Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Glutaredoxin 2 knockout increases sensitivity to oxidative stress in mouse lens epithelial cells.

Identifieur interne : 000947 ( Main/Exploration ); précédent : 000946; suivant : 000948

Glutaredoxin 2 knockout increases sensitivity to oxidative stress in mouse lens epithelial cells.

Auteurs : Hongli Wu [États-Unis] ; Liren Lin ; Frank Giblin ; Ye-Sheh Ho ; Marjorie F. Lou

Source :

RBID : pubmed:21983434

Descripteurs français

English descriptors

Abstract

Glutaredoxin belongs to the oxidoreductase family, with cytosolic glutaredoxin 1 (Grx1) and mitochondrial glutaredoxin 2 (Grx2) isoforms. Of the two isozymes, the function of Grx2 is not well understood. This paper describes the effects of Grx2 deletion on cellular function using primary lens epithelial cell cultures isolated from Grx2 gene knockout (KO) and wild-type (WT) mice. We found that both cell types showed similar growth patterns and morphology and comparable mitochondrial glutathione pool and complex I activity. Cells with deleted Grx2 did not show affected Grx1 or thioredoxin expression but exhibited high sensitivity to oxidative stress. Under treatment with H(2)O(2), the KO cells showed less viability, higher membrane leakage, enhanced ATP loss and complex I inactivation, and weakened ability to detoxify H(2)O(2) in comparison with the WT cells. The KO cells had higher glutathionylation in the mitochondrial proteins, particularly the 75-kDa subunit of complex I. Recombinant Grx2 deglutathionylated complex I and restored most of its activity. We conclude that Grx2 has a function that protects cells against H(2)O(2)-induced injury via its peroxidase and dethiolase activities; particularly, Grx2 prevents complex I inactivation and preserves mitochondrial function.

DOI: 10.1016/j.freeradbiomed.2011.09.011
PubMed: 21983434
PubMed Central: PMC3235406


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Glutaredoxin 2 knockout increases sensitivity to oxidative stress in mouse lens epithelial cells.</title>
<author>
<name sortKey="Wu, Hongli" sort="Wu, Hongli" uniqKey="Wu H" first="Hongli" last="Wu">Hongli Wu</name>
<affiliation wicri:level="2">
<nlm:affiliation>Center of Redox Biology and School of Veterinary Medicine and Biomedical Sciences, University of Nebraska at Lincoln, NE 68583, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Center of Redox Biology and School of Veterinary Medicine and Biomedical Sciences, University of Nebraska at Lincoln, NE 68583</wicri:regionArea>
<placeName>
<region type="state">Nebraska</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lin, Liren" sort="Lin, Liren" uniqKey="Lin L" first="Liren" last="Lin">Liren Lin</name>
</author>
<author>
<name sortKey="Giblin, Frank" sort="Giblin, Frank" uniqKey="Giblin F" first="Frank" last="Giblin">Frank Giblin</name>
</author>
<author>
<name sortKey="Ho, Ye Sheh" sort="Ho, Ye Sheh" uniqKey="Ho Y" first="Ye-Sheh" last="Ho">Ye-Sheh Ho</name>
</author>
<author>
<name sortKey="Lou, Marjorie F" sort="Lou, Marjorie F" uniqKey="Lou M" first="Marjorie F" last="Lou">Marjorie F. Lou</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="RBID">pubmed:21983434</idno>
<idno type="pmid">21983434</idno>
<idno type="doi">10.1016/j.freeradbiomed.2011.09.011</idno>
<idno type="pmc">PMC3235406</idno>
<idno type="wicri:Area/Main/Corpus">000888</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000888</idno>
<idno type="wicri:Area/Main/Curation">000888</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000888</idno>
<idno type="wicri:Area/Main/Exploration">000888</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Glutaredoxin 2 knockout increases sensitivity to oxidative stress in mouse lens epithelial cells.</title>
<author>
<name sortKey="Wu, Hongli" sort="Wu, Hongli" uniqKey="Wu H" first="Hongli" last="Wu">Hongli Wu</name>
<affiliation wicri:level="2">
<nlm:affiliation>Center of Redox Biology and School of Veterinary Medicine and Biomedical Sciences, University of Nebraska at Lincoln, NE 68583, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Center of Redox Biology and School of Veterinary Medicine and Biomedical Sciences, University of Nebraska at Lincoln, NE 68583</wicri:regionArea>
<placeName>
<region type="state">Nebraska</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lin, Liren" sort="Lin, Liren" uniqKey="Lin L" first="Liren" last="Lin">Liren Lin</name>
</author>
<author>
<name sortKey="Giblin, Frank" sort="Giblin, Frank" uniqKey="Giblin F" first="Frank" last="Giblin">Frank Giblin</name>
</author>
<author>
<name sortKey="Ho, Ye Sheh" sort="Ho, Ye Sheh" uniqKey="Ho Y" first="Ye-Sheh" last="Ho">Ye-Sheh Ho</name>
</author>
<author>
<name sortKey="Lou, Marjorie F" sort="Lou, Marjorie F" uniqKey="Lou M" first="Marjorie F" last="Lou">Marjorie F. Lou</name>
</author>
</analytic>
<series>
<title level="j">Free radical biology & medicine</title>
<idno type="eISSN">1873-4596</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Cell Survival (drug effects)</term>
<term>Epithelial Cells (drug effects)</term>
<term>Epithelial Cells (metabolism)</term>
<term>Glutaredoxins (deficiency)</term>
<term>Glutaredoxins (metabolism)</term>
<term>Hydrogen Peroxide (pharmacology)</term>
<term>Lens, Crystalline (cytology)</term>
<term>Lens, Crystalline (metabolism)</term>
<term>Mice (MeSH)</term>
<term>Mice, Inbred C57BL (MeSH)</term>
<term>Mice, Knockout (MeSH)</term>
<term>Oxidative Stress (drug effects)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Cellules épithéliales (effets des médicaments et des substances chimiques)</term>
<term>Cellules épithéliales (métabolisme)</term>
<term>Cristallin (cytologie)</term>
<term>Cristallin (métabolisme)</term>
<term>Glutarédoxines (déficit)</term>
<term>Glutarédoxines (métabolisme)</term>
<term>Peroxyde d'hydrogène (pharmacologie)</term>
<term>Souris (MeSH)</term>
<term>Souris de lignée C57BL (MeSH)</term>
<term>Souris knockout (MeSH)</term>
<term>Stress oxydatif (effets des médicaments et des substances chimiques)</term>
<term>Survie cellulaire (effets des médicaments et des substances chimiques)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="deficiency" xml:lang="en">
<term>Glutaredoxins</term>
</keywords>
<keywords scheme="MESH" qualifier="cytologie" xml:lang="fr">
<term>Cristallin</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Lens, Crystalline</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Cell Survival</term>
<term>Epithelial Cells</term>
<term>Oxidative Stress</term>
</keywords>
<keywords scheme="MESH" qualifier="déficit" xml:lang="fr">
<term>Glutarédoxines</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Cellules épithéliales</term>
<term>Stress oxydatif</term>
<term>Survie cellulaire</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Epithelial Cells</term>
<term>Glutaredoxins</term>
<term>Lens, Crystalline</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Cellules épithéliales</term>
<term>Cristallin</term>
<term>Glutarédoxines</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Peroxyde d'hydrogène</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Hydrogen Peroxide</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Mice</term>
<term>Mice, Inbred C57BL</term>
<term>Mice, Knockout</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Souris</term>
<term>Souris de lignée C57BL</term>
<term>Souris knockout</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Glutaredoxin belongs to the oxidoreductase family, with cytosolic glutaredoxin 1 (Grx1) and mitochondrial glutaredoxin 2 (Grx2) isoforms. Of the two isozymes, the function of Grx2 is not well understood. This paper describes the effects of Grx2 deletion on cellular function using primary lens epithelial cell cultures isolated from Grx2 gene knockout (KO) and wild-type (WT) mice. We found that both cell types showed similar growth patterns and morphology and comparable mitochondrial glutathione pool and complex I activity. Cells with deleted Grx2 did not show affected Grx1 or thioredoxin expression but exhibited high sensitivity to oxidative stress. Under treatment with H(2)O(2), the KO cells showed less viability, higher membrane leakage, enhanced ATP loss and complex I inactivation, and weakened ability to detoxify H(2)O(2) in comparison with the WT cells. The KO cells had higher glutathionylation in the mitochondrial proteins, particularly the 75-kDa subunit of complex I. Recombinant Grx2 deglutathionylated complex I and restored most of its activity. We conclude that Grx2 has a function that protects cells against H(2)O(2)-induced injury via its peroxidase and dethiolase activities; particularly, Grx2 prevents complex I inactivation and preserves mitochondrial function.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">21983434</PMID>
<DateCompleted>
<Year>2012</Year>
<Month>03</Month>
<Day>28</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1873-4596</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>51</Volume>
<Issue>11</Issue>
<PubDate>
<Year>2011</Year>
<Month>Dec</Month>
<Day>01</Day>
</PubDate>
</JournalIssue>
<Title>Free radical biology & medicine</Title>
<ISOAbbreviation>Free Radic Biol Med</ISOAbbreviation>
</Journal>
<ArticleTitle>Glutaredoxin 2 knockout increases sensitivity to oxidative stress in mouse lens epithelial cells.</ArticleTitle>
<Pagination>
<MedlinePgn>2108-17</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.freeradbiomed.2011.09.011</ELocationID>
<Abstract>
<AbstractText>Glutaredoxin belongs to the oxidoreductase family, with cytosolic glutaredoxin 1 (Grx1) and mitochondrial glutaredoxin 2 (Grx2) isoforms. Of the two isozymes, the function of Grx2 is not well understood. This paper describes the effects of Grx2 deletion on cellular function using primary lens epithelial cell cultures isolated from Grx2 gene knockout (KO) and wild-type (WT) mice. We found that both cell types showed similar growth patterns and morphology and comparable mitochondrial glutathione pool and complex I activity. Cells with deleted Grx2 did not show affected Grx1 or thioredoxin expression but exhibited high sensitivity to oxidative stress. Under treatment with H(2)O(2), the KO cells showed less viability, higher membrane leakage, enhanced ATP loss and complex I inactivation, and weakened ability to detoxify H(2)O(2) in comparison with the WT cells. The KO cells had higher glutathionylation in the mitochondrial proteins, particularly the 75-kDa subunit of complex I. Recombinant Grx2 deglutathionylated complex I and restored most of its activity. We conclude that Grx2 has a function that protects cells against H(2)O(2)-induced injury via its peroxidase and dethiolase activities; particularly, Grx2 prevents complex I inactivation and preserves mitochondrial function.</AbstractText>
<CopyrightInformation>Copyright © 2011 Elsevier Inc. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Wu</LastName>
<ForeName>HongLi</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Center of Redox Biology and School of Veterinary Medicine and Biomedical Sciences, University of Nebraska at Lincoln, NE 68583, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lin</LastName>
<ForeName>LiRen</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Giblin</LastName>
<ForeName>Frank</ForeName>
<Initials>F</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ho</LastName>
<ForeName>Ye-Sheh</ForeName>
<Initials>YS</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lou</LastName>
<ForeName>Marjorie F</ForeName>
<Initials>MF</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 EY010595</GrantID>
<Acronym>EY</Acronym>
<Agency>NEI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 EY010595-17</GrantID>
<Acronym>EY</Acronym>
<Agency>NEI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01EY10595</GrantID>
<Acronym>EY</Acronym>
<Agency>NEI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>09</Month>
<Day>17</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Free Radic Biol Med</MedlineTA>
<NlmUniqueID>8709159</NlmUniqueID>
<ISSNLinking>0891-5849</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C516009">Glrx2 protein, mouse</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>BBX060AN9V</RegistryNumber>
<NameOfSubstance UI="D006861">Hydrogen Peroxide</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002470" MajorTopicYN="N">Cell Survival</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004847" MajorTopicYN="N">Epithelial Cells</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
<QualifierName UI="Q000172" MajorTopicYN="N">deficiency</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006861" MajorTopicYN="N">Hydrogen Peroxide</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007908" MajorTopicYN="N">Lens, Crystalline</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="Y">cytology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008810" MajorTopicYN="N">Mice, Inbred C57BL</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018345" MajorTopicYN="N">Mice, Knockout</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018384" MajorTopicYN="Y">Oxidative Stress</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2011</Year>
<Month>05</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2011</Year>
<Month>09</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2011</Year>
<Month>09</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>10</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>10</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>3</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">21983434</ArticleId>
<ArticleId IdType="pii">S0891-5849(11)00577-6</ArticleId>
<ArticleId IdType="doi">10.1016/j.freeradbiomed.2011.09.011</ArticleId>
<ArticleId IdType="pmc">PMC3235406</ArticleId>
<ArticleId IdType="mid">NIHMS326321</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Annu Rev Biochem. 1999;68:383-424</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10872455</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2010 Oct;1797(10):1705-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20547138</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Surv Ophthalmol. 2000 Sep-Oct;45(2):115-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11033038</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Jul 13;276(28):26269-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11297543</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Aug 10;276(32):30374-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11397793</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Prog Retin Eye Res. 2003 Sep;22(5):657-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12892645</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FASEB J. 2003 Nov;17(14):2088-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12958160</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Pharmacol Toxicol. 2004;44:239-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14744246</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Eye Res. 1988 Apr;46(4):517-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3133235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10540-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1683703</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1997 Oct 10;272(41):25935-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9325327</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1999 May 18;38(20):6699-705</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10350489</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1958 Apr;74(2):443-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13534673</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Nov 12;279(46):47939-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15347644</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Jun 7;102(23):8168-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15917333</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FASEB J. 2006 Dec;20(14):2645-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17065220</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Feb 2;282(5):3077-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17121859</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circ Res. 2007 Feb 2;100(2):213-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17185628</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Chem. 2007 Apr;53(4):729-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17332151</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2007;2(2):287-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17406588</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2007 May 15;46(19):5754-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17444656</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Invest Ophthalmol Vis Sci. 2008 Oct;49(10):4497-505</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18586881</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2009 Jan 1;417(1):1-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19061483</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Eye Res. 2009 Dec;89(6):833-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19664619</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Genet. 2009;43:95-118</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19659442</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2010 Jul 1;429(1):85-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20408818</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Toxicol Sci. 2010 Jul;116(1):151-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20351055</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2000 Sep 12;39(36):11121-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10998251</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Nebraska</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Giblin, Frank" sort="Giblin, Frank" uniqKey="Giblin F" first="Frank" last="Giblin">Frank Giblin</name>
<name sortKey="Ho, Ye Sheh" sort="Ho, Ye Sheh" uniqKey="Ho Y" first="Ye-Sheh" last="Ho">Ye-Sheh Ho</name>
<name sortKey="Lin, Liren" sort="Lin, Liren" uniqKey="Lin L" first="Liren" last="Lin">Liren Lin</name>
<name sortKey="Lou, Marjorie F" sort="Lou, Marjorie F" uniqKey="Lou M" first="Marjorie F" last="Lou">Marjorie F. Lou</name>
</noCountry>
<country name="États-Unis">
<region name="Nebraska">
<name sortKey="Wu, Hongli" sort="Wu, Hongli" uniqKey="Wu H" first="Hongli" last="Wu">Hongli Wu</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000947 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000947 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:21983434
   |texte=   Glutaredoxin 2 knockout increases sensitivity to oxidative stress in mouse lens epithelial cells.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:21983434" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020