Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

ROS homeostasis during development: an evolutionary conserved strategy.

Identifieur interne : 000828 ( Main/Exploration ); précédent : 000827; suivant : 000829

ROS homeostasis during development: an evolutionary conserved strategy.

Auteurs : Jos H M. Schippers [Allemagne] ; Hung M. Nguyen ; Dandan Lu ; Romy Schmidt ; Bernd Mueller-Roeber

Source :

RBID : pubmed:22842779

Descripteurs français

English descriptors

Abstract

The balance between cellular proliferation and differentiation is a key aspect of development in multicellular organisms. Recent studies on Arabidopsis roots revealed distinct roles for different reactive oxygen species (ROS) in these processes. Modulation of the balance between ROS in proliferating cells and elongating cells is controlled at least in part at the transcriptional level. The effect of ROS on proliferation and differentiation is not specific for plants but appears to be conserved between prokaryotic and eukaryotic life forms. The ways in which ROS is received and how it affects cellular functioning is discussed from an evolutionary point of view. The different redox-sensing mechanisms that evolved ultimately result in the activation of gene regulatory networks that control cellular fate and decision-making. This review highlights the potential common origin of ROS sensing, indicating that organisms evolved similar strategies for utilizing ROS during development, and discusses ROS as an ancient universal developmental regulator.

DOI: 10.1007/s00018-012-1092-4
PubMed: 22842779


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">ROS homeostasis during development: an evolutionary conserved strategy.</title>
<author>
<name sortKey="Schippers, Jos H M" sort="Schippers, Jos H M" uniqKey="Schippers J" first="Jos H M" last="Schippers">Jos H M. Schippers</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Molecular Biology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam-Golm, Germany. schippers@mpimp-golm.mpg.de</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Molecular Biology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam-Golm</wicri:regionArea>
<wicri:noRegion>Potsdam-Golm</wicri:noRegion>
<orgName type="university">Université de Potsdam</orgName>
<placeName>
<settlement type="city">Potsdam</settlement>
<region type="land" nuts="1">Brandebourg</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Nguyen, Hung M" sort="Nguyen, Hung M" uniqKey="Nguyen H" first="Hung M" last="Nguyen">Hung M. Nguyen</name>
</author>
<author>
<name sortKey="Lu, Dandan" sort="Lu, Dandan" uniqKey="Lu D" first="Dandan" last="Lu">Dandan Lu</name>
</author>
<author>
<name sortKey="Schmidt, Romy" sort="Schmidt, Romy" uniqKey="Schmidt R" first="Romy" last="Schmidt">Romy Schmidt</name>
</author>
<author>
<name sortKey="Mueller Roeber, Bernd" sort="Mueller Roeber, Bernd" uniqKey="Mueller Roeber B" first="Bernd" last="Mueller-Roeber">Bernd Mueller-Roeber</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:22842779</idno>
<idno type="pmid">22842779</idno>
<idno type="doi">10.1007/s00018-012-1092-4</idno>
<idno type="wicri:Area/Main/Corpus">000819</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000819</idno>
<idno type="wicri:Area/Main/Curation">000819</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000819</idno>
<idno type="wicri:Area/Main/Exploration">000819</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">ROS homeostasis during development: an evolutionary conserved strategy.</title>
<author>
<name sortKey="Schippers, Jos H M" sort="Schippers, Jos H M" uniqKey="Schippers J" first="Jos H M" last="Schippers">Jos H M. Schippers</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Molecular Biology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam-Golm, Germany. schippers@mpimp-golm.mpg.de</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Molecular Biology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam-Golm</wicri:regionArea>
<wicri:noRegion>Potsdam-Golm</wicri:noRegion>
<orgName type="university">Université de Potsdam</orgName>
<placeName>
<settlement type="city">Potsdam</settlement>
<region type="land" nuts="1">Brandebourg</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Nguyen, Hung M" sort="Nguyen, Hung M" uniqKey="Nguyen H" first="Hung M" last="Nguyen">Hung M. Nguyen</name>
</author>
<author>
<name sortKey="Lu, Dandan" sort="Lu, Dandan" uniqKey="Lu D" first="Dandan" last="Lu">Dandan Lu</name>
</author>
<author>
<name sortKey="Schmidt, Romy" sort="Schmidt, Romy" uniqKey="Schmidt R" first="Romy" last="Schmidt">Romy Schmidt</name>
</author>
<author>
<name sortKey="Mueller Roeber, Bernd" sort="Mueller Roeber, Bernd" uniqKey="Mueller Roeber B" first="Bernd" last="Mueller-Roeber">Bernd Mueller-Roeber</name>
</author>
</analytic>
<series>
<title level="j">Cellular and molecular life sciences : CMLS</title>
<idno type="eISSN">1420-9071</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Biological Evolution (MeSH)</term>
<term>Cell Differentiation (MeSH)</term>
<term>Cell Proliferation (MeSH)</term>
<term>Glutaredoxins (metabolism)</term>
<term>Growth and Development (MeSH)</term>
<term>Homeostasis (MeSH)</term>
<term>NADPH Oxidases (metabolism)</term>
<term>Plants (metabolism)</term>
<term>Proteins (metabolism)</term>
<term>Reactive Oxygen Species (metabolism)</term>
<term>Signal Transduction (MeSH)</term>
<term>Thioredoxins (metabolism)</term>
<term>Yeasts (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Croissance et développement (MeSH)</term>
<term>Différenciation cellulaire (MeSH)</term>
<term>Espèces réactives de l'oxygène (métabolisme)</term>
<term>Glutarédoxines (métabolisme)</term>
<term>Homéostasie (MeSH)</term>
<term>Levures (métabolisme)</term>
<term>NADPH oxidase (métabolisme)</term>
<term>Plantes (métabolisme)</term>
<term>Prolifération cellulaire (MeSH)</term>
<term>Protéines (métabolisme)</term>
<term>Thiorédoxines (métabolisme)</term>
<term>Transduction du signal (MeSH)</term>
<term>Évolution biologique (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Glutaredoxins</term>
<term>NADPH Oxidases</term>
<term>Proteins</term>
<term>Reactive Oxygen Species</term>
<term>Thioredoxins</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Plants</term>
<term>Yeasts</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Espèces réactives de l'oxygène</term>
<term>Glutarédoxines</term>
<term>Levures</term>
<term>NADPH oxidase</term>
<term>Plantes</term>
<term>Protéines</term>
<term>Thiorédoxines</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Biological Evolution</term>
<term>Cell Differentiation</term>
<term>Cell Proliferation</term>
<term>Growth and Development</term>
<term>Homeostasis</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Croissance et développement</term>
<term>Différenciation cellulaire</term>
<term>Homéostasie</term>
<term>Prolifération cellulaire</term>
<term>Transduction du signal</term>
<term>Évolution biologique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The balance between cellular proliferation and differentiation is a key aspect of development in multicellular organisms. Recent studies on Arabidopsis roots revealed distinct roles for different reactive oxygen species (ROS) in these processes. Modulation of the balance between ROS in proliferating cells and elongating cells is controlled at least in part at the transcriptional level. The effect of ROS on proliferation and differentiation is not specific for plants but appears to be conserved between prokaryotic and eukaryotic life forms. The ways in which ROS is received and how it affects cellular functioning is discussed from an evolutionary point of view. The different redox-sensing mechanisms that evolved ultimately result in the activation of gene regulatory networks that control cellular fate and decision-making. This review highlights the potential common origin of ROS sensing, indicating that organisms evolved similar strategies for utilizing ROS during development, and discusses ROS as an ancient universal developmental regulator.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">22842779</PMID>
<DateCompleted>
<Year>2012</Year>
<Month>11</Month>
<Day>30</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1420-9071</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>69</Volume>
<Issue>19</Issue>
<PubDate>
<Year>2012</Year>
<Month>Oct</Month>
</PubDate>
</JournalIssue>
<Title>Cellular and molecular life sciences : CMLS</Title>
<ISOAbbreviation>Cell Mol Life Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>ROS homeostasis during development: an evolutionary conserved strategy.</ArticleTitle>
<Pagination>
<MedlinePgn>3245-57</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00018-012-1092-4</ELocationID>
<Abstract>
<AbstractText>The balance between cellular proliferation and differentiation is a key aspect of development in multicellular organisms. Recent studies on Arabidopsis roots revealed distinct roles for different reactive oxygen species (ROS) in these processes. Modulation of the balance between ROS in proliferating cells and elongating cells is controlled at least in part at the transcriptional level. The effect of ROS on proliferation and differentiation is not specific for plants but appears to be conserved between prokaryotic and eukaryotic life forms. The ways in which ROS is received and how it affects cellular functioning is discussed from an evolutionary point of view. The different redox-sensing mechanisms that evolved ultimately result in the activation of gene regulatory networks that control cellular fate and decision-making. This review highlights the potential common origin of ROS sensing, indicating that organisms evolved similar strategies for utilizing ROS during development, and discusses ROS as an ancient universal developmental regulator.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Schippers</LastName>
<ForeName>Jos H M</ForeName>
<Initials>JH</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular Biology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam-Golm, Germany. schippers@mpimp-golm.mpg.de</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Nguyen</LastName>
<ForeName>Hung M</ForeName>
<Initials>HM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lu</LastName>
<ForeName>Dandan</ForeName>
<Initials>D</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Schmidt</LastName>
<ForeName>Romy</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Mueller-Roeber</LastName>
<ForeName>Bernd</ForeName>
<Initials>B</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>07</Month>
<Day>28</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Cell Mol Life Sci</MedlineTA>
<NlmUniqueID>9705402</NlmUniqueID>
<ISSNLinking>1420-682X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011506">Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017382">Reactive Oxygen Species</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>52500-60-4</RegistryNumber>
<NameOfSubstance UI="D013879">Thioredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.6.3.-</RegistryNumber>
<NameOfSubstance UI="D019255">NADPH Oxidases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005075" MajorTopicYN="Y">Biological Evolution</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002454" MajorTopicYN="N">Cell Differentiation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D049109" MajorTopicYN="N">Cell Proliferation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D048788" MajorTopicYN="Y">Growth and Development</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006706" MajorTopicYN="N">Homeostasis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019255" MajorTopicYN="N">NADPH Oxidases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010944" MajorTopicYN="N">Plants</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011506" MajorTopicYN="N">Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017382" MajorTopicYN="N">Reactive Oxygen Species</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013879" MajorTopicYN="N">Thioredoxins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015003" MajorTopicYN="N">Yeasts</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2012</Year>
<Month>07</Month>
<Day>07</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2012</Year>
<Month>07</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2012</Year>
<Month>07</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>7</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>7</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>12</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22842779</ArticleId>
<ArticleId IdType="doi">10.1007/s00018-012-1092-4</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Cell. 2008 Oct;20(10):2909-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18978034</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2001 Jun;26(6):369-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11406410</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Chem Biol. 2007 Apr;3(4):206-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17372605</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Microbiol. 2011 Aug;19(8):400-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21640592</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2007 Apr 3;46(13):3942-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17352498</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Mar 3;106(9):3615-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19218459</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Jun;141(2):384-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16760492</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2011 Oct;14(5):519-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21704551</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2005 Feb;132(3):603-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15634699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Jan;49(2):313-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17181779</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Evol Biol. 2004 Jan 28;4:2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15005799</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2007;174(4):742-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17504458</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 2012 Jul;69(13):2245-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22311064</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2001 Jun 7;411(6838):709-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11395776</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2008 Sep;10(9):1565-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18498222</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Chem. 2002 Mar-Apr;383(3-4):569-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12033445</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2000 Jan 28;287(5453):655-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10649999</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2011 Jan;28(1):567-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20805191</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Br J Pharmacol. 2004 May;142(2):231-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15155533</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2011 Oct;62(14):4749-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21778180</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2012 Aug;15(4):431-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22425194</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2008 Mar;25(3):507-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18187560</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2002 Nov;130(3):1516-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12428016</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2000 Jan;12(1):97-110</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10634910</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2007 Oct;8(10):813-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17848967</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Mar 24;311(5768):1764-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16556842</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circ Res. 1992 Mar;70(3):593-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1371430</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>IUBMB Life. 1999 Jul;48(1):41-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10791914</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2011 Mar;23(3):855-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21386031</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1997 Oct 24;272(43):26985-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9341136</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2001 Feb;12 (2):407-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11179424</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Sci. 2012 Apr;185-186:86-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22325869</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncogene. 2007 Feb 22;26(8):1101-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16924237</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2005 May-Jun;7(5-6):741-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15890020</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2008 Jun 18;3(6):e2491</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18560512</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2008 Aug;36(13):4327-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18586825</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Mar 24;311(5768):1724-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16556831</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1989 Mar;89(3):958-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16666648</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1996 Sep 20;86(6):865-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8808622</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 2000 Sep;64(3):503-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10974124</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Jun;150(2):670-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19363092</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2002 May 3;109(3):383-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12015987</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Jan 7;100(1):352-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12509505</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Jun;141(2):312-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16760481</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Feb 27;98(5):2170-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11226211</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2010 Jan;61(2):271-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19874542</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2009 Oct 13;48(40):9569-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19715344</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2007 Jun 29;316(5833):1916-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17600220</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 2009 Nov;155(Pt 11):3589-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19713239</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circ Res. 1999 Sep 17;85(6):524-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10488055</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Respir Cell Mol Biol. 2009 May;40(5):507-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18978299</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2010 Mar;12(3):405-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19686038</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Apr 15;280(15):15202-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15659396</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2010 Nov 12;143(4):606-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21074051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2009 Feb;21(2):429-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19218396</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Sep 24;461(7263):537-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19727075</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2005 Aug;8(4):397-403</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15939662</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2009 Dec 15;8(24):4072-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19923889</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2009 Dec;11(12):2985-3011</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19505186</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2007 Feb;10(1):44-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17157052</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2010 Jan 27;426(1):73-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19925453</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Nov;154(3):1492-504</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20805327</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Dec;19(12):4120-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18165327</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Hypertens. 2004 May;17(5 Pt 1):450-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15110906</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Reprod. 2010 Feb;82(2):341-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19741209</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1998 Mar 13;279(5357):1718-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9497290</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 2004 Jun;61(11):1266-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15170506</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2010 Sep 17;329(5998):1526-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20688982</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2006 Mar;45(6):968-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16507087</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2010 May;15(5):247-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20304701</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 Mar;53(5):790-801</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18036205</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Biol. 1996 Aug 25;178(1):179-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8812119</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Jun;19(6):1851-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17586656</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2010 Dec;64(5):825-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21105929</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2000 Oct;124(2):823-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11027730</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1998 Sep 25;436(1):76-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9771897</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1993 Jun 4;73(5):857-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8098993</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2003 Oct;53(3):313-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14750521</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 May 6;105(18):6735-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18456836</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Jul 13;282(28):20416-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17452333</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 Aug 15;321(5891):952-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18635760</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2009 May;136(10):1613-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19395639</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 1997 Jun;22(6):207-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9204707</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2000 Sep;113 ( Pt 18):3141-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10954413</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Feb 15;108(7):2729-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21282621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 1997 May;22(5):172-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9175476</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phys Biol. 2010 Aug 23;7(3):036005</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20733247</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 May 9;300(5621):929-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12738849</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Aug;156(4):1851-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21666052</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Biol. 2010 Apr 06;8:30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20370908</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Cell Biol. 1990;6:539-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2125830</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2002 Aug;4(8):556-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12134156</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 2012 Jan;69(2):215-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21947442</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2011 Oct 15;15(8):2335-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21194351</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Cell Res. 2012 Feb 15;318(4):350-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22155727</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2000 Aug 15;19(16):4237-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10944106</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 1999 Dec 29;354(1392):1923-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10670014</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2011 Mar 18;144(6):910-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21414483</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2009 Jul;73(1):1-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19508286</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Genomics. 2007 Dec 19;32(1):74-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17895394</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2012 Mar;194(5):1226-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22194458</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2004 Jul 2;15(1):129-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15225554</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2009 Oct;11(10):2467-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19309256</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2003 Aug 15;116(Pt 16):3387-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12840076</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2003 Jun;6(3):236-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12753973</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Jun 10;286(23):20398-406</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21515673</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2012 Feb;35(2):360-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21767278</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Steroids. 2011 Dec 11;76(13):1483-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21864554</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 2007 Nov 1;467(1):41-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17900520</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2011 Mar;62(6):2039-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21196476</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2008 Jul;133(3):459-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18429942</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2011 Dec;14(6):691-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21862390</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2010 Mar 5;285(10 ):7505-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20061379</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2000 Nov 15;29(10 ):1043-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11084293</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Evol Biol. 2007 Jul 06;7:109</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17612411</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Mar 27;422(6930):442-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12660786</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2011 May 10;21(9):R320-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21549954</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2005 Apr;132(7):1555-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15728668</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Sep 14;282(37):27259-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17631497</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2000 Oct 2;19(19):5157-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11013218</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2001 Sep;42(9):1017-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11577198</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Oct;18(10):2749-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16998070</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Aug 13;460(7257):831-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19675643</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2012 Jan;63(1):503-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21963612</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2009 Jul 7;48(26):6041-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19505088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2003 Jun 27;113(7):935-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12837250</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2012 May 16;485(7399):459-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22622569</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1994 Oct 11;91(21):9926-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7937919</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1999 Feb 1;13(3):334-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9990857</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2007;174(2):332-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17388896</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1995 Jun 1;319(2):519-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7786037</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Mar;152(3):1484-500</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20097791</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2004 Jun;186(11):3663-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15150257</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2007 Jun;18(6):2288-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17409354</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Jun 21;102(25):8875-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15956211</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Apr 1;280(13):12168-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15632145</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2005 Aug;8(4):378-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15922650</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2000 Mar 24;470(2):118-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10734219</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Mar;137(3):831-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15761208</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Comput Biol. 2010 Feb 12;6(2):e1000676</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20168997</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1998 Mar 13;273(11):6297-302</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9497357</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2012 Mar 9;586(5):585-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22079668</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2004 Feb;6(1):63-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14713336</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1997 Jul;9(7):1157-1168</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12237381</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2008 Sep;10(9):1527-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18498226</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2011 Aug 15;15(4):1129-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21194355</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Allemagne</li>
</country>
<region>
<li>Brandebourg</li>
</region>
<settlement>
<li>Potsdam</li>
</settlement>
<orgName>
<li>Université de Potsdam</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Lu, Dandan" sort="Lu, Dandan" uniqKey="Lu D" first="Dandan" last="Lu">Dandan Lu</name>
<name sortKey="Mueller Roeber, Bernd" sort="Mueller Roeber, Bernd" uniqKey="Mueller Roeber B" first="Bernd" last="Mueller-Roeber">Bernd Mueller-Roeber</name>
<name sortKey="Nguyen, Hung M" sort="Nguyen, Hung M" uniqKey="Nguyen H" first="Hung M" last="Nguyen">Hung M. Nguyen</name>
<name sortKey="Schmidt, Romy" sort="Schmidt, Romy" uniqKey="Schmidt R" first="Romy" last="Schmidt">Romy Schmidt</name>
</noCountry>
<country name="Allemagne">
<region name="Brandebourg">
<name sortKey="Schippers, Jos H M" sort="Schippers, Jos H M" uniqKey="Schippers J" first="Jos H M" last="Schippers">Jos H M. Schippers</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000828 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000828 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:22842779
   |texte=   ROS homeostasis during development: an evolutionary conserved strategy.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:22842779" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020