Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Plant peroxiredoxins: catalytic mechanisms, functional significance and future perspectives.

Identifieur interne : 000895 ( Main/Exploration ); précédent : 000894; suivant : 000896

Plant peroxiredoxins: catalytic mechanisms, functional significance and future perspectives.

Auteurs : Indu Bhatt [Inde] ; B N Tripathi

Source :

RBID : pubmed:21777667

Descripteurs français

English descriptors

Abstract

Peroxiredoxins (Prx) are a family of thiol dependent peroxidases found in almost all kingdoms. In plants, five major classes of Prx are known. They are known to catalyze the decomposition of peroxides and as they lack a prosthetic group, the catalytic cycle results in the generation of an inactive form of Prx. In order to regain the active form, Prx rely on external electron donors such as thioredoxins, glutaredoxins, cyclophilins, NADPH-dependent thioredoxin reductase C (NTRC) etc. In addition to their well established role in antioxidative defense, Prx are also reported to play an important role in growth and development, dessication tolerance in dormant seeds, protection of photosynthesis, defense against pathogens and redox signaling. Prx are also known to establish an alternate water-water cycle for the detoxification of H₂O₂, parallel to ascorbate-dependent H₂O₂ detoxification. But the relative contribution of Prx in detoxifying H₂O₂ compared to ascorbate peroxidase is not known so far due to experimental limitations. In view of the above, the present review focuses on the recent developments on Prxs.

DOI: 10.1016/j.biotechadv.2011.07.002
PubMed: 21777667


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Plant peroxiredoxins: catalytic mechanisms, functional significance and future perspectives.</title>
<author>
<name sortKey="Bhatt, Indu" sort="Bhatt, Indu" uniqKey="Bhatt I" first="Indu" last="Bhatt">Indu Bhatt</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Bioscience and Biotechnology, Banasthali University, Banasthali 304022, Rajasthan, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Department of Bioscience and Biotechnology, Banasthali University, Banasthali 304022, Rajasthan</wicri:regionArea>
<wicri:noRegion>Rajasthan</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Tripathi, B N" sort="Tripathi, B N" uniqKey="Tripathi B" first="B N" last="Tripathi">B N Tripathi</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011 Nov-Dec</date>
<idno type="RBID">pubmed:21777667</idno>
<idno type="pmid">21777667</idno>
<idno type="doi">10.1016/j.biotechadv.2011.07.002</idno>
<idno type="wicri:Area/Main/Corpus">000909</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000909</idno>
<idno type="wicri:Area/Main/Curation">000909</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000909</idno>
<idno type="wicri:Area/Main/Exploration">000909</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Plant peroxiredoxins: catalytic mechanisms, functional significance and future perspectives.</title>
<author>
<name sortKey="Bhatt, Indu" sort="Bhatt, Indu" uniqKey="Bhatt I" first="Indu" last="Bhatt">Indu Bhatt</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Bioscience and Biotechnology, Banasthali University, Banasthali 304022, Rajasthan, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Department of Bioscience and Biotechnology, Banasthali University, Banasthali 304022, Rajasthan</wicri:regionArea>
<wicri:noRegion>Rajasthan</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Tripathi, B N" sort="Tripathi, B N" uniqKey="Tripathi B" first="B N" last="Tripathi">B N Tripathi</name>
</author>
</analytic>
<series>
<title level="j">Biotechnology advances</title>
<idno type="eISSN">1873-1899</idno>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Oxidation-Reduction (MeSH)</term>
<term>Oxidative Stress (MeSH)</term>
<term>Peroxiredoxins (chemistry)</term>
<term>Peroxiredoxins (metabolism)</term>
<term>Photosynthesis (MeSH)</term>
<term>Plant Proteins (chemistry)</term>
<term>Plant Proteins (metabolism)</term>
<term>Signal Transduction (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Oxydoréduction (MeSH)</term>
<term>Peroxirédoxines (composition chimique)</term>
<term>Peroxirédoxines (métabolisme)</term>
<term>Photosynthèse (MeSH)</term>
<term>Protéines végétales (composition chimique)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Stress oxydatif (MeSH)</term>
<term>Transduction du signal (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Peroxiredoxins</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Peroxiredoxins</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Peroxirédoxines</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Peroxirédoxines</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Oxidation-Reduction</term>
<term>Oxidative Stress</term>
<term>Photosynthesis</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Oxydoréduction</term>
<term>Photosynthèse</term>
<term>Stress oxydatif</term>
<term>Transduction du signal</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Peroxiredoxins (Prx) are a family of thiol dependent peroxidases found in almost all kingdoms. In plants, five major classes of Prx are known. They are known to catalyze the decomposition of peroxides and as they lack a prosthetic group, the catalytic cycle results in the generation of an inactive form of Prx. In order to regain the active form, Prx rely on external electron donors such as thioredoxins, glutaredoxins, cyclophilins, NADPH-dependent thioredoxin reductase C (NTRC) etc. In addition to their well established role in antioxidative defense, Prx are also reported to play an important role in growth and development, dessication tolerance in dormant seeds, protection of photosynthesis, defense against pathogens and redox signaling. Prx are also known to establish an alternate water-water cycle for the detoxification of H₂O₂, parallel to ascorbate-dependent H₂O₂ detoxification. But the relative contribution of Prx in detoxifying H₂O₂ compared to ascorbate peroxidase is not known so far due to experimental limitations. In view of the above, the present review focuses on the recent developments on Prxs.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">21777667</PMID>
<DateCompleted>
<Year>2012</Year>
<Month>01</Month>
<Day>19</Day>
</DateCompleted>
<DateRevised>
<Year>2011</Year>
<Month>10</Month>
<Day>04</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1873-1899</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>29</Volume>
<Issue>6</Issue>
<PubDate>
<MedlineDate>2011 Nov-Dec</MedlineDate>
</PubDate>
</JournalIssue>
<Title>Biotechnology advances</Title>
<ISOAbbreviation>Biotechnol Adv</ISOAbbreviation>
</Journal>
<ArticleTitle>Plant peroxiredoxins: catalytic mechanisms, functional significance and future perspectives.</ArticleTitle>
<Pagination>
<MedlinePgn>850-9</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.biotechadv.2011.07.002</ELocationID>
<Abstract>
<AbstractText>Peroxiredoxins (Prx) are a family of thiol dependent peroxidases found in almost all kingdoms. In plants, five major classes of Prx are known. They are known to catalyze the decomposition of peroxides and as they lack a prosthetic group, the catalytic cycle results in the generation of an inactive form of Prx. In order to regain the active form, Prx rely on external electron donors such as thioredoxins, glutaredoxins, cyclophilins, NADPH-dependent thioredoxin reductase C (NTRC) etc. In addition to their well established role in antioxidative defense, Prx are also reported to play an important role in growth and development, dessication tolerance in dormant seeds, protection of photosynthesis, defense against pathogens and redox signaling. Prx are also known to establish an alternate water-water cycle for the detoxification of H₂O₂, parallel to ascorbate-dependent H₂O₂ detoxification. But the relative contribution of Prx in detoxifying H₂O₂ compared to ascorbate peroxidase is not known so far due to experimental limitations. In view of the above, the present review focuses on the recent developments on Prxs.</AbstractText>
<CopyrightInformation>Copyright © 2011 Elsevier Inc. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Bhatt</LastName>
<ForeName>Indu</ForeName>
<Initials>I</Initials>
<AffiliationInfo>
<Affiliation>Department of Bioscience and Biotechnology, Banasthali University, Banasthali 304022, Rajasthan, India.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tripathi</LastName>
<ForeName>B N</ForeName>
<Initials>BN</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>07</Month>
<Day>13</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Biotechnol Adv</MedlineTA>
<NlmUniqueID>8403708</NlmUniqueID>
<ISSNLinking>0734-9750</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.11.1.15</RegistryNumber>
<NameOfSubstance UI="D054464">Peroxiredoxins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018384" MajorTopicYN="N">Oxidative Stress</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054464" MajorTopicYN="N">Peroxiredoxins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010788" MajorTopicYN="N">Photosynthesis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2011</Year>
<Month>02</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2011</Year>
<Month>06</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2011</Year>
<Month>07</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>7</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>7</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>1</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">21777667</ArticleId>
<ArticleId IdType="pii">S0734-9750(11)00099-1</ArticleId>
<ArticleId IdType="doi">10.1016/j.biotechadv.2011.07.002</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Inde</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Tripathi, B N" sort="Tripathi, B N" uniqKey="Tripathi B" first="B N" last="Tripathi">B N Tripathi</name>
</noCountry>
<country name="Inde">
<noRegion>
<name sortKey="Bhatt, Indu" sort="Bhatt, Indu" uniqKey="Bhatt I" first="Indu" last="Bhatt">Indu Bhatt</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000895 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000895 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:21777667
   |texte=   Plant peroxiredoxins: catalytic mechanisms, functional significance and future perspectives.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:21777667" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020