Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The thioredoxin-thioredoxin reductase system can function in vivo as an alternative system to reduce oxidized glutathione in Saccharomyces cerevisiae.

Identifieur interne : 000980 ( Main/Exploration ); précédent : 000979; suivant : 000981

The thioredoxin-thioredoxin reductase system can function in vivo as an alternative system to reduce oxidized glutathione in Saccharomyces cerevisiae.

Auteurs : Shi-Xiong Tan [Australie] ; Darren Greetham ; Sebastian Raeth ; Chris M. Grant ; Ian W. Dawes ; Gabriel G. Perrone

Source :

RBID : pubmed:19951944

Descripteurs français

English descriptors

Abstract

Cellular mechanisms that maintain redox homeostasis are crucial, providing buffering against oxidative stress. Glutathione, the most abundant low molecular weight thiol, is considered the major cellular redox buffer in most cells. To better understand how cells maintain glutathione redox homeostasis, cells of Saccharomyces cerevisiae were treated with extracellular oxidized glutathione (GSSG), and the effect on intracellular reduced glutathione (GSH) and GSSG were monitored over time. Intriguingly cells lacking GLR1 encoding the GSSG reductase in S. cerevisiae accumulated increased levels of GSH via a mechanism independent of the GSH biosynthetic pathway. Furthermore, residual NADPH-dependent GSSG reductase activity was found in lysate derived from glr1 cell. The cytosolic thioredoxin-thioredoxin reductase system and not the glutaredoxins (Grx1p, Grx2p, Grx6p, and Grx7p) contributes to the reduction of GSSG. Overexpression of the thioredoxins TRX1 or TRX2 in glr1 cells reduced GSSG accumulation, increased GSH levels, and reduced cellular glutathione E(h)'. Conversely, deletion of TRX1 or TRX2 in the glr1 strain led to increased accumulation of GSSG, reduced GSH levels, and increased cellular E(h)'. Furthermore, it was found that purified thioredoxins can reduce GSSG to GSH in the presence of thioredoxin reductase and NADPH in a reconstituted in vitro system. Collectively, these data indicate that the thioredoxin-thioredoxin reductase system can function as an alternative system to reduce GSSG in S. cerevisiae in vivo.

DOI: 10.1074/jbc.M109.062844
PubMed: 19951944
PubMed Central: PMC2825406


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The thioredoxin-thioredoxin reductase system can function in vivo as an alternative system to reduce oxidized glutathione in Saccharomyces cerevisiae.</title>
<author>
<name sortKey="Tan, Shi Xiong" sort="Tan, Shi Xiong" uniqKey="Tan S" first="Shi-Xiong" last="Tan">Shi-Xiong Tan</name>
<affiliation wicri:level="1">
<nlm:affiliation>Ramaciotti Centre for Gene Function Analysis, Sydney, New South Wales 2052, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Ramaciotti Centre for Gene Function Analysis, Sydney, New South Wales 2052</wicri:regionArea>
<wicri:noRegion>New South Wales 2052</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Greetham, Darren" sort="Greetham, Darren" uniqKey="Greetham D" first="Darren" last="Greetham">Darren Greetham</name>
</author>
<author>
<name sortKey="Raeth, Sebastian" sort="Raeth, Sebastian" uniqKey="Raeth S" first="Sebastian" last="Raeth">Sebastian Raeth</name>
</author>
<author>
<name sortKey="Grant, Chris M" sort="Grant, Chris M" uniqKey="Grant C" first="Chris M" last="Grant">Chris M. Grant</name>
</author>
<author>
<name sortKey="Dawes, Ian W" sort="Dawes, Ian W" uniqKey="Dawes I" first="Ian W" last="Dawes">Ian W. Dawes</name>
</author>
<author>
<name sortKey="Perrone, Gabriel G" sort="Perrone, Gabriel G" uniqKey="Perrone G" first="Gabriel G" last="Perrone">Gabriel G. Perrone</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2010">2010</date>
<idno type="RBID">pubmed:19951944</idno>
<idno type="pmid">19951944</idno>
<idno type="doi">10.1074/jbc.M109.062844</idno>
<idno type="pmc">PMC2825406</idno>
<idno type="wicri:Area/Main/Corpus">000A56</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000A56</idno>
<idno type="wicri:Area/Main/Curation">000A56</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000A56</idno>
<idno type="wicri:Area/Main/Exploration">000A56</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The thioredoxin-thioredoxin reductase system can function in vivo as an alternative system to reduce oxidized glutathione in Saccharomyces cerevisiae.</title>
<author>
<name sortKey="Tan, Shi Xiong" sort="Tan, Shi Xiong" uniqKey="Tan S" first="Shi-Xiong" last="Tan">Shi-Xiong Tan</name>
<affiliation wicri:level="1">
<nlm:affiliation>Ramaciotti Centre for Gene Function Analysis, Sydney, New South Wales 2052, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Ramaciotti Centre for Gene Function Analysis, Sydney, New South Wales 2052</wicri:regionArea>
<wicri:noRegion>New South Wales 2052</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Greetham, Darren" sort="Greetham, Darren" uniqKey="Greetham D" first="Darren" last="Greetham">Darren Greetham</name>
</author>
<author>
<name sortKey="Raeth, Sebastian" sort="Raeth, Sebastian" uniqKey="Raeth S" first="Sebastian" last="Raeth">Sebastian Raeth</name>
</author>
<author>
<name sortKey="Grant, Chris M" sort="Grant, Chris M" uniqKey="Grant C" first="Chris M" last="Grant">Chris M. Grant</name>
</author>
<author>
<name sortKey="Dawes, Ian W" sort="Dawes, Ian W" uniqKey="Dawes I" first="Ian W" last="Dawes">Ian W. Dawes</name>
</author>
<author>
<name sortKey="Perrone, Gabriel G" sort="Perrone, Gabriel G" uniqKey="Perrone G" first="Gabriel G" last="Perrone">Gabriel G. Perrone</name>
</author>
</analytic>
<series>
<title level="j">The Journal of biological chemistry</title>
<idno type="eISSN">1083-351X</idno>
<imprint>
<date when="2010" type="published">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Glutathione (metabolism)</term>
<term>Glutathione Disulfide (metabolism)</term>
<term>Homeostasis (MeSH)</term>
<term>NADP (MeSH)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Saccharomyces cerevisiae (metabolism)</term>
<term>Saccharomyces cerevisiae Proteins (metabolism)</term>
<term>Thioredoxin-Disulfide Reductase (metabolism)</term>
<term>Thioredoxins (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Disulfure de glutathion (métabolisme)</term>
<term>Glutathion (métabolisme)</term>
<term>Homéostasie (MeSH)</term>
<term>NADP (MeSH)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Protéines de Saccharomyces cerevisiae (métabolisme)</term>
<term>Saccharomyces cerevisiae (métabolisme)</term>
<term>Thioredoxin-disulfide reductase (métabolisme)</term>
<term>Thiorédoxines (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Glutathione</term>
<term>Glutathione Disulfide</term>
<term>Saccharomyces cerevisiae Proteins</term>
<term>Thioredoxin-Disulfide Reductase</term>
<term>Thioredoxins</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Disulfure de glutathion</term>
<term>Glutathion</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Saccharomyces cerevisiae</term>
<term>Thioredoxin-disulfide reductase</term>
<term>Thiorédoxines</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Homeostasis</term>
<term>NADP</term>
<term>Oxidation-Reduction</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Homéostasie</term>
<term>NADP</term>
<term>Oxydoréduction</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Cellular mechanisms that maintain redox homeostasis are crucial, providing buffering against oxidative stress. Glutathione, the most abundant low molecular weight thiol, is considered the major cellular redox buffer in most cells. To better understand how cells maintain glutathione redox homeostasis, cells of Saccharomyces cerevisiae were treated with extracellular oxidized glutathione (GSSG), and the effect on intracellular reduced glutathione (GSH) and GSSG were monitored over time. Intriguingly cells lacking GLR1 encoding the GSSG reductase in S. cerevisiae accumulated increased levels of GSH via a mechanism independent of the GSH biosynthetic pathway. Furthermore, residual NADPH-dependent GSSG reductase activity was found in lysate derived from glr1 cell. The cytosolic thioredoxin-thioredoxin reductase system and not the glutaredoxins (Grx1p, Grx2p, Grx6p, and Grx7p) contributes to the reduction of GSSG. Overexpression of the thioredoxins TRX1 or TRX2 in glr1 cells reduced GSSG accumulation, increased GSH levels, and reduced cellular glutathione E(h)'. Conversely, deletion of TRX1 or TRX2 in the glr1 strain led to increased accumulation of GSSG, reduced GSH levels, and increased cellular E(h)'. Furthermore, it was found that purified thioredoxins can reduce GSSG to GSH in the presence of thioredoxin reductase and NADPH in a reconstituted in vitro system. Collectively, these data indicate that the thioredoxin-thioredoxin reductase system can function as an alternative system to reduce GSSG in S. cerevisiae in vivo.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">19951944</PMID>
<DateCompleted>
<Year>2010</Year>
<Month>03</Month>
<Day>26</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1083-351X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>285</Volume>
<Issue>9</Issue>
<PubDate>
<Year>2010</Year>
<Month>Feb</Month>
<Day>26</Day>
</PubDate>
</JournalIssue>
<Title>The Journal of biological chemistry</Title>
<ISOAbbreviation>J Biol Chem</ISOAbbreviation>
</Journal>
<ArticleTitle>The thioredoxin-thioredoxin reductase system can function in vivo as an alternative system to reduce oxidized glutathione in Saccharomyces cerevisiae.</ArticleTitle>
<Pagination>
<MedlinePgn>6118-26</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1074/jbc.M109.062844</ELocationID>
<Abstract>
<AbstractText>Cellular mechanisms that maintain redox homeostasis are crucial, providing buffering against oxidative stress. Glutathione, the most abundant low molecular weight thiol, is considered the major cellular redox buffer in most cells. To better understand how cells maintain glutathione redox homeostasis, cells of Saccharomyces cerevisiae were treated with extracellular oxidized glutathione (GSSG), and the effect on intracellular reduced glutathione (GSH) and GSSG were monitored over time. Intriguingly cells lacking GLR1 encoding the GSSG reductase in S. cerevisiae accumulated increased levels of GSH via a mechanism independent of the GSH biosynthetic pathway. Furthermore, residual NADPH-dependent GSSG reductase activity was found in lysate derived from glr1 cell. The cytosolic thioredoxin-thioredoxin reductase system and not the glutaredoxins (Grx1p, Grx2p, Grx6p, and Grx7p) contributes to the reduction of GSSG. Overexpression of the thioredoxins TRX1 or TRX2 in glr1 cells reduced GSSG accumulation, increased GSH levels, and reduced cellular glutathione E(h)'. Conversely, deletion of TRX1 or TRX2 in the glr1 strain led to increased accumulation of GSSG, reduced GSH levels, and increased cellular E(h)'. Furthermore, it was found that purified thioredoxins can reduce GSSG to GSH in the presence of thioredoxin reductase and NADPH in a reconstituted in vitro system. Collectively, these data indicate that the thioredoxin-thioredoxin reductase system can function as an alternative system to reduce GSSG in S. cerevisiae in vivo.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Tan</LastName>
<ForeName>Shi-Xiong</ForeName>
<Initials>SX</Initials>
<AffiliationInfo>
<Affiliation>Ramaciotti Centre for Gene Function Analysis, Sydney, New South Wales 2052, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Greetham</LastName>
<ForeName>Darren</ForeName>
<Initials>D</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Raeth</LastName>
<ForeName>Sebastian</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Grant</LastName>
<ForeName>Chris M</ForeName>
<Initials>CM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Dawes</LastName>
<ForeName>Ian W</ForeName>
<Initials>IW</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Perrone</LastName>
<ForeName>Gabriel G</ForeName>
<Initials>GG</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2009</Year>
<Month>12</Month>
<Day>01</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Biol Chem</MedlineTA>
<NlmUniqueID>2985121R</NlmUniqueID>
<ISSNLinking>0021-9258</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>52500-60-4</RegistryNumber>
<NameOfSubstance UI="D013879">Thioredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>53-59-8</RegistryNumber>
<NameOfSubstance UI="D009249">NADP</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.8.1.9</RegistryNumber>
<NameOfSubstance UI="D013880">Thioredoxin-Disulfide Reductase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>GAN16C9B8O</RegistryNumber>
<NameOfSubstance UI="D005978">Glutathione</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>ULW86O013H</RegistryNumber>
<NameOfSubstance UI="D019803">Glutathione Disulfide</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D005978" MajorTopicYN="N">Glutathione</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019803" MajorTopicYN="N">Glutathione Disulfide</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006706" MajorTopicYN="N">Homeostasis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009249" MajorTopicYN="N">NADP</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="N">Saccharomyces cerevisiae Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013880" MajorTopicYN="N">Thioredoxin-Disulfide Reductase</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013879" MajorTopicYN="N">Thioredoxins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2009</Year>
<Month>12</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>12</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2010</Year>
<Month>3</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">19951944</ArticleId>
<ArticleId IdType="pii">M109.062844</ArticleId>
<ArticleId IdType="doi">10.1074/jbc.M109.062844</ArticleId>
<ArticleId IdType="pmc">PMC2825406</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Free Radic Biol Med. 2008 Mar 15;44(6):1131-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18206664</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 2007 Oct;24(10):913-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17583893</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2008 Jul;1783(7):1354-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18298957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2008 Aug;7(8):1415-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18503006</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2009 Mar;20(5):1493-508</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19129474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Jun 2;106(22):9109-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19451637</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2009 Aug;1794(8):1218-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19362171</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2000 Jan 31;1490(1-2):33-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10786615</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 May 5;275(18):13259-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10788431</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2000 Jun;36(5):1167-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10844700</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Jul 14;275(28):21149-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10801893</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Dec 22;275(51):40180-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11013257</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2001 Jan 26;291(5504):643-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11158675</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2001 Jun 1;30(11):1191-212</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11368918</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2002 Apr;13(4):1109-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11950925</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2002 Nov;46(3):869-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12410842</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO Rep. 2003 Feb;4(2):184-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12612609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Jul 11;278(28):25745-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12730244</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2003 Sep 15;22(18):4815-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12970193</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Feb 27;279(9):7537-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14676218</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 2004 Aug;21(11):947-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15334558</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1982 Apr;2(4):361-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7050671</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1983 Jan;153(1):163-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6336730</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1983;101:167-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6310320</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 1983;52:711-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6137189</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 1985;54:237-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3896121</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1989 Aug 25;264(24):13963-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2668278</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1991 May 15;266(14):9194-202</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2026619</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1991 Dec;7(9):953-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1687097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1992 Sep 11;257(5076):1496-502</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1523409</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1994 Feb 1;13(3):655-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8313910</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Biol Toxicol. 1994 Dec;10(5-6):415-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7697505</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1995 Jul 10;368(1):73-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7615092</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1995;252:199-208</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7476354</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 1996 May;29(6):511-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8662189</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Lett. 1996 Aug 1;141(2-3):207-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8768524</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 1996 Jul;21(1):171-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8843443</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 1996 Nov;7(11):1805-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8930901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1997 Jul 4;272(27):17045-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9202020</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 1997 Sep;8(9):1699-707</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9307967</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1998 Mar 6;273(10):5431-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9488661</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1998 Feb 11;1395(3):315-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9512666</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 1998 May;9(5):1081-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9571241</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1999;300:226-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9919525</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 1998 Dec 30;253(3):893-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9918826</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Genet. 1998;32:163-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9928478</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1999 Aug 6;285(5429):901-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10436161</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2005 Jan;16(1):218-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15509654</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Yeast Res. 2005 Dec;5(12):1215-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16087409</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2005 Dec 1;19(23):2816-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16322557</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Jun 30;281(26):17661-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16648636</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2006 Nov 1;119(Pt 21):4554-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17074835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 2007 Jun;64(12):1518-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17415523</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2008 Jun;19(6):2673-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18400945</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Australie</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Dawes, Ian W" sort="Dawes, Ian W" uniqKey="Dawes I" first="Ian W" last="Dawes">Ian W. Dawes</name>
<name sortKey="Grant, Chris M" sort="Grant, Chris M" uniqKey="Grant C" first="Chris M" last="Grant">Chris M. Grant</name>
<name sortKey="Greetham, Darren" sort="Greetham, Darren" uniqKey="Greetham D" first="Darren" last="Greetham">Darren Greetham</name>
<name sortKey="Perrone, Gabriel G" sort="Perrone, Gabriel G" uniqKey="Perrone G" first="Gabriel G" last="Perrone">Gabriel G. Perrone</name>
<name sortKey="Raeth, Sebastian" sort="Raeth, Sebastian" uniqKey="Raeth S" first="Sebastian" last="Raeth">Sebastian Raeth</name>
</noCountry>
<country name="Australie">
<noRegion>
<name sortKey="Tan, Shi Xiong" sort="Tan, Shi Xiong" uniqKey="Tan S" first="Shi-Xiong" last="Tan">Shi-Xiong Tan</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000980 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000980 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:19951944
   |texte=   The thioredoxin-thioredoxin reductase system can function in vivo as an alternative system to reduce oxidized glutathione in Saccharomyces cerevisiae.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:19951944" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020