Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Missing links in understanding redox signaling via thiol/disulfide modulation: how is glutathione oxidized in plants?

Identifieur interne : 000741 ( Main/Exploration ); précédent : 000740; suivant : 000742

Missing links in understanding redox signaling via thiol/disulfide modulation: how is glutathione oxidized in plants?

Auteurs : Marie-Sylviane Rahantaniaina [France] ; Andrée Tuzet ; Amna Mhamdi ; Graham Noctor

Source :

RBID : pubmed:24324478

Abstract

Glutathione is a small redox-active molecule existing in two main stable forms: the thiol (GSH) and the disulphide (GSSG). In plants growing in optimal conditions, the GSH:GSSG ratio is high in most cell compartments. Challenging environmental conditions are known to alter this ratio, notably by inducing the accumulation of GSSG, an effect that may be influential in the perception or transduction of stress signals. Despite the potential importance of glutathione status in redox signaling, the reactions responsible for the oxidation of GSH to GSSG have not been clearly identified. Most attention has focused on the ascorbate-glutathione pathway, but several other candidate pathways may couple the availability of oxidants such as H2O2 to changes in glutathione and thus impact on signaling pathways through regulation of protein thiol-disulfide status. We provide an overview of the main candidate pathways and discuss the available biochemical, transcriptomic, and genetic evidence relating to each. Our analysis emphasizes how much is still to be elucidated on this question, which is likely important for a full understanding of how stress-related redox regulation might impinge on phytohormone-related and other signaling pathways in plants.

DOI: 10.3389/fpls.2013.00477
PubMed: 24324478
PubMed Central: PMC3838956


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Missing links in understanding redox signaling via thiol/disulfide modulation: how is glutathione oxidized in plants?</title>
<author>
<name sortKey="Rahantaniaina, Marie Sylviane" sort="Rahantaniaina, Marie Sylviane" uniqKey="Rahantaniaina M" first="Marie-Sylviane" last="Rahantaniaina">Marie-Sylviane Rahantaniaina</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institut de Biologie des Plantes, Université Paris-Sud Orsay, France ; Institut National de Recherche Agronomique, UMR Environnement et Grandes Cultures Thiverval-Grignon, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Institut de Biologie des Plantes, Université Paris-Sud Orsay, France ; Institut National de Recherche Agronomique, UMR Environnement et Grandes Cultures Thiverval-Grignon</wicri:regionArea>
<wicri:noRegion>UMR Environnement et Grandes Cultures Thiverval-Grignon</wicri:noRegion>
<wicri:noRegion>UMR Environnement et Grandes Cultures Thiverval-Grignon</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Tuzet, Andree" sort="Tuzet, Andree" uniqKey="Tuzet A" first="Andrée" last="Tuzet">Andrée Tuzet</name>
</author>
<author>
<name sortKey="Mhamdi, Amna" sort="Mhamdi, Amna" uniqKey="Mhamdi A" first="Amna" last="Mhamdi">Amna Mhamdi</name>
</author>
<author>
<name sortKey="Noctor, Graham" sort="Noctor, Graham" uniqKey="Noctor G" first="Graham" last="Noctor">Graham Noctor</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:24324478</idno>
<idno type="pmid">24324478</idno>
<idno type="doi">10.3389/fpls.2013.00477</idno>
<idno type="pmc">PMC3838956</idno>
<idno type="wicri:Area/Main/Corpus">000676</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000676</idno>
<idno type="wicri:Area/Main/Curation">000676</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000676</idno>
<idno type="wicri:Area/Main/Exploration">000676</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Missing links in understanding redox signaling via thiol/disulfide modulation: how is glutathione oxidized in plants?</title>
<author>
<name sortKey="Rahantaniaina, Marie Sylviane" sort="Rahantaniaina, Marie Sylviane" uniqKey="Rahantaniaina M" first="Marie-Sylviane" last="Rahantaniaina">Marie-Sylviane Rahantaniaina</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institut de Biologie des Plantes, Université Paris-Sud Orsay, France ; Institut National de Recherche Agronomique, UMR Environnement et Grandes Cultures Thiverval-Grignon, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Institut de Biologie des Plantes, Université Paris-Sud Orsay, France ; Institut National de Recherche Agronomique, UMR Environnement et Grandes Cultures Thiverval-Grignon</wicri:regionArea>
<wicri:noRegion>UMR Environnement et Grandes Cultures Thiverval-Grignon</wicri:noRegion>
<wicri:noRegion>UMR Environnement et Grandes Cultures Thiverval-Grignon</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Tuzet, Andree" sort="Tuzet, Andree" uniqKey="Tuzet A" first="Andrée" last="Tuzet">Andrée Tuzet</name>
</author>
<author>
<name sortKey="Mhamdi, Amna" sort="Mhamdi, Amna" uniqKey="Mhamdi A" first="Amna" last="Mhamdi">Amna Mhamdi</name>
</author>
<author>
<name sortKey="Noctor, Graham" sort="Noctor, Graham" uniqKey="Noctor G" first="Graham" last="Noctor">Graham Noctor</name>
</author>
</analytic>
<series>
<title level="j">Frontiers in plant science</title>
<idno type="ISSN">1664-462X</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Glutathione is a small redox-active molecule existing in two main stable forms: the thiol (GSH) and the disulphide (GSSG). In plants growing in optimal conditions, the GSH:GSSG ratio is high in most cell compartments. Challenging environmental conditions are known to alter this ratio, notably by inducing the accumulation of GSSG, an effect that may be influential in the perception or transduction of stress signals. Despite the potential importance of glutathione status in redox signaling, the reactions responsible for the oxidation of GSH to GSSG have not been clearly identified. Most attention has focused on the ascorbate-glutathione pathway, but several other candidate pathways may couple the availability of oxidants such as H2O2 to changes in glutathione and thus impact on signaling pathways through regulation of protein thiol-disulfide status. We provide an overview of the main candidate pathways and discuss the available biochemical, transcriptomic, and genetic evidence relating to each. Our analysis emphasizes how much is still to be elucidated on this question, which is likely important for a full understanding of how stress-related redox regulation might impinge on phytohormone-related and other signaling pathways in plants. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">24324478</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>06</Month>
<Day>24</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>29</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Print">1664-462X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>4</Volume>
<PubDate>
<Year>2013</Year>
<Month>Nov</Month>
<Day>25</Day>
</PubDate>
</JournalIssue>
<Title>Frontiers in plant science</Title>
<ISOAbbreviation>Front Plant Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>Missing links in understanding redox signaling via thiol/disulfide modulation: how is glutathione oxidized in plants?</ArticleTitle>
<Pagination>
<MedlinePgn>477</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fpls.2013.00477</ELocationID>
<Abstract>
<AbstractText>Glutathione is a small redox-active molecule existing in two main stable forms: the thiol (GSH) and the disulphide (GSSG). In plants growing in optimal conditions, the GSH:GSSG ratio is high in most cell compartments. Challenging environmental conditions are known to alter this ratio, notably by inducing the accumulation of GSSG, an effect that may be influential in the perception or transduction of stress signals. Despite the potential importance of glutathione status in redox signaling, the reactions responsible for the oxidation of GSH to GSSG have not been clearly identified. Most attention has focused on the ascorbate-glutathione pathway, but several other candidate pathways may couple the availability of oxidants such as H2O2 to changes in glutathione and thus impact on signaling pathways through regulation of protein thiol-disulfide status. We provide an overview of the main candidate pathways and discuss the available biochemical, transcriptomic, and genetic evidence relating to each. Our analysis emphasizes how much is still to be elucidated on this question, which is likely important for a full understanding of how stress-related redox regulation might impinge on phytohormone-related and other signaling pathways in plants. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Rahantaniaina</LastName>
<ForeName>Marie-Sylviane</ForeName>
<Initials>MS</Initials>
<AffiliationInfo>
<Affiliation>Institut de Biologie des Plantes, Université Paris-Sud Orsay, France ; Institut National de Recherche Agronomique, UMR Environnement et Grandes Cultures Thiverval-Grignon, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tuzet</LastName>
<ForeName>Andrée</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Mhamdi</LastName>
<ForeName>Amna</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Noctor</LastName>
<ForeName>Graham</ForeName>
<Initials>G</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>11</Month>
<Day>25</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Plant Sci</MedlineTA>
<NlmUniqueID>101568200</NlmUniqueID>
<ISSNLinking>1664-462X</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">dehydroascorbate</Keyword>
<Keyword MajorTopicYN="N">glutaredoxin</Keyword>
<Keyword MajorTopicYN="N">glutathione S-transferase</Keyword>
<Keyword MajorTopicYN="N">hydrogen peroxide</Keyword>
<Keyword MajorTopicYN="N">oxidative stress</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>09</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>11</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>12</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>12</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>12</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24324478</ArticleId>
<ArticleId IdType="doi">10.3389/fpls.2013.00477</ArticleId>
<ArticleId IdType="pmc">PMC3838956</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Annu Rev Plant Biol. 2003;54:93-107</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14502986</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Aug 5;286(31):27515-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21632542</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1990 Jan;180(2):278-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24201957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2002 Jul;49(5):515-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12090627</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2002 May;53(372):1321-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11997378</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2008 Jul;133(3):599-610</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18422870</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2004 Jan;120(1):57-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15032877</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2003 Jun;52(3):591-603</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12956529</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Aug 23;277(34):30859-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12077129</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Jan;131(1):317-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12529539</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protoplasma. 2009 Mar;235(1-4):3-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19219525</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2002 Nov;32(3):329-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12410811</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2010 Mar 5;584(5):889-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20079738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2006;57(8):1785-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16595575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2006 Nov 27;580(27):6384-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17097087</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Jul 7;95(14):8404-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9653199</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Dec;136(4):4088-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15531707</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2009 Mar;2(2):344-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19825619</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1999 May;18(3):285-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10377994</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Jun;141(2):446-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16531482</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Sci. 2012 Apr;185-186:86-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22325869</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biochem Mol Biol. 2005 Mar 31;38(2):232-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15826502</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2013 Jun 1;18(16):2106-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23148658</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Jul 10;284(28):18963-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19457862</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 May;126(1):445-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11351106</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Nutr Sci Vitaminol (Tokyo). 2006 Apr;52(2):89-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16802688</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2005 Jun 1;38(11):1413-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15890615</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Jul;153(3):1144-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20488891</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Aug;138(4):2233-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16055689</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2001 Jul 31;40(30):9040-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11467967</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2009;60(4):1207-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19174456</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Apr;134(4):1662-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15047902</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS J. 2006 Dec;273(24):5589-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17096689</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Jun 2;106(22):9109-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19451637</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Microsc. 2008 Aug;231(2):299-316</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18778428</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2006 Feb;47(2):304-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16361320</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2008 Sep 8;165(13):1390-403</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18171593</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Jul;138(3):1673-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15951482</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2007 Oct-Nov;45(10-11):729-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17881238</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2012 Sep;236(3):887-900</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22767201</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2009 Nov-Dec;47(11-12):1061-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19640724</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1989 Nov 1;274(2):532-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2802626</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2012 Jan;158(1):340-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22095046</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 2013;528:3-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23849856</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Apr 19;277(16):13609-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11832487</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2000 Aug;123(4):1289-300</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10938348</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2002 Nov;130(3):1497-505</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12428014</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2010 Feb;231(3):609-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19960204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 2004 Jun;61(11):1266-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15170506</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Jul;147(3):1251-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18502973</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1991 Jun;184(3):403-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24194159</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2003 May 22;543(1-3):136-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12753920</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1997 May;114(1):275-284</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12223704</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Dec;142(4):1364-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17071643</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1991 Jun;96(2):650-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16668235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2004 Oct;55(406):2191-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15333640</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2012 Feb;35(2):374-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21631535</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Jan;155(1):2-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21205630</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Integr Plant Biol. 2010 Apr;52(4):400-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20377702</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 2002 May;269(9):2414-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11985625</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Jan 9;104(2):672-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17197417</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Aug;132(4):2045-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12913160</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2002 Mar 27;515(1-3):20-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11943187</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2000 Jan 21;466(1):107-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10648822</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2013 Nov;36(11):1981-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23527794</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Nov 21;278(47):46869-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12954611</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 2003 Mar;270(5):921-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12603325</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Rep. 2013 Aug;40(8):5105-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23661023</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1990 Sep 15;265(26):15361-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2394726</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2012 Feb;35(2):360-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21767278</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1985;113:490-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4088069</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2013 Jun;36(6):1135-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23210597</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Aug;19(8):2653-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17766407</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 Jun;54(6):1063-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18346196</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2010 Feb;5(2):171-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20038819</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2008 May;179(1):41-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18493039</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2010 Oct;61(15):4197-220</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20876333</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2010 Sep;61(14):4043-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20616155</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2000 Oct;41(10):1110-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11148269</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2000 Nov;41(11):1229-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11092907</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2013 Oct;163(2):665-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23958862</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Dec;52(5):973-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17892447</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Aug;153(4):1692-705</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20543092</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1998 Feb;10(2):267-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9490749</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2006 Sep;25(9):997-1005</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16538523</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Nov 8;102(45):16478-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16263928</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2010 Apr;186(2):365-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20074091</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Apr 1;280(13):12168-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15632145</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2011 Jan;23 (1):364-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21239642</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2011 Jan;34(1):21-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20807372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2005 Jul-Aug;7(7-8):919-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15998247</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1997 Aug 15;16(16):4806-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9305623</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1993 Dec;103(4):1067-1073</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12232001</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>France</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Mhamdi, Amna" sort="Mhamdi, Amna" uniqKey="Mhamdi A" first="Amna" last="Mhamdi">Amna Mhamdi</name>
<name sortKey="Noctor, Graham" sort="Noctor, Graham" uniqKey="Noctor G" first="Graham" last="Noctor">Graham Noctor</name>
<name sortKey="Tuzet, Andree" sort="Tuzet, Andree" uniqKey="Tuzet A" first="Andrée" last="Tuzet">Andrée Tuzet</name>
</noCountry>
<country name="France">
<noRegion>
<name sortKey="Rahantaniaina, Marie Sylviane" sort="Rahantaniaina, Marie Sylviane" uniqKey="Rahantaniaina M" first="Marie-Sylviane" last="Rahantaniaina">Marie-Sylviane Rahantaniaina</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000741 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000741 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:24324478
   |texte=   Missing links in understanding redox signaling via thiol/disulfide modulation: how is glutathione oxidized in plants?
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:24324478" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020