Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

S-Glutathionyl quantification in the attomole range using glutaredoxin-3-catalyzed cysteine derivatization and capillary gel electrophoresis with laser-induced fluorescence detection.

Identifieur interne : 000919 ( Main/Exploration ); précédent : 000918; suivant : 000920

S-Glutathionyl quantification in the attomole range using glutaredoxin-3-catalyzed cysteine derivatization and capillary gel electrophoresis with laser-induced fluorescence detection.

Auteurs : Cheng Zhang [États-Unis] ; Cynthia Rodriguez ; Magdalena L. Circu ; Tak Yee Aw ; June Feng

Source :

RBID : pubmed:21842197

Descripteurs français

English descriptors

Abstract

S-glutathionylation (Pr-SSG) is a specific post-translational modification of cysteine residues by the addition of glutathione. S-Glutathionylated proteins induced by oxidative or nitrosative stress play an essential role in understanding the pathogenesis of the aging and age-related disorder, such as Alzheimer's disease (AD). The purpose of this research is to develop a novel and ultrasensitive method to accurately and rapidly quantify the Pr-SSG by using capillary gel electrophoresis with laser-induced fluorescence detection (CGE-LIF). The derivatization method is based on the specific reduction of protein-bound S-glutathionylation with glutaredoxin (Grx) and labeling with thiol-reactive fluorescent dye (Dylight 488 maleimide). The experiments were performed by coupling the derivatization method with CGE-LIF to study electrophoretic profiling in in vitro oxidative stress model-S-glutathionylated bovine serum albumin (BSA-SSG), oxidant-induced human colon adenocarcinoma (HT-29) cells, brain tissues, and whole blood samples from an AD transgenic (Tg) mouse model. The results showed almost an eightfold increase in S-glutathionyl abundance when subjecting HT-29 cells in an oxidant environment, resulting in Pr-SSG at 232 ± 10.64 (average ±SD; n=3) nmol/mg. In the AD-Tg mouse model, an initial quantitative measurement demonstrated the extent of protein S-glutathionylation in three brain regions (hippocampus, cerebellum, and cerebrum), ranging from 1 to 10 nmol/mg. Additionally, we described our developed method to potentially serve as a highly desirable diagnostic tool for monitoring S-glutathionylated protein profile in minuscule amount of whole blood. The whole blood samples for S-glutathionyl expression of 5-month-old AD-Tg mice are quantified as 16.3 μmol/L (=7.2 nmol/mg protein). Altogether, this is a fast, easy, and accurate method, reaching the lowest limit of Pr-SSG detection at 1.8 attomole (amol) level, reported to date.

DOI: 10.1007/s00216-011-5311-x
PubMed: 21842197
PubMed Central: PMC4221632


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">S-Glutathionyl quantification in the attomole range using glutaredoxin-3-catalyzed cysteine derivatization and capillary gel electrophoresis with laser-induced fluorescence detection.</title>
<author>
<name sortKey="Zhang, Cheng" sort="Zhang, Cheng" uniqKey="Zhang C" first="Cheng" last="Zhang">Cheng Zhang</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biomedical Engineering, Louisiana Tech University, 818 Nelson Avenue, Ruston, LA 71272, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biomedical Engineering, Louisiana Tech University, 818 Nelson Avenue, Ruston, LA 71272</wicri:regionArea>
<placeName>
<region type="state">Louisiane</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Rodriguez, Cynthia" sort="Rodriguez, Cynthia" uniqKey="Rodriguez C" first="Cynthia" last="Rodriguez">Cynthia Rodriguez</name>
</author>
<author>
<name sortKey="Circu, Magdalena L" sort="Circu, Magdalena L" uniqKey="Circu M" first="Magdalena L" last="Circu">Magdalena L. Circu</name>
</author>
<author>
<name sortKey="Aw, Tak Yee" sort="Aw, Tak Yee" uniqKey="Aw T" first="Tak Yee" last="Aw">Tak Yee Aw</name>
</author>
<author>
<name sortKey="Feng, June" sort="Feng, June" uniqKey="Feng J" first="June" last="Feng">June Feng</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="RBID">pubmed:21842197</idno>
<idno type="pmid">21842197</idno>
<idno type="doi">10.1007/s00216-011-5311-x</idno>
<idno type="pmc">PMC4221632</idno>
<idno type="wicri:Area/Main/Corpus">000901</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000901</idno>
<idno type="wicri:Area/Main/Curation">000901</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000901</idno>
<idno type="wicri:Area/Main/Exploration">000901</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">S-Glutathionyl quantification in the attomole range using glutaredoxin-3-catalyzed cysteine derivatization and capillary gel electrophoresis with laser-induced fluorescence detection.</title>
<author>
<name sortKey="Zhang, Cheng" sort="Zhang, Cheng" uniqKey="Zhang C" first="Cheng" last="Zhang">Cheng Zhang</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biomedical Engineering, Louisiana Tech University, 818 Nelson Avenue, Ruston, LA 71272, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biomedical Engineering, Louisiana Tech University, 818 Nelson Avenue, Ruston, LA 71272</wicri:regionArea>
<placeName>
<region type="state">Louisiane</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Rodriguez, Cynthia" sort="Rodriguez, Cynthia" uniqKey="Rodriguez C" first="Cynthia" last="Rodriguez">Cynthia Rodriguez</name>
</author>
<author>
<name sortKey="Circu, Magdalena L" sort="Circu, Magdalena L" uniqKey="Circu M" first="Magdalena L" last="Circu">Magdalena L. Circu</name>
</author>
<author>
<name sortKey="Aw, Tak Yee" sort="Aw, Tak Yee" uniqKey="Aw T" first="Tak Yee" last="Aw">Tak Yee Aw</name>
</author>
<author>
<name sortKey="Feng, June" sort="Feng, June" uniqKey="Feng J" first="June" last="Feng">June Feng</name>
</author>
</analytic>
<series>
<title level="j">Analytical and bioanalytical chemistry</title>
<idno type="eISSN">1618-2650</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Alzheimer Disease (diagnosis)</term>
<term>Animals (MeSH)</term>
<term>Cattle (MeSH)</term>
<term>Cysteine (chemistry)</term>
<term>Disease Models, Animal (MeSH)</term>
<term>Electrophoresis, Capillary (instrumentation)</term>
<term>Electrophoresis, Capillary (methods)</term>
<term>Fluorescence (MeSH)</term>
<term>Glutaredoxins (metabolism)</term>
<term>Glutathione (metabolism)</term>
<term>HT29 Cells (MeSH)</term>
<term>Humans (MeSH)</term>
<term>Lasers (MeSH)</term>
<term>Mice (MeSH)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Protein Processing, Post-Translational (MeSH)</term>
<term>Serum Albumin, Bovine (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Bovins (MeSH)</term>
<term>Cellules HT29 (MeSH)</term>
<term>Cystéine (composition chimique)</term>
<term>Fluorescence (MeSH)</term>
<term>Glutarédoxines (métabolisme)</term>
<term>Glutathion (métabolisme)</term>
<term>Humains (MeSH)</term>
<term>Lasers (MeSH)</term>
<term>Maladie d'Alzheimer (diagnostic)</term>
<term>Maturation post-traductionnelle des protéines (MeSH)</term>
<term>Modèles animaux de maladie humaine (MeSH)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Souris (MeSH)</term>
<term>Sérumalbumine bovine (métabolisme)</term>
<term>Électrophorèse capillaire (instrumentation)</term>
<term>Électrophorèse capillaire (méthodes)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Cysteine</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Cystéine</term>
</keywords>
<keywords scheme="MESH" qualifier="diagnosis" xml:lang="en">
<term>Alzheimer Disease</term>
</keywords>
<keywords scheme="MESH" qualifier="diagnostic" xml:lang="fr">
<term>Maladie d'Alzheimer</term>
</keywords>
<keywords scheme="MESH" qualifier="instrumentation" xml:lang="en">
<term>Electrophoresis, Capillary</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Glutaredoxins</term>
<term>Glutathione</term>
<term>Serum Albumin, Bovine</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Electrophoresis, Capillary</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Glutarédoxines</term>
<term>Glutathion</term>
<term>Sérumalbumine bovine</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Électrophorèse capillaire</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Cattle</term>
<term>Disease Models, Animal</term>
<term>Fluorescence</term>
<term>HT29 Cells</term>
<term>Humans</term>
<term>Lasers</term>
<term>Mice</term>
<term>Oxidation-Reduction</term>
<term>Protein Processing, Post-Translational</term>
</keywords>
<keywords scheme="MESH" qualifier="instrumentation" xml:lang="fr">
<term>Animaux</term>
<term>Bovins</term>
<term>Cellules HT29</term>
<term>Fluorescence</term>
<term>Humains</term>
<term>Lasers</term>
<term>Maturation post-traductionnelle des protéines</term>
<term>Modèles animaux de maladie humaine</term>
<term>Oxydoréduction</term>
<term>Souris</term>
<term>Électrophorèse capillaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">S-glutathionylation (Pr-SSG) is a specific post-translational modification of cysteine residues by the addition of glutathione. S-Glutathionylated proteins induced by oxidative or nitrosative stress play an essential role in understanding the pathogenesis of the aging and age-related disorder, such as Alzheimer's disease (AD). The purpose of this research is to develop a novel and ultrasensitive method to accurately and rapidly quantify the Pr-SSG by using capillary gel electrophoresis with laser-induced fluorescence detection (CGE-LIF). The derivatization method is based on the specific reduction of protein-bound S-glutathionylation with glutaredoxin (Grx) and labeling with thiol-reactive fluorescent dye (Dylight 488 maleimide). The experiments were performed by coupling the derivatization method with CGE-LIF to study electrophoretic profiling in in vitro oxidative stress model-S-glutathionylated bovine serum albumin (BSA-SSG), oxidant-induced human colon adenocarcinoma (HT-29) cells, brain tissues, and whole blood samples from an AD transgenic (Tg) mouse model. The results showed almost an eightfold increase in S-glutathionyl abundance when subjecting HT-29 cells in an oxidant environment, resulting in Pr-SSG at 232 ± 10.64 (average ±SD; n=3) nmol/mg. In the AD-Tg mouse model, an initial quantitative measurement demonstrated the extent of protein S-glutathionylation in three brain regions (hippocampus, cerebellum, and cerebrum), ranging from 1 to 10 nmol/mg. Additionally, we described our developed method to potentially serve as a highly desirable diagnostic tool for monitoring S-glutathionylated protein profile in minuscule amount of whole blood. The whole blood samples for S-glutathionyl expression of 5-month-old AD-Tg mice are quantified as 16.3 μmol/L (=7.2 nmol/mg protein). Altogether, this is a fast, easy, and accurate method, reaching the lowest limit of Pr-SSG detection at 1.8 attomole (amol) level, reported to date.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">21842197</PMID>
<DateCompleted>
<Year>2012</Year>
<Month>01</Month>
<Day>12</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1618-2650</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>401</Volume>
<Issue>7</Issue>
<PubDate>
<Year>2011</Year>
<Month>Oct</Month>
</PubDate>
</JournalIssue>
<Title>Analytical and bioanalytical chemistry</Title>
<ISOAbbreviation>Anal Bioanal Chem</ISOAbbreviation>
</Journal>
<ArticleTitle>S-Glutathionyl quantification in the attomole range using glutaredoxin-3-catalyzed cysteine derivatization and capillary gel electrophoresis with laser-induced fluorescence detection.</ArticleTitle>
<Pagination>
<MedlinePgn>2165-75</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00216-011-5311-x</ELocationID>
<Abstract>
<AbstractText>S-glutathionylation (Pr-SSG) is a specific post-translational modification of cysteine residues by the addition of glutathione. S-Glutathionylated proteins induced by oxidative or nitrosative stress play an essential role in understanding the pathogenesis of the aging and age-related disorder, such as Alzheimer's disease (AD). The purpose of this research is to develop a novel and ultrasensitive method to accurately and rapidly quantify the Pr-SSG by using capillary gel electrophoresis with laser-induced fluorescence detection (CGE-LIF). The derivatization method is based on the specific reduction of protein-bound S-glutathionylation with glutaredoxin (Grx) and labeling with thiol-reactive fluorescent dye (Dylight 488 maleimide). The experiments were performed by coupling the derivatization method with CGE-LIF to study electrophoretic profiling in in vitro oxidative stress model-S-glutathionylated bovine serum albumin (BSA-SSG), oxidant-induced human colon adenocarcinoma (HT-29) cells, brain tissues, and whole blood samples from an AD transgenic (Tg) mouse model. The results showed almost an eightfold increase in S-glutathionyl abundance when subjecting HT-29 cells in an oxidant environment, resulting in Pr-SSG at 232 ± 10.64 (average ±SD; n=3) nmol/mg. In the AD-Tg mouse model, an initial quantitative measurement demonstrated the extent of protein S-glutathionylation in three brain regions (hippocampus, cerebellum, and cerebrum), ranging from 1 to 10 nmol/mg. Additionally, we described our developed method to potentially serve as a highly desirable diagnostic tool for monitoring S-glutathionylated protein profile in minuscule amount of whole blood. The whole blood samples for S-glutathionyl expression of 5-month-old AD-Tg mice are quantified as 16.3 μmol/L (=7.2 nmol/mg protein). Altogether, this is a fast, easy, and accurate method, reaching the lowest limit of Pr-SSG detection at 1.8 attomole (amol) level, reported to date.</AbstractText>
<CopyrightInformation>© Springer-Verlag 2011</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Cheng</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Department of Biomedical Engineering, Louisiana Tech University, 818 Nelson Avenue, Ruston, LA 71272, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rodriguez</LastName>
<ForeName>Cynthia</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Circu</LastName>
<ForeName>Magdalena L</ForeName>
<Initials>ML</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Aw</LastName>
<ForeName>Tak Yee</ForeName>
<Initials>TY</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Feng</LastName>
<ForeName>June</ForeName>
<Initials>J</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>P20 RR016456</GrantID>
<Acronym>RR</Acronym>
<Agency>NCRR NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 DK044510</GrantID>
<Acronym>DK</Acronym>
<Agency>NIDDK NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>DK44510</GrantID>
<Acronym>DK</Acronym>
<Agency>NIDDK NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P20RR016456</GrantID>
<Acronym>RR</Acronym>
<Agency>NCRR NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>08</Month>
<Day>13</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Anal Bioanal Chem</MedlineTA>
<NlmUniqueID>101134327</NlmUniqueID>
<ISSNLinking>1618-2642</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>27432CM55Q</RegistryNumber>
<NameOfSubstance UI="D012710">Serum Albumin, Bovine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>GAN16C9B8O</RegistryNumber>
<NameOfSubstance UI="D005978">Glutathione</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>K848JZ4886</RegistryNumber>
<NameOfSubstance UI="D003545">Cysteine</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000544" MajorTopicYN="N">Alzheimer Disease</DescriptorName>
<QualifierName UI="Q000175" MajorTopicYN="N">diagnosis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002417" MajorTopicYN="N">Cattle</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003545" MajorTopicYN="N">Cysteine</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004195" MajorTopicYN="N">Disease Models, Animal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019075" MajorTopicYN="N">Electrophoresis, Capillary</DescriptorName>
<QualifierName UI="Q000295" MajorTopicYN="N">instrumentation</QualifierName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005453" MajorTopicYN="N">Fluorescence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005978" MajorTopicYN="N">Glutathione</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019073" MajorTopicYN="N">HT29 Cells</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007834" MajorTopicYN="Y">Lasers</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011499" MajorTopicYN="Y">Protein Processing, Post-Translational</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012710" MajorTopicYN="N">Serum Albumin, Bovine</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2011</Year>
<Month>06</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2011</Year>
<Month>08</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2011</Year>
<Month>08</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>8</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>8</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>1</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">21842197</ArticleId>
<ArticleId IdType="doi">10.1007/s00216-011-5311-x</ArticleId>
<ArticleId IdType="pmc">PMC4221632</ArticleId>
<ArticleId IdType="mid">NIHMS638124</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Electrophoresis. 2008 Jan;29(2):475-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18064596</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chromatogr B Analyt Technol Biomed Life Sci. 2002 Dec 5;781(1-2):181-206</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12450659</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Pharmacol. 2003 Mar 1;65(5):741-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12628487</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Pharmacol. 2009 Jan 1;77(1):76-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18840413</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gerontol A Biol Sci Med Sci. 2008 Dec;63(12):1277-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19126840</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chromatogr B Biomed Sci Appl. 1999 Dec 10;735(2):219-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10670736</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2005 Jul 1;332(2):362-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15910747</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chromatogr B Biomed Sci Appl. 2001 Mar 5;752(1):123-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11254186</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chromatogr B Biomed Sci Appl. 2001 Apr 5;753(2):287-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11334342</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2006 Mar;1760(3):380-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16515838</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain Res. 2006 May 23;1090(1):35-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16647047</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Biochem. 2007;8:26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18070357</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2008 Mar 1;44(5):768-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18267208</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurochem. 2009 Apr;109(2):476-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19200347</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2009 Oct 15;47(8):1190-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19647792</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chromatogr B Analyt Technol Biomed Life Sci. 2009 Oct 15;877(28):3331-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19560987</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 2010;474:289-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20609917</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chromatogr A. 2001 Apr 13;913(1-2):283-302</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11355824</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 2002 Oct 15;406(2):229-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12361711</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Chim Acta. 2003 Jul 1;333(1):19-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12809732</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Bioanal Chem. 2004 Apr;378(7):1783-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14985909</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Lab Clin Med. 1967 Sep;70(3):518-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6038554</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1976 Jul;74(1):214-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">962076</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1980 Jul 15;190(1):125-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7447929</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1985 Mar 1;226(2):545-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3994671</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain Res Bull. 1990 Oct;25(4):629-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2271967</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1993 Apr 6;32(13):3368-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8461300</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1995;252:283-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7476363</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chromatogr B Biomed Appl. 1995 Oct 20;672(2):217-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8581127</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chromatogr B Biomed Appl. 1996 Apr 12;678(2):157-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8738017</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chromatogr B Biomed Appl. 1995 Dec 1;674(1):23-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8749248</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Pharm Biomed Anal. 1997 Jul;15(11):1757-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9260673</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 1998 Jan 6;242(1):1-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9439600</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chromatogr B Biomed Sci Appl. 1998 Apr 10;707(1-2):301-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9613963</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Chim Acta. 1998 Jul 28;275(2):175-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9721075</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1998 Dec 8;37(49):17145-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9860827</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1999 Feb 19;286(2):541-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9973569</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci Res. 1999 Nov 1;58(3):436-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10518117</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1959 May;82(1):70-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13650640</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 2005 Mar 1;435(1):42-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15680905</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2005 Mar-Apr;7(3-4):348-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15706083</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 2000 Aug;267(16):4928-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10931175</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Louisiane</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Aw, Tak Yee" sort="Aw, Tak Yee" uniqKey="Aw T" first="Tak Yee" last="Aw">Tak Yee Aw</name>
<name sortKey="Circu, Magdalena L" sort="Circu, Magdalena L" uniqKey="Circu M" first="Magdalena L" last="Circu">Magdalena L. Circu</name>
<name sortKey="Feng, June" sort="Feng, June" uniqKey="Feng J" first="June" last="Feng">June Feng</name>
<name sortKey="Rodriguez, Cynthia" sort="Rodriguez, Cynthia" uniqKey="Rodriguez C" first="Cynthia" last="Rodriguez">Cynthia Rodriguez</name>
</noCountry>
<country name="États-Unis">
<region name="Louisiane">
<name sortKey="Zhang, Cheng" sort="Zhang, Cheng" uniqKey="Zhang C" first="Cheng" last="Zhang">Cheng Zhang</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000919 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000919 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:21842197
   |texte=   S-Glutathionyl quantification in the attomole range using glutaredoxin-3-catalyzed cysteine derivatization and capillary gel electrophoresis with laser-induced fluorescence detection.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:21842197" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020