède</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Bryborn, Ulrika" sort="Bryborn, Ulrika" uniqKey="Bryborn U" first="Ulrika" last="Bryborn">Ulrika Bryborn</name>
<name sortKey="Ivarsson, Rosita" sort="Ivarsson, Rosita" uniqKey="Ivarsson R" first="Rosita" last="Ivarsson">Rosita Ivarsson</name>
<name sortKey="Jing, Xingjun" sort="Jing, Xingjun" uniqKey="Jing X" first="Xingjun" last="Jing">Xingjun Jing</name>
<name sortKey="Li, Dai Qing" sort="Li, Dai Qing" uniqKey="Li D" first="Dai-Qing" last="Li">Dai-Qing Li</name>
<name sortKey="Niazi, Omid" sort="Niazi, Omid" uniqKey="Niazi O" first="Omid" last="Niazi">Omid Niazi</name>
<name sortKey="Renstrom, Erik" sort="Renstrom, Erik" uniqKey="Renstrom E" first="Erik" last="Renström">Erik Renström</name>
<name sortKey="Stenson, Lena" sort="Stenson, Lena" uniqKey="Stenson L" first="Lena" last="Stenson">Lena Stenson</name>
<name sortKey="Zhang, Enming" sort="Zhang, Enming" uniqKey="Zhang E" first="Enming" last="Zhang">Enming Zhang</name>
</noCountry>
<country name="Suède">
<noRegion>
<name sortKey="Reinbothe, Thomas M" sort="Reinbothe, Thomas M" uniqKey="Reinbothe T" first="Thomas M" last="Reinbothe">Thomas M. Reinbothe</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000B23 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000B23 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:19299446
   |texte=   Glutaredoxin-1 mediates NADPH-dependent stimulation of calcium-dependent insulin secretion.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:19299446" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020