Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Ambient ultrafine particles reduce endothelial nitric oxide production via S-glutathionylation of eNOS.

Identifieur interne : 000786 ( Main/Exploration ); précédent : 000785; suivant : 000787

Ambient ultrafine particles reduce endothelial nitric oxide production via S-glutathionylation of eNOS.

Auteurs : Yunfeng Du [États-Unis] ; Mohamad Navab ; Melody Shen ; James Hill ; Payam Pakbin ; Constantinos Sioutas ; Tzung K. Hsiai ; Rongsong Li

Source :

RBID : pubmed:23751346

Descripteurs français

English descriptors

Abstract

Exposure to airborne particulate pollutants is intimately linked to vascular oxidative stress and inflammatory responses with clinical relevance to atherosclerosis. Particulate matter (PM) has been reported to induce endothelial dysfunction and atherosclerosis. Here, we tested whether ambient ultrafine particles (UFP, diameter <200 nm) modulate eNOS activity in terms of nitric oxide (NO) production via protein S-glutathionylation. Treatment of human aortic endothelial cells (HAEC) with UFP significantly reduced NO production. UFP-mediated reduction in NO production was restored in the presence of JNK inhibitor (SP600125), NADPH oxidase inhibitor (Apocynin), anti-oxidant (N-acetyl cysteine), and superoxide dismutase mimetics (Tempol and MnTMPyP). UFP exposure increased the GSSG/GSH ratio and eNOS S-glutathionylation, whereas over-expression of Glutaredoxin-1 (to inhibit S-glutathionylation) restored UFP-mediated reduction in NO production by nearly 80%. Thus, our findings suggest that eNOS S-glutathionylation is a potential mechanism underlying ambient UFP-induced reduction of NO production.

DOI: 10.1016/j.bbrc.2013.05.127
PubMed: 23751346
PubMed Central: PMC3743434


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Ambient ultrafine particles reduce endothelial nitric oxide production via S-glutathionylation of eNOS.</title>
<author>
<name sortKey="Du, Yunfeng" sort="Du, Yunfeng" uniqKey="Du Y" first="Yunfeng" last="Du">Yunfeng Du</name>
<affiliation wicri:level="4">
<nlm:affiliation>Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biomedical Engineering, University of Southern California, Los Angeles, CA 90089</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
<settlement type="city">Los Angeles</settlement>
</placeName>
<orgName type="university">Université de Californie du Sud</orgName>
</affiliation>
</author>
<author>
<name sortKey="Navab, Mohamad" sort="Navab, Mohamad" uniqKey="Navab M" first="Mohamad" last="Navab">Mohamad Navab</name>
</author>
<author>
<name sortKey="Shen, Melody" sort="Shen, Melody" uniqKey="Shen M" first="Melody" last="Shen">Melody Shen</name>
</author>
<author>
<name sortKey="Hill, James" sort="Hill, James" uniqKey="Hill J" first="James" last="Hill">James Hill</name>
</author>
<author>
<name sortKey="Pakbin, Payam" sort="Pakbin, Payam" uniqKey="Pakbin P" first="Payam" last="Pakbin">Payam Pakbin</name>
</author>
<author>
<name sortKey="Sioutas, Constantinos" sort="Sioutas, Constantinos" uniqKey="Sioutas C" first="Constantinos" last="Sioutas">Constantinos Sioutas</name>
</author>
<author>
<name sortKey="Hsiai, Tzung K" sort="Hsiai, Tzung K" uniqKey="Hsiai T" first="Tzung K" last="Hsiai">Tzung K. Hsiai</name>
</author>
<author>
<name sortKey="Li, Rongsong" sort="Li, Rongsong" uniqKey="Li R" first="Rongsong" last="Li">Rongsong Li</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23751346</idno>
<idno type="pmid">23751346</idno>
<idno type="doi">10.1016/j.bbrc.2013.05.127</idno>
<idno type="pmc">PMC3743434</idno>
<idno type="wicri:Area/Main/Corpus">000734</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000734</idno>
<idno type="wicri:Area/Main/Curation">000734</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000734</idno>
<idno type="wicri:Area/Main/Exploration">000734</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Ambient ultrafine particles reduce endothelial nitric oxide production via S-glutathionylation of eNOS.</title>
<author>
<name sortKey="Du, Yunfeng" sort="Du, Yunfeng" uniqKey="Du Y" first="Yunfeng" last="Du">Yunfeng Du</name>
<affiliation wicri:level="4">
<nlm:affiliation>Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biomedical Engineering, University of Southern California, Los Angeles, CA 90089</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
<settlement type="city">Los Angeles</settlement>
</placeName>
<orgName type="university">Université de Californie du Sud</orgName>
</affiliation>
</author>
<author>
<name sortKey="Navab, Mohamad" sort="Navab, Mohamad" uniqKey="Navab M" first="Mohamad" last="Navab">Mohamad Navab</name>
</author>
<author>
<name sortKey="Shen, Melody" sort="Shen, Melody" uniqKey="Shen M" first="Melody" last="Shen">Melody Shen</name>
</author>
<author>
<name sortKey="Hill, James" sort="Hill, James" uniqKey="Hill J" first="James" last="Hill">James Hill</name>
</author>
<author>
<name sortKey="Pakbin, Payam" sort="Pakbin, Payam" uniqKey="Pakbin P" first="Payam" last="Pakbin">Payam Pakbin</name>
</author>
<author>
<name sortKey="Sioutas, Constantinos" sort="Sioutas, Constantinos" uniqKey="Sioutas C" first="Constantinos" last="Sioutas">Constantinos Sioutas</name>
</author>
<author>
<name sortKey="Hsiai, Tzung K" sort="Hsiai, Tzung K" uniqKey="Hsiai T" first="Tzung K" last="Hsiai">Tzung K. Hsiai</name>
</author>
<author>
<name sortKey="Li, Rongsong" sort="Li, Rongsong" uniqKey="Li R" first="Rongsong" last="Li">Rongsong Li</name>
</author>
</analytic>
<series>
<title level="j">Biochemical and biophysical research communications</title>
<idno type="eISSN">1090-2104</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acetophenones (pharmacology)</term>
<term>Animals (MeSH)</term>
<term>Anthracenes (pharmacology)</term>
<term>Aorta (cytology)</term>
<term>Biomimetics (MeSH)</term>
<term>Cells, Cultured (MeSH)</term>
<term>Cyclic N-Oxides (pharmacology)</term>
<term>Endothelial Cells (drug effects)</term>
<term>Endothelial Cells (metabolism)</term>
<term>Endothelium, Vascular (cytology)</term>
<term>Enzyme Activation (MeSH)</term>
<term>Glutathione (metabolism)</term>
<term>Humans (MeSH)</term>
<term>Metalloporphyrins (pharmacology)</term>
<term>Mice (MeSH)</term>
<term>NADPH Oxidases (antagonists & inhibitors)</term>
<term>Nitric Oxide (biosynthesis)</term>
<term>Nitric Oxide Synthase Type III (metabolism)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Oxidative Stress (MeSH)</term>
<term>Particle Size (MeSH)</term>
<term>Particulate Matter (metabolism)</term>
<term>Spin Labels (MeSH)</term>
<term>Superoxide Dismutase (antagonists & inhibitors)</term>
<term>Superoxide Dismutase-1 (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Activation enzymatique (MeSH)</term>
<term>Acétophénones (pharmacologie)</term>
<term>Animaux (MeSH)</term>
<term>Anthracènes (pharmacologie)</term>
<term>Aorte (cytologie)</term>
<term>Biomimétique (MeSH)</term>
<term>Cellules cultivées (MeSH)</term>
<term>Cellules endothéliales (effets des médicaments et des substances chimiques)</term>
<term>Cellules endothéliales (métabolisme)</term>
<term>Endothélium vasculaire (cytologie)</term>
<term>Glutathion (métabolisme)</term>
<term>Humains (MeSH)</term>
<term>Marqueurs de spin (MeSH)</term>
<term>Matière particulaire (métabolisme)</term>
<term>Monoxyde d'azote (biosynthèse)</term>
<term>Métalloporphyrines (pharmacologie)</term>
<term>N-oxydes cycliques (pharmacologie)</term>
<term>NADPH oxidase (antagonistes et inhibiteurs)</term>
<term>Nitric oxide synthase type III (métabolisme)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Souris (MeSH)</term>
<term>Stress oxydatif (MeSH)</term>
<term>Superoxide dismutase (antagonistes et inhibiteurs)</term>
<term>Superoxide dismutase-1 (MeSH)</term>
<term>Taille de particule (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="antagonists & inhibitors" xml:lang="en">
<term>NADPH Oxidases</term>
<term>Superoxide Dismutase</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>Nitric Oxide</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Glutathione</term>
<term>Nitric Oxide Synthase Type III</term>
<term>Particulate Matter</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Acetophenones</term>
<term>Anthracenes</term>
<term>Cyclic N-Oxides</term>
<term>Metalloporphyrins</term>
</keywords>
<keywords scheme="MESH" qualifier="antagonistes et inhibiteurs" xml:lang="fr">
<term>NADPH oxidase</term>
<term>Superoxide dismutase</term>
</keywords>
<keywords scheme="MESH" qualifier="biosynthèse" xml:lang="fr">
<term>Monoxyde d'azote</term>
</keywords>
<keywords scheme="MESH" qualifier="cytologie" xml:lang="fr">
<term>Aorte</term>
<term>Endothélium vasculaire</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Aorta</term>
<term>Endothelium, Vascular</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Endothelial Cells</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Cellules endothéliales</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Endothelial Cells</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Cellules endothéliales</term>
<term>Glutathion</term>
<term>Matière particulaire</term>
<term>Nitric oxide synthase type III</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Acétophénones</term>
<term>Anthracènes</term>
<term>Métalloporphyrines</term>
<term>N-oxydes cycliques</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Biomimetics</term>
<term>Cells, Cultured</term>
<term>Enzyme Activation</term>
<term>Humans</term>
<term>Mice</term>
<term>Oxidation-Reduction</term>
<term>Oxidative Stress</term>
<term>Particle Size</term>
<term>Spin Labels</term>
<term>Superoxide Dismutase-1</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Activation enzymatique</term>
<term>Animaux</term>
<term>Biomimétique</term>
<term>Cellules cultivées</term>
<term>Humains</term>
<term>Marqueurs de spin</term>
<term>Oxydoréduction</term>
<term>Souris</term>
<term>Stress oxydatif</term>
<term>Superoxide dismutase-1</term>
<term>Taille de particule</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Exposure to airborne particulate pollutants is intimately linked to vascular oxidative stress and inflammatory responses with clinical relevance to atherosclerosis. Particulate matter (PM) has been reported to induce endothelial dysfunction and atherosclerosis. Here, we tested whether ambient ultrafine particles (UFP, diameter <200 nm) modulate eNOS activity in terms of nitric oxide (NO) production via protein S-glutathionylation. Treatment of human aortic endothelial cells (HAEC) with UFP significantly reduced NO production. UFP-mediated reduction in NO production was restored in the presence of JNK inhibitor (SP600125), NADPH oxidase inhibitor (Apocynin), anti-oxidant (N-acetyl cysteine), and superoxide dismutase mimetics (Tempol and MnTMPyP). UFP exposure increased the GSSG/GSH ratio and eNOS S-glutathionylation, whereas over-expression of Glutaredoxin-1 (to inhibit S-glutathionylation) restored UFP-mediated reduction in NO production by nearly 80%. Thus, our findings suggest that eNOS S-glutathionylation is a potential mechanism underlying ambient UFP-induced reduction of NO production.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23751346</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>09</Month>
<Day>09</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1090-2104</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>436</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2013</Year>
<Month>Jul</Month>
<Day>05</Day>
</PubDate>
</JournalIssue>
<Title>Biochemical and biophysical research communications</Title>
<ISOAbbreviation>Biochem Biophys Res Commun</ISOAbbreviation>
</Journal>
<ArticleTitle>Ambient ultrafine particles reduce endothelial nitric oxide production via S-glutathionylation of eNOS.</ArticleTitle>
<Pagination>
<MedlinePgn>462-6</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.bbrc.2013.05.127</ELocationID>
<ELocationID EIdType="pii" ValidYN="Y">S0006-291X(13)00945-5</ELocationID>
<Abstract>
<AbstractText>Exposure to airborne particulate pollutants is intimately linked to vascular oxidative stress and inflammatory responses with clinical relevance to atherosclerosis. Particulate matter (PM) has been reported to induce endothelial dysfunction and atherosclerosis. Here, we tested whether ambient ultrafine particles (UFP, diameter <200 nm) modulate eNOS activity in terms of nitric oxide (NO) production via protein S-glutathionylation. Treatment of human aortic endothelial cells (HAEC) with UFP significantly reduced NO production. UFP-mediated reduction in NO production was restored in the presence of JNK inhibitor (SP600125), NADPH oxidase inhibitor (Apocynin), anti-oxidant (N-acetyl cysteine), and superoxide dismutase mimetics (Tempol and MnTMPyP). UFP exposure increased the GSSG/GSH ratio and eNOS S-glutathionylation, whereas over-expression of Glutaredoxin-1 (to inhibit S-glutathionylation) restored UFP-mediated reduction in NO production by nearly 80%. Thus, our findings suggest that eNOS S-glutathionylation is a potential mechanism underlying ambient UFP-induced reduction of NO production.</AbstractText>
<CopyrightInformation>Copyright © 2013 Elsevier Inc. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Du</LastName>
<ForeName>Yunfeng</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Navab</LastName>
<ForeName>Mohamad</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Shen</LastName>
<ForeName>Melody</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hill</LastName>
<ForeName>James</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Pakbin</LastName>
<ForeName>Payam</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Sioutas</LastName>
<ForeName>Constantinos</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hsiai</LastName>
<ForeName>Tzung K</ForeName>
<Initials>TK</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Rongsong</ForeName>
<Initials>R</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01HL083015</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 HL118650</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 HL111437</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01HL111437</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 HL083015</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>06</Month>
<Day>07</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Biochem Biophys Res Commun</MedlineTA>
<NlmUniqueID>0372516</NlmUniqueID>
<ISSNLinking>0006-291X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000098">Acetophenones</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000873">Anthracenes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D003497">Cyclic N-Oxides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008665">Metalloporphyrins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C502230">Mn(III) 5,10,15,20-tetrakis(N-methylpyridinium-2-yl)porphyrin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D052638">Particulate Matter</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C000606290">SOD1 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D013113">Spin Labels</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>1TW30Y2766</RegistryNumber>
<NameOfSubstance UI="C432165">pyrazolanthrone</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>31C4KY9ESH</RegistryNumber>
<NameOfSubstance UI="D009569">Nitric Oxide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>B6J7B9UDTR</RegistryNumber>
<NameOfSubstance UI="C056165">acetovanillone</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.14.13.39</RegistryNumber>
<NameOfSubstance UI="C496314">NOS3 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.14.13.39</RegistryNumber>
<NameOfSubstance UI="D052250">Nitric Oxide Synthase Type III</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.15.1.1</RegistryNumber>
<NameOfSubstance UI="C000606291">Sod1 protein, mouse</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.15.1.1</RegistryNumber>
<NameOfSubstance UI="D013482">Superoxide Dismutase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.15.1.1</RegistryNumber>
<NameOfSubstance UI="D000072105">Superoxide Dismutase-1</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.6.3.-</RegistryNumber>
<NameOfSubstance UI="D019255">NADPH Oxidases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>GAN16C9B8O</RegistryNumber>
<NameOfSubstance UI="D005978">Glutathione</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>U78ZX2F65X</RegistryNumber>
<NameOfSubstance UI="C001803">tempol</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000098" MajorTopicYN="N">Acetophenones</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000873" MajorTopicYN="N">Anthracenes</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001011" MajorTopicYN="N">Aorta</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032701" MajorTopicYN="N">Biomimetics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002478" MajorTopicYN="N">Cells, Cultured</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003497" MajorTopicYN="N">Cyclic N-Oxides</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D042783" MajorTopicYN="N">Endothelial Cells</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004730" MajorTopicYN="N">Endothelium, Vascular</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004789" MajorTopicYN="N">Enzyme Activation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005978" MajorTopicYN="N">Glutathione</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008665" MajorTopicYN="N">Metalloporphyrins</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019255" MajorTopicYN="N">NADPH Oxidases</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="N">antagonists & inhibitors</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009569" MajorTopicYN="N">Nitric Oxide</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="Y">biosynthesis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D052250" MajorTopicYN="N">Nitric Oxide Synthase Type III</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018384" MajorTopicYN="N">Oxidative Stress</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010316" MajorTopicYN="Y">Particle Size</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D052638" MajorTopicYN="N">Particulate Matter</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013113" MajorTopicYN="N">Spin Labels</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013482" MajorTopicYN="N">Superoxide Dismutase</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="N">antagonists & inhibitors</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000072105" MajorTopicYN="N">Superoxide Dismutase-1</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Air pollution</Keyword>
<Keyword MajorTopicYN="N">Endothelial dysfunction</Keyword>
<Keyword MajorTopicYN="N">Oxidative stress</Keyword>
<Keyword MajorTopicYN="N">S-glutathionylation</Keyword>
<Keyword MajorTopicYN="N">Ultrafine particles/UFP</Keyword>
<Keyword MajorTopicYN="N">eNOS</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>05</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>05</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>6</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>6</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>9</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23751346</ArticleId>
<ArticleId IdType="pii">S0006-291X(13)00945-5</ArticleId>
<ArticleId IdType="doi">10.1016/j.bbrc.2013.05.127</ArticleId>
<ArticleId IdType="pmc">PMC3743434</ArticleId>
<ArticleId IdType="mid">NIHMS500452</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Environ Sci Technol. 2008 Oct 1;42(19):7502-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18939593</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Cell Physiol. 2008 Jun;294(6):C1576-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18434620</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Toxicol Appl Pharmacol. 2009 Apr 15;236(2):183-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19371610</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circulation. 2010 Oct 26;122(17):1690-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20937978</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2010 Dec 23;468(7327):1115-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21179168</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2011 May 15;14(10):1769-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21261471</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Health Perspect. 2011 Jul;119(7):1003-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21724521</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2012 Mar 15;16(6):471-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22136616</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cardiovasc J Afr. 2012 May;23(4):222-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22614668</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2012 Jul 13;287(29):24304-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22661713</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Physiol. 2012 Nov 1;590(Pt 21):5335-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22907060</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Cell Physiol. 2013 Feb 15;304(4):C362-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23242187</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Lipid Res. 2013 Jun;54(6):1608-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23564731</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Dec 21;276(51):47763-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11684673</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Technol. 2002 Sep 1;36(17):3806-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12322754</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arterioscler Thromb Vasc Biol. 2004 Mar;24(3):413-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14656731</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Aug 27;279(35):36167-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15133020</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Aug 4;95(16):9220-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9689061</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1998 Oct 2;273(40):25804-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9748253</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Technol. 2005 Feb 1;39(3):826-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15757346</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>JAMA. 2005 Dec 21;294(23):3003-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16414948</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Feb 3;311(5761):622-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16456071</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Toxicol Appl Pharmacol. 2007 Feb 15;219(1):24-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17234226</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Sep 18;104(38):15081-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17848522</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circ Res. 2008 Mar 14;102(5):589-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18202315</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2008 May 1;44(9):1689-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18313407</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Aug 25;275(34):26556-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10854441</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2009 Mar 15;46(6):775-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19154785</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Californie</li>
</region>
<settlement>
<li>Los Angeles</li>
</settlement>
<orgName>
<li>Université de Californie du Sud</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Hill, James" sort="Hill, James" uniqKey="Hill J" first="James" last="Hill">James Hill</name>
<name sortKey="Hsiai, Tzung K" sort="Hsiai, Tzung K" uniqKey="Hsiai T" first="Tzung K" last="Hsiai">Tzung K. Hsiai</name>
<name sortKey="Li, Rongsong" sort="Li, Rongsong" uniqKey="Li R" first="Rongsong" last="Li">Rongsong Li</name>
<name sortKey="Navab, Mohamad" sort="Navab, Mohamad" uniqKey="Navab M" first="Mohamad" last="Navab">Mohamad Navab</name>
<name sortKey="Pakbin, Payam" sort="Pakbin, Payam" uniqKey="Pakbin P" first="Payam" last="Pakbin">Payam Pakbin</name>
<name sortKey="Shen, Melody" sort="Shen, Melody" uniqKey="Shen M" first="Melody" last="Shen">Melody Shen</name>
<name sortKey="Sioutas, Constantinos" sort="Sioutas, Constantinos" uniqKey="Sioutas C" first="Constantinos" last="Sioutas">Constantinos Sioutas</name>
</noCountry>
<country name="États-Unis">
<region name="Californie">
<name sortKey="Du, Yunfeng" sort="Du, Yunfeng" uniqKey="Du Y" first="Yunfeng" last="Du">Yunfeng Du</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000786 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000786 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:23751346
   |texte=   Ambient ultrafine particles reduce endothelial nitric oxide production via S-glutathionylation of eNOS.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:23751346" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020