Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Mapping the catalytic cycle of Schistosoma mansoni thioredoxin glutathione reductase by X-ray crystallography.

Identifieur interne : 000A16 ( Main/Exploration ); précédent : 000A15; suivant : 000A17

Mapping the catalytic cycle of Schistosoma mansoni thioredoxin glutathione reductase by X-ray crystallography.

Auteurs : Francesco Angelucci [Italie] ; Daniela Dimastrogiovanni ; Giovanna Boumis ; Maurizio Brunori ; Adriana E. Miele ; Fulvio Saccoccia ; Andrea Bellelli

Source :

RBID : pubmed:20659890

Descripteurs français

English descriptors

Abstract

Schistosomiasis is the second most widespread human parasitic disease. It is principally treated with one drug, praziquantel, that is administered to 100 million people each year; less sensitive strains of schistosomes are emerging. One of the most appealing drug targets against schistosomiasis is thioredoxin glutathione reductase (TGR). This natural chimeric enzyme is a peculiar fusion of a glutaredoxin domain with a thioredoxin selenocysteine (U)-containing reductase domain. Selenocysteine is located on a flexible C-terminal arm that is usually disordered in the available structures of the protein and is essential for the full catalytic activity of TGR. In this study, we dissect the catalytic cycle of Schistosoma mansoni TGR by structural and functional analysis of the U597C mutant. The crystallographic data presented herein include the following: the oxidized form (at 1.9 Å resolution); the NADPH- and GSH-bound forms (2.3 and 1.9 Å, respectively); and a different crystal form of the (partially) reduced enzyme (3.1 Å), showing the physiological dimer and the entire C terminus of one subunit. Whenever possible, we determined the rate constants for the interconversion between the different oxidation states of TGR by kinetic methods. By combining the crystallographic analysis with computer modeling, we were able to throw further light on the mechanism of action of S. mansoni TGR. In particular, we hereby propose the putative functionally relevant conformational change of the C terminus after the transfer of reducing equivalents from NADPH to the redox sites of the enzyme.

DOI: 10.1074/jbc.M110.141960
PubMed: 20659890
PubMed Central: PMC2952258


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Mapping the catalytic cycle of Schistosoma mansoni thioredoxin glutathione reductase by X-ray crystallography.</title>
<author>
<name sortKey="Angelucci, Francesco" sort="Angelucci, Francesco" uniqKey="Angelucci F" first="Francesco" last="Angelucci">Francesco Angelucci</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemical Sciences A. Rossi Fanelli, CNR Institute of Molecular Biology and Pathology and Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Department of Biochemical Sciences A. Rossi Fanelli, CNR Institute of Molecular Biology and Pathology and Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome</wicri:regionArea>
<placeName>
<settlement type="city">Rome</settlement>
<region nuts="2">Latium</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Dimastrogiovanni, Daniela" sort="Dimastrogiovanni, Daniela" uniqKey="Dimastrogiovanni D" first="Daniela" last="Dimastrogiovanni">Daniela Dimastrogiovanni</name>
</author>
<author>
<name sortKey="Boumis, Giovanna" sort="Boumis, Giovanna" uniqKey="Boumis G" first="Giovanna" last="Boumis">Giovanna Boumis</name>
</author>
<author>
<name sortKey="Brunori, Maurizio" sort="Brunori, Maurizio" uniqKey="Brunori M" first="Maurizio" last="Brunori">Maurizio Brunori</name>
</author>
<author>
<name sortKey="Miele, Adriana E" sort="Miele, Adriana E" uniqKey="Miele A" first="Adriana E" last="Miele">Adriana E. Miele</name>
</author>
<author>
<name sortKey="Saccoccia, Fulvio" sort="Saccoccia, Fulvio" uniqKey="Saccoccia F" first="Fulvio" last="Saccoccia">Fulvio Saccoccia</name>
</author>
<author>
<name sortKey="Bellelli, Andrea" sort="Bellelli, Andrea" uniqKey="Bellelli A" first="Andrea" last="Bellelli">Andrea Bellelli</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2010">2010</date>
<idno type="RBID">pubmed:20659890</idno>
<idno type="pmid">20659890</idno>
<idno type="doi">10.1074/jbc.M110.141960</idno>
<idno type="pmc">PMC2952258</idno>
<idno type="wicri:Area/Main/Corpus">000986</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000986</idno>
<idno type="wicri:Area/Main/Curation">000986</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000986</idno>
<idno type="wicri:Area/Main/Exploration">000986</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Mapping the catalytic cycle of Schistosoma mansoni thioredoxin glutathione reductase by X-ray crystallography.</title>
<author>
<name sortKey="Angelucci, Francesco" sort="Angelucci, Francesco" uniqKey="Angelucci F" first="Francesco" last="Angelucci">Francesco Angelucci</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemical Sciences A. Rossi Fanelli, CNR Institute of Molecular Biology and Pathology and Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Department of Biochemical Sciences A. Rossi Fanelli, CNR Institute of Molecular Biology and Pathology and Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome</wicri:regionArea>
<placeName>
<settlement type="city">Rome</settlement>
<region nuts="2">Latium</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Dimastrogiovanni, Daniela" sort="Dimastrogiovanni, Daniela" uniqKey="Dimastrogiovanni D" first="Daniela" last="Dimastrogiovanni">Daniela Dimastrogiovanni</name>
</author>
<author>
<name sortKey="Boumis, Giovanna" sort="Boumis, Giovanna" uniqKey="Boumis G" first="Giovanna" last="Boumis">Giovanna Boumis</name>
</author>
<author>
<name sortKey="Brunori, Maurizio" sort="Brunori, Maurizio" uniqKey="Brunori M" first="Maurizio" last="Brunori">Maurizio Brunori</name>
</author>
<author>
<name sortKey="Miele, Adriana E" sort="Miele, Adriana E" uniqKey="Miele A" first="Adriana E" last="Miele">Adriana E. Miele</name>
</author>
<author>
<name sortKey="Saccoccia, Fulvio" sort="Saccoccia, Fulvio" uniqKey="Saccoccia F" first="Fulvio" last="Saccoccia">Fulvio Saccoccia</name>
</author>
<author>
<name sortKey="Bellelli, Andrea" sort="Bellelli, Andrea" uniqKey="Bellelli A" first="Andrea" last="Bellelli">Andrea Bellelli</name>
</author>
</analytic>
<series>
<title level="j">The Journal of biological chemistry</title>
<idno type="eISSN">1083-351X</idno>
<imprint>
<date when="2010" type="published">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Catalysis (MeSH)</term>
<term>Crystallography, X-Ray (methods)</term>
<term>Electrons (MeSH)</term>
<term>Humans (MeSH)</term>
<term>Models, Molecular (MeSH)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Multienzyme Complexes (chemistry)</term>
<term>Multienzyme Complexes (metabolism)</term>
<term>NADH, NADPH Oxidoreductases (chemistry)</term>
<term>NADH, NADPH Oxidoreductases (metabolism)</term>
<term>NADP (metabolism)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Protein Structure, Tertiary (MeSH)</term>
<term>Schistosoma mansoni (enzymology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Catalyse (MeSH)</term>
<term>Complexes multienzymatiques (composition chimique)</term>
<term>Complexes multienzymatiques (métabolisme)</term>
<term>Cristallographie aux rayons X (méthodes)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Humains (MeSH)</term>
<term>Modèles moléculaires (MeSH)</term>
<term>NADH, NADPH oxidoreductases (composition chimique)</term>
<term>NADH, NADPH oxidoreductases (métabolisme)</term>
<term>NADP (métabolisme)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Schistosoma mansoni (enzymologie)</term>
<term>Structure tertiaire des protéines (MeSH)</term>
<term>Électrons (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Multienzyme Complexes</term>
<term>NADH, NADPH Oxidoreductases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Multienzyme Complexes</term>
<term>NADH, NADPH Oxidoreductases</term>
<term>NADP</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Complexes multienzymatiques</term>
<term>NADH, NADPH oxidoreductases</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Schistosoma mansoni</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Schistosoma mansoni</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Crystallography, X-Ray</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Complexes multienzymatiques</term>
<term>NADH, NADPH oxidoreductases</term>
<term>NADP</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Cristallographie aux rayons X</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Catalysis</term>
<term>Electrons</term>
<term>Humans</term>
<term>Models, Molecular</term>
<term>Molecular Sequence Data</term>
<term>Oxidation-Reduction</term>
<term>Protein Structure, Tertiary</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Catalyse</term>
<term>Données de séquences moléculaires</term>
<term>Humains</term>
<term>Modèles moléculaires</term>
<term>Oxydoréduction</term>
<term>Structure tertiaire des protéines</term>
<term>Électrons</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Schistosomiasis is the second most widespread human parasitic disease. It is principally treated with one drug, praziquantel, that is administered to 100 million people each year; less sensitive strains of schistosomes are emerging. One of the most appealing drug targets against schistosomiasis is thioredoxin glutathione reductase (TGR). This natural chimeric enzyme is a peculiar fusion of a glutaredoxin domain with a thioredoxin selenocysteine (U)-containing reductase domain. Selenocysteine is located on a flexible C-terminal arm that is usually disordered in the available structures of the protein and is essential for the full catalytic activity of TGR. In this study, we dissect the catalytic cycle of Schistosoma mansoni TGR by structural and functional analysis of the U597C mutant. The crystallographic data presented herein include the following: the oxidized form (at 1.9 Å resolution); the NADPH- and GSH-bound forms (2.3 and 1.9 Å, respectively); and a different crystal form of the (partially) reduced enzyme (3.1 Å), showing the physiological dimer and the entire C terminus of one subunit. Whenever possible, we determined the rate constants for the interconversion between the different oxidation states of TGR by kinetic methods. By combining the crystallographic analysis with computer modeling, we were able to throw further light on the mechanism of action of S. mansoni TGR. In particular, we hereby propose the putative functionally relevant conformational change of the C terminus after the transfer of reducing equivalents from NADPH to the redox sites of the enzyme.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">20659890</PMID>
<DateCompleted>
<Year>2010</Year>
<Month>12</Month>
<Day>07</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>01</Month>
<Day>08</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1083-351X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>285</Volume>
<Issue>42</Issue>
<PubDate>
<Year>2010</Year>
<Month>Oct</Month>
<Day>15</Day>
</PubDate>
</JournalIssue>
<Title>The Journal of biological chemistry</Title>
<ISOAbbreviation>J Biol Chem</ISOAbbreviation>
</Journal>
<ArticleTitle>Mapping the catalytic cycle of Schistosoma mansoni thioredoxin glutathione reductase by X-ray crystallography.</ArticleTitle>
<Pagination>
<MedlinePgn>32557-67</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1074/jbc.M110.141960</ELocationID>
<Abstract>
<AbstractText>Schistosomiasis is the second most widespread human parasitic disease. It is principally treated with one drug, praziquantel, that is administered to 100 million people each year; less sensitive strains of schistosomes are emerging. One of the most appealing drug targets against schistosomiasis is thioredoxin glutathione reductase (TGR). This natural chimeric enzyme is a peculiar fusion of a glutaredoxin domain with a thioredoxin selenocysteine (U)-containing reductase domain. Selenocysteine is located on a flexible C-terminal arm that is usually disordered in the available structures of the protein and is essential for the full catalytic activity of TGR. In this study, we dissect the catalytic cycle of Schistosoma mansoni TGR by structural and functional analysis of the U597C mutant. The crystallographic data presented herein include the following: the oxidized form (at 1.9 Å resolution); the NADPH- and GSH-bound forms (2.3 and 1.9 Å, respectively); and a different crystal form of the (partially) reduced enzyme (3.1 Å), showing the physiological dimer and the entire C terminus of one subunit. Whenever possible, we determined the rate constants for the interconversion between the different oxidation states of TGR by kinetic methods. By combining the crystallographic analysis with computer modeling, we were able to throw further light on the mechanism of action of S. mansoni TGR. In particular, we hereby propose the putative functionally relevant conformational change of the C terminus after the transfer of reducing equivalents from NADPH to the redox sites of the enzyme.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Angelucci</LastName>
<ForeName>Francesco</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemical Sciences A. Rossi Fanelli, CNR Institute of Molecular Biology and Pathology and Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Dimastrogiovanni</LastName>
<ForeName>Daniela</ForeName>
<Initials>D</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Boumis</LastName>
<ForeName>Giovanna</ForeName>
<Initials>G</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Brunori</LastName>
<ForeName>Maurizio</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Miele</LastName>
<ForeName>Adriana E</ForeName>
<Initials>AE</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Saccoccia</LastName>
<ForeName>Fulvio</ForeName>
<Initials>F</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bellelli</LastName>
<ForeName>Andrea</ForeName>
<Initials>A</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>PDB</DataBankName>
<AccessionNumberList>
<AccessionNumber>2X8C</AccessionNumber>
<AccessionNumber>2X8G</AccessionNumber>
<AccessionNumber>2X8H</AccessionNumber>
<AccessionNumber>2X99</AccessionNumber>
<AccessionNumber>2XBI</AccessionNumber>
<AccessionNumber>2XBQ</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2010</Year>
<Month>07</Month>
<Day>21</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Biol Chem</MedlineTA>
<NlmUniqueID>2985121R</NlmUniqueID>
<ISSNLinking>0021-9258</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009097">Multienzyme Complexes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>53-59-8</RegistryNumber>
<NameOfSubstance UI="D009249">NADP</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.6.-</RegistryNumber>
<NameOfSubstance UI="D009247">NADH, NADPH Oxidoreductases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.6.4.-</RegistryNumber>
<NameOfSubstance UI="C466433">thioredoxin glutathione reductase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002384" MajorTopicYN="N">Catalysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018360" MajorTopicYN="N">Crystallography, X-Ray</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004583" MajorTopicYN="N">Electrons</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008958" MajorTopicYN="N">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009097" MajorTopicYN="N">Multienzyme Complexes</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009247" MajorTopicYN="N">NADH, NADPH Oxidoreductases</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009249" MajorTopicYN="N">NADP</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017434" MajorTopicYN="Y">Protein Structure, Tertiary</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012550" MajorTopicYN="N">Schistosoma mansoni</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2010</Year>
<Month>7</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2010</Year>
<Month>7</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2010</Year>
<Month>12</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">20659890</ArticleId>
<ArticleId IdType="pii">M110.141960</ArticleId>
<ArticleId IdType="doi">10.1074/jbc.M110.141960</ArticleId>
<ArticleId IdType="pmc">PMC2952258</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Science. 2000 Aug 18;289(5482):1190-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10947986</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2001 Feb;39(3):533-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11169096</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Mar 27;98(7):3673-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11259642</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Aug 14;98(17):9533-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11481439</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biochem Parasitol. 2002 Apr 30;121(1):129-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11985869</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Trop. 2002 May;82(2):139-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12020886</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2002 Dec 10;41(49):14580-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12463758</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Sci. 2003 Feb;12(2):372-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12538901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Aug 29;278(35):33020-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12816954</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biochem Parasitol. 2004 Jan;133(1):61-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14668013</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Feb 27;279(9):7537-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14676218</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Prog Nucleic Acid Res Mol Biol. 2004;78:89-142</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15210329</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 1994 Sep 1;50(Pt 5):760-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15299374</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2126-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15572765</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2005 Feb 4;345(5):1119-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15644209</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Jul 15;280(28):26491-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15901730</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2005 Aug;30(8):453-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15996871</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Oct 18;102(42):15018-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16217027</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2005 Nov 8;44(44):14528-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16262253</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Feb 27;104(9):3177-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17360625</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Parasitology. 2007 Aug;134(Pt 9):1215-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17428352</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2007 Jun 29;370(1):116-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17512005</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Med. 2007 Jun;4(6):e206</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17579510</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2008 Feb 12;47(6):1721-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18211101</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteins. 2008 Aug 15;72(3):936-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18300227</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2008 Apr;14(4):407-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18345010</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Jun 27;283(26):17898-907</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18408002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2008 Oct 3;382(2):371-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18638483</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Parasitol. 2008 Sep;24(9):379-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18675590</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Infect Dis. 2008 Dec;21(6):659-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18978535</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2008 Dec 2;47(48):12769-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18991392</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Feb 6;284(6):3998-4008</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19054767</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2009 Jun;1790(6):495-526</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19364476</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2009 Nov;1790(11):1501-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19406205</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Oct 16;284(42):28977-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19710012</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Med Chem. 2009 Oct 22;52(20):6474-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19761212</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Parasitology. 2009 Nov;136(13):1665-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19814845</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2010 Apr 13;11:237</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20385027</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1997;276:307-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27754618</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Trop Med Hyg. 1984 Sep;33(5):911-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6486300</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Italie</li>
</country>
<region>
<li>Latium</li>
</region>
<settlement>
<li>Rome</li>
</settlement>
</list>
<tree>
<noCountry>
<name sortKey="Bellelli, Andrea" sort="Bellelli, Andrea" uniqKey="Bellelli A" first="Andrea" last="Bellelli">Andrea Bellelli</name>
<name sortKey="Boumis, Giovanna" sort="Boumis, Giovanna" uniqKey="Boumis G" first="Giovanna" last="Boumis">Giovanna Boumis</name>
<name sortKey="Brunori, Maurizio" sort="Brunori, Maurizio" uniqKey="Brunori M" first="Maurizio" last="Brunori">Maurizio Brunori</name>
<name sortKey="Dimastrogiovanni, Daniela" sort="Dimastrogiovanni, Daniela" uniqKey="Dimastrogiovanni D" first="Daniela" last="Dimastrogiovanni">Daniela Dimastrogiovanni</name>
<name sortKey="Miele, Adriana E" sort="Miele, Adriana E" uniqKey="Miele A" first="Adriana E" last="Miele">Adriana E. Miele</name>
<name sortKey="Saccoccia, Fulvio" sort="Saccoccia, Fulvio" uniqKey="Saccoccia F" first="Fulvio" last="Saccoccia">Fulvio Saccoccia</name>
</noCountry>
<country name="Italie">
<region name="Latium">
<name sortKey="Angelucci, Francesco" sort="Angelucci, Francesco" uniqKey="Angelucci F" first="Francesco" last="Angelucci">Francesco Angelucci</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000A16 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000A16 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:20659890
   |texte=   Mapping the catalytic cycle of Schistosoma mansoni thioredoxin glutathione reductase by X-ray crystallography.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:20659890" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020