Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Redox-dependent functional switching of plant proteins accompanying with their structural changes.

Identifieur interne : 000721 ( Main/Exploration ); précédent : 000720; suivant : 000722

Redox-dependent functional switching of plant proteins accompanying with their structural changes.

Auteurs : Yong Hun Chi [Corée du Sud] ; Seol Ki Paeng ; Min Ji Kim ; Gwang Yong Hwang ; Sarah Mae B. Melencion ; Hun Taek Oh ; Sang Yeol Lee

Source :

RBID : pubmed:23898340

Abstract

Reactive oxygen species (ROS) can be generated during the course of normal aerobic metabolism or when an organism is exposed to a variety of stress conditions. It can cause a widespread damage to intracellular macromolecules and play a causal role in many degenerative diseases. Like other aerobic organisms plants are also equipped with a wide range of antioxidant redox proteins, such as superoxide dismutase, catalase, glutaredoxin, thioredoxin (Trx), Trx reductase, protein disulfide reductase, and other kinds of peroxidases that are usually significant in preventing harmful effects of ROS. To defend plant cells in response to stimuli, a part of redox proteins have shown to play multiple functions through the post-translational modification with a redox-dependent manner. For the alternative switching of their cellular functions, the redox proteins change their protein structures from low molecular weight to high molecular weight (HMW) protein complexes depending on the external stress. The HMW proteins are reported to act as molecular chaperone, which enable the plants to enhance their stress tolerance. In addition, some transcription factors and co-activators have function responding to environmental stresses by redox-dependent structural changes. This review describes the molecular mechanism and physiological significance of the redox proteins, transcription factors and co-activators to protect the plants from environmental stresses through the redox-dependent structural and functional switching of the plant redox proteins.

DOI: 10.3389/fpls.2013.00277
PubMed: 23898340
PubMed Central: PMC3724125


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Redox-dependent functional switching of plant proteins accompanying with their structural changes.</title>
<author>
<name sortKey="Chi, Yong Hun" sort="Chi, Yong Hun" uniqKey="Chi Y" first="Yong Hun" last="Chi">Yong Hun Chi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Division of Applied Life Sciences, Gyeongsang National University Jinju, Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Division of Applied Life Sciences, Gyeongsang National University Jinju</wicri:regionArea>
<wicri:noRegion>Gyeongsang National University Jinju</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Paeng, Seol Ki" sort="Paeng, Seol Ki" uniqKey="Paeng S" first="Seol Ki" last="Paeng">Seol Ki Paeng</name>
</author>
<author>
<name sortKey="Kim, Min Ji" sort="Kim, Min Ji" uniqKey="Kim M" first="Min Ji" last="Kim">Min Ji Kim</name>
</author>
<author>
<name sortKey="Hwang, Gwang Yong" sort="Hwang, Gwang Yong" uniqKey="Hwang G" first="Gwang Yong" last="Hwang">Gwang Yong Hwang</name>
</author>
<author>
<name sortKey="Melencion, Sarah Mae B" sort="Melencion, Sarah Mae B" uniqKey="Melencion S" first="Sarah Mae B" last="Melencion">Sarah Mae B. Melencion</name>
</author>
<author>
<name sortKey="Oh, Hun Taek" sort="Oh, Hun Taek" uniqKey="Oh H" first="Hun Taek" last="Oh">Hun Taek Oh</name>
</author>
<author>
<name sortKey="Lee, Sang Yeol" sort="Lee, Sang Yeol" uniqKey="Lee S" first="Sang Yeol" last="Lee">Sang Yeol Lee</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23898340</idno>
<idno type="pmid">23898340</idno>
<idno type="doi">10.3389/fpls.2013.00277</idno>
<idno type="pmc">PMC3724125</idno>
<idno type="wicri:Area/Main/Corpus">000719</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000719</idno>
<idno type="wicri:Area/Main/Curation">000719</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000719</idno>
<idno type="wicri:Area/Main/Exploration">000719</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Redox-dependent functional switching of plant proteins accompanying with their structural changes.</title>
<author>
<name sortKey="Chi, Yong Hun" sort="Chi, Yong Hun" uniqKey="Chi Y" first="Yong Hun" last="Chi">Yong Hun Chi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Division of Applied Life Sciences, Gyeongsang National University Jinju, Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Division of Applied Life Sciences, Gyeongsang National University Jinju</wicri:regionArea>
<wicri:noRegion>Gyeongsang National University Jinju</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Paeng, Seol Ki" sort="Paeng, Seol Ki" uniqKey="Paeng S" first="Seol Ki" last="Paeng">Seol Ki Paeng</name>
</author>
<author>
<name sortKey="Kim, Min Ji" sort="Kim, Min Ji" uniqKey="Kim M" first="Min Ji" last="Kim">Min Ji Kim</name>
</author>
<author>
<name sortKey="Hwang, Gwang Yong" sort="Hwang, Gwang Yong" uniqKey="Hwang G" first="Gwang Yong" last="Hwang">Gwang Yong Hwang</name>
</author>
<author>
<name sortKey="Melencion, Sarah Mae B" sort="Melencion, Sarah Mae B" uniqKey="Melencion S" first="Sarah Mae B" last="Melencion">Sarah Mae B. Melencion</name>
</author>
<author>
<name sortKey="Oh, Hun Taek" sort="Oh, Hun Taek" uniqKey="Oh H" first="Hun Taek" last="Oh">Hun Taek Oh</name>
</author>
<author>
<name sortKey="Lee, Sang Yeol" sort="Lee, Sang Yeol" uniqKey="Lee S" first="Sang Yeol" last="Lee">Sang Yeol Lee</name>
</author>
</analytic>
<series>
<title level="j">Frontiers in plant science</title>
<idno type="ISSN">1664-462X</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Reactive oxygen species (ROS) can be generated during the course of normal aerobic metabolism or when an organism is exposed to a variety of stress conditions. It can cause a widespread damage to intracellular macromolecules and play a causal role in many degenerative diseases. Like other aerobic organisms plants are also equipped with a wide range of antioxidant redox proteins, such as superoxide dismutase, catalase, glutaredoxin, thioredoxin (Trx), Trx reductase, protein disulfide reductase, and other kinds of peroxidases that are usually significant in preventing harmful effects of ROS. To defend plant cells in response to stimuli, a part of redox proteins have shown to play multiple functions through the post-translational modification with a redox-dependent manner. For the alternative switching of their cellular functions, the redox proteins change their protein structures from low molecular weight to high molecular weight (HMW) protein complexes depending on the external stress. The HMW proteins are reported to act as molecular chaperone, which enable the plants to enhance their stress tolerance. In addition, some transcription factors and co-activators have function responding to environmental stresses by redox-dependent structural changes. This review describes the molecular mechanism and physiological significance of the redox proteins, transcription factors and co-activators to protect the plants from environmental stresses through the redox-dependent structural and functional switching of the plant redox proteins. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">23898340</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>07</Month>
<Day>30</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-462X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>4</Volume>
<PubDate>
<Year>2013</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in plant science</Title>
<ISOAbbreviation>Front Plant Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>Redox-dependent functional switching of plant proteins accompanying with their structural changes.</ArticleTitle>
<Pagination>
<MedlinePgn>277</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fpls.2013.00277</ELocationID>
<Abstract>
<AbstractText>Reactive oxygen species (ROS) can be generated during the course of normal aerobic metabolism or when an organism is exposed to a variety of stress conditions. It can cause a widespread damage to intracellular macromolecules and play a causal role in many degenerative diseases. Like other aerobic organisms plants are also equipped with a wide range of antioxidant redox proteins, such as superoxide dismutase, catalase, glutaredoxin, thioredoxin (Trx), Trx reductase, protein disulfide reductase, and other kinds of peroxidases that are usually significant in preventing harmful effects of ROS. To defend plant cells in response to stimuli, a part of redox proteins have shown to play multiple functions through the post-translational modification with a redox-dependent manner. For the alternative switching of their cellular functions, the redox proteins change their protein structures from low molecular weight to high molecular weight (HMW) protein complexes depending on the external stress. The HMW proteins are reported to act as molecular chaperone, which enable the plants to enhance their stress tolerance. In addition, some transcription factors and co-activators have function responding to environmental stresses by redox-dependent structural changes. This review describes the molecular mechanism and physiological significance of the redox proteins, transcription factors and co-activators to protect the plants from environmental stresses through the redox-dependent structural and functional switching of the plant redox proteins. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Chi</LastName>
<ForeName>Yong Hun</ForeName>
<Initials>YH</Initials>
<AffiliationInfo>
<Affiliation>Division of Applied Life Sciences, Gyeongsang National University Jinju, Korea.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Paeng</LastName>
<ForeName>Seol Ki</ForeName>
<Initials>SK</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kim</LastName>
<ForeName>Min Ji</ForeName>
<Initials>MJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hwang</LastName>
<ForeName>Gwang Yong</ForeName>
<Initials>GY</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Melencion</LastName>
<ForeName>Sarah Mae B</ForeName>
<Initials>SM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Oh</LastName>
<ForeName>Hun Taek</ForeName>
<Initials>HT</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lee</LastName>
<ForeName>Sang Yeol</ForeName>
<Initials>SY</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>07</Month>
<Day>26</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Plant Sci</MedlineTA>
<NlmUniqueID>101568200</NlmUniqueID>
<ISSNLinking>1664-462X</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">external stress</Keyword>
<Keyword MajorTopicYN="N">molecular chaperone</Keyword>
<Keyword MajorTopicYN="N">multiple functions</Keyword>
<Keyword MajorTopicYN="N">redox proteins</Keyword>
<Keyword MajorTopicYN="N">structural and functional switching</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>05</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>07</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>7</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>7</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>7</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23898340</ArticleId>
<ArticleId IdType="doi">10.3389/fpls.2013.00277</ArticleId>
<ArticleId IdType="pmc">PMC3724125</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Biochem Biophys Res Commun. 2006 Sep 22;348(2):478-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16884685</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Apr 7;106(14):5978-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19293385</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Dec 2;280(48):40084-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16159878</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 1997 Jan;10(1):69-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9002272</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2009 Apr;4(4):265-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19794841</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int Rev Cytol. 2003;228:141-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14667044</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Jan 7;100(1):370-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12509500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2007 Oct;8(10):813-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17848967</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2006 Aug;9(4):414-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16753329</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2011 Aug;23(8):2809-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21841124</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2009 May 29;137(5):860-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19490895</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2012 Aug 10;287(33):27510-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22718771</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2011 Jul 11;194(1):7-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21746850</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioessays. 1999 Nov;21(11):932-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10517866</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2007 Oct 5;361(4):1048-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17686455</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2013 Jun 1;18(16):2087-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23442120</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2008 Jul;10(7):1235-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18377232</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2005 Jun;56(416):1449-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15863449</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2002 May 3;109(3):383-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12015987</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1995 Jul 3;92(14):6602-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11607555</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1998 Mar 20;92(6):773-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9529253</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2012 Apr 1;443(1):49-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22214184</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2010 Jul;15(7):370-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20605736</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Genomics. 2006 Mar 13;25(1):142-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16403842</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ageing Res Rev. 2008 Apr;7(2):83-105</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17964225</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 1993;62:349-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8102520</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Jul;144(3):1391-406</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17478635</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1990 Mar 5;212(1):167-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2181145</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2008 Apr 26;8:48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18439303</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2004 Oct;7(5):547-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15337097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2009 Nov;21(11):3700-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19915088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2013 Mar;6(2):323-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23024205</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1998 Mar 13;279(5357):1718-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9497290</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1997 May;114(1):275-284</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12223704</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2011 Jan;12(1):73-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21118350</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1999 Mar 19;96(6):751-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10102262</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2006 Nov;2(11):e123</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17096590</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Oct 15;279(42):43821-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15292215</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 Aug 15;321(5891):952-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18635760</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2012 Sep 1;53(5):1101-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22750205</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Sep;18(9):2356-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16891402</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Physiol Plant Mol Biol. 1998 Jun;49:249-279</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15012235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2005;6(10):R82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16207353</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2003 Aug;6(4):379-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12873534</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Sep 3;279(36):37878-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15237103</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2002 Jul 19;297(5580):405-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12130786</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2004 Dec 1;117(Pt 25):5965-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15564374</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncogene. 2001 Apr 30;20(19):2336-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11402331</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2013 Mar;6(2):275-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23355543</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Apr;149(4):1848-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19176719</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1995 Jul 21;270(29):17078-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7615500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2007;58(5):969-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17185738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2003 Jun 27;113(7):935-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12837250</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Mar;149(3):1261-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19151130</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2013 Jun 1;18(16):2122-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23234467</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1997 Apr 15;94(8):4068-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9108106</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2004 May 28;117(5):625-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15163410</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1994 Nov;6(11):1583-1592</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12244227</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Sep 20;277(38):34800-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12093803</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Jun;150(2):552-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19339505</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2009 Jan 1;417(1):1-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19061483</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1991 May;96(1):1-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16668135</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2009 May 6;583(9):1399-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19345687</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2012 Feb;35(2):259-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21486305</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1990;186:1-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2172697</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Apr 5;102(14):5096-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15795374</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2011 May 10;50(18):3713-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21456578</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2000 Oct 29;355(1402):1351-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11127990</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Corée du Sud</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Hwang, Gwang Yong" sort="Hwang, Gwang Yong" uniqKey="Hwang G" first="Gwang Yong" last="Hwang">Gwang Yong Hwang</name>
<name sortKey="Kim, Min Ji" sort="Kim, Min Ji" uniqKey="Kim M" first="Min Ji" last="Kim">Min Ji Kim</name>
<name sortKey="Lee, Sang Yeol" sort="Lee, Sang Yeol" uniqKey="Lee S" first="Sang Yeol" last="Lee">Sang Yeol Lee</name>
<name sortKey="Melencion, Sarah Mae B" sort="Melencion, Sarah Mae B" uniqKey="Melencion S" first="Sarah Mae B" last="Melencion">Sarah Mae B. Melencion</name>
<name sortKey="Oh, Hun Taek" sort="Oh, Hun Taek" uniqKey="Oh H" first="Hun Taek" last="Oh">Hun Taek Oh</name>
<name sortKey="Paeng, Seol Ki" sort="Paeng, Seol Ki" uniqKey="Paeng S" first="Seol Ki" last="Paeng">Seol Ki Paeng</name>
</noCountry>
<country name="Corée du Sud">
<noRegion>
<name sortKey="Chi, Yong Hun" sort="Chi, Yong Hun" uniqKey="Chi Y" first="Yong Hun" last="Chi">Yong Hun Chi</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000721 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000721 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:23898340
   |texte=   Redox-dependent functional switching of plant proteins accompanying with their structural changes.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:23898340" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020