Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Corynebacterium glutamicum methionine sulfoxide reductase A uses both mycoredoxin and thioredoxin for regeneration and oxidative stress resistance.

Identifieur interne : 000568 ( Main/Exploration ); précédent : 000567; suivant : 000569

Corynebacterium glutamicum methionine sulfoxide reductase A uses both mycoredoxin and thioredoxin for regeneration and oxidative stress resistance.

Auteurs : Meiru Si [République populaire de Chine] ; Lei Zhang [République populaire de Chine] ; Muhammad Tausif Chaudhry [Pakistan] ; Wei Ding [République populaire de Chine] ; Yixiang Xu [République populaire de Chine] ; Can Chen [République populaire de Chine] ; Ali Akbar [République populaire de Chine] ; Xihui Shen [République populaire de Chine] ; Shuang-Jiang Liu [République populaire de Chine]

Source :

RBID : pubmed:25681179

Descripteurs français

English descriptors

Abstract

Oxidation of methionine leads to the formation of the S and R diastereomers of methionine sulfoxide (MetO), which can be reversed by the actions of two structurally unrelated classes of methionine sulfoxide reductase (Msr), MsrA and MsrB, respectively. Although MsrAs have long been demonstrated in numerous bacteria, their physiological and biochemical functions remain largely unknown in Actinomycetes. Here, we report that a Corynebacterium glutamicum methionine sulfoxide reductase A (CgMsrA) that belongs to the 3-Cys family of MsrAs plays important roles in oxidative stress resistance. Deletion of the msrA gene in C. glutamicum resulted in decrease of cell viability, increase of ROS production, and increase of protein carbonylation levels under various stress conditions. The physiological roles of CgMsrA in resistance to oxidative stresses were corroborated by its induced expression under various stresses, regulated directly by the stress-responsive extracytoplasmic-function (ECF) sigma factor SigH. Activity assays performed with various regeneration pathways showed that CgMsrA can reduce MetO via both the thioredoxin/thioredoxin reductase (Trx/TrxR) and mycoredoxin 1/mycothione reductase/mycothiol (Mrx1/Mtr/MSH) pathways. Site-directed mutagenesis confirmed that Cys56 is the peroxidatic cysteine that is oxidized to sulfenic acid, while Cys204 and Cys213 are the resolving Cys residues that form an intramolecular disulfide bond. Mrx1 reduces the sulfenic acid intermediate via the formation of an S-mycothiolated MsrA intermediate (MsrA-SSM) which is then recycled by mycoredoxin and the second molecule of mycothiol, similarly to the glutathione/glutaredoxin/glutathione reductase (GSH/Grx/GR) system. However, Trx reduces the Cys204-Cys213 disulfide bond in CgMsrA produced during MetO reduction via the formation of a transient intermolecular disulfide bond between Trx and CgMsrA. While both the Trx/TrxR and Mrx1/Mtr/MSH pathways are operative in reducing CgMsrA under stress conditions in vivo, the Trx/TrxR pathway alone is sufficient to reduce CgMsrA under normal conditions. Based on these results, a catalytic model for the reduction of CgMsrA by Mrx1 and Trx is proposed.

DOI: 10.1128/AEM.04221-14
PubMed: 25681179
PubMed Central: PMC4375309


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Corynebacterium glutamicum methionine sulfoxide reductase A uses both mycoredoxin and thioredoxin for regeneration and oxidative stress resistance.</title>
<author>
<name sortKey="Si, Meiru" sort="Si, Meiru" uniqKey="Si M" first="Meiru" last="Si">Meiru Si</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, People's Republic of China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A & F University, Yangling, Shaanxi</wicri:regionArea>
<wicri:noRegion>Shaanxi</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Lei" sort="Zhang, Lei" uniqKey="Zhang L" first="Lei" last="Zhang">Lei Zhang</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, People's Republic of China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A & F University, Yangling, Shaanxi</wicri:regionArea>
<wicri:noRegion>Shaanxi</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chaudhry, Muhammad Tausif" sort="Chaudhry, Muhammad Tausif" uniqKey="Chaudhry M" first="Muhammad Tausif" last="Chaudhry">Muhammad Tausif Chaudhry</name>
<affiliation wicri:level="1">
<nlm:affiliation>Environmental Analytical Laboratory, National Physical and Standards Laboratory, PCSIR, Islamabad, Pakistan.</nlm:affiliation>
<country xml:lang="fr">Pakistan</country>
<wicri:regionArea>Environmental Analytical Laboratory, National Physical and Standards Laboratory, PCSIR, Islamabad</wicri:regionArea>
<wicri:noRegion>Islamabad</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ding, Wei" sort="Ding, Wei" uniqKey="Ding W" first="Wei" last="Ding">Wei Ding</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, People's Republic of China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A & F University, Yangling, Shaanxi</wicri:regionArea>
<wicri:noRegion>Shaanxi</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Xu, Yixiang" sort="Xu, Yixiang" uniqKey="Xu Y" first="Yixiang" last="Xu">Yixiang Xu</name>
<affiliation wicri:level="3">
<nlm:affiliation>State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, People's Republic of China State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center at Institute of Microbiology, Chinese Academy of Sciences, Beijing, People's Republic of China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, People's Republic of China State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center at Institute of Microbiology, Chinese Academy of Sciences, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Chen, Can" sort="Chen, Can" uniqKey="Chen C" first="Can" last="Chen">Can Chen</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, People's Republic of China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A & F University, Yangling, Shaanxi</wicri:regionArea>
<wicri:noRegion>Shaanxi</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Akbar, Ali" sort="Akbar, Ali" uniqKey="Akbar A" first="Ali" last="Akbar">Ali Akbar</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, People's Republic of China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A & F University, Yangling, Shaanxi</wicri:regionArea>
<wicri:noRegion>Shaanxi</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Shen, Xihui" sort="Shen, Xihui" uniqKey="Shen X" first="Xihui" last="Shen">Xihui Shen</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, People's Republic of China xihuishen@nwsuaf.edu.cn.</nlm:affiliation>
<country wicri:rule="url">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A & F University, Yangling, Shaanxi</wicri:regionArea>
<wicri:noRegion>Shaanxi</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Liu, Shuang Jiang" sort="Liu, Shuang Jiang" uniqKey="Liu S" first="Shuang-Jiang" last="Liu">Shuang-Jiang Liu</name>
<affiliation wicri:level="3">
<nlm:affiliation>State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center at Institute of Microbiology, Chinese Academy of Sciences, Beijing, People's Republic of China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center at Institute of Microbiology, Chinese Academy of Sciences, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:25681179</idno>
<idno type="pmid">25681179</idno>
<idno type="doi">10.1128/AEM.04221-14</idno>
<idno type="pmc">PMC4375309</idno>
<idno type="wicri:Area/Main/Corpus">000554</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000554</idno>
<idno type="wicri:Area/Main/Curation">000554</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000554</idno>
<idno type="wicri:Area/Main/Exploration">000554</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Corynebacterium glutamicum methionine sulfoxide reductase A uses both mycoredoxin and thioredoxin for regeneration and oxidative stress resistance.</title>
<author>
<name sortKey="Si, Meiru" sort="Si, Meiru" uniqKey="Si M" first="Meiru" last="Si">Meiru Si</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, People's Republic of China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A & F University, Yangling, Shaanxi</wicri:regionArea>
<wicri:noRegion>Shaanxi</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Lei" sort="Zhang, Lei" uniqKey="Zhang L" first="Lei" last="Zhang">Lei Zhang</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, People's Republic of China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A & F University, Yangling, Shaanxi</wicri:regionArea>
<wicri:noRegion>Shaanxi</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chaudhry, Muhammad Tausif" sort="Chaudhry, Muhammad Tausif" uniqKey="Chaudhry M" first="Muhammad Tausif" last="Chaudhry">Muhammad Tausif Chaudhry</name>
<affiliation wicri:level="1">
<nlm:affiliation>Environmental Analytical Laboratory, National Physical and Standards Laboratory, PCSIR, Islamabad, Pakistan.</nlm:affiliation>
<country xml:lang="fr">Pakistan</country>
<wicri:regionArea>Environmental Analytical Laboratory, National Physical and Standards Laboratory, PCSIR, Islamabad</wicri:regionArea>
<wicri:noRegion>Islamabad</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ding, Wei" sort="Ding, Wei" uniqKey="Ding W" first="Wei" last="Ding">Wei Ding</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, People's Republic of China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A & F University, Yangling, Shaanxi</wicri:regionArea>
<wicri:noRegion>Shaanxi</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Xu, Yixiang" sort="Xu, Yixiang" uniqKey="Xu Y" first="Yixiang" last="Xu">Yixiang Xu</name>
<affiliation wicri:level="3">
<nlm:affiliation>State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, People's Republic of China State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center at Institute of Microbiology, Chinese Academy of Sciences, Beijing, People's Republic of China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, People's Republic of China State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center at Institute of Microbiology, Chinese Academy of Sciences, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Chen, Can" sort="Chen, Can" uniqKey="Chen C" first="Can" last="Chen">Can Chen</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, People's Republic of China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A & F University, Yangling, Shaanxi</wicri:regionArea>
<wicri:noRegion>Shaanxi</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Akbar, Ali" sort="Akbar, Ali" uniqKey="Akbar A" first="Ali" last="Akbar">Ali Akbar</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, People's Republic of China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A & F University, Yangling, Shaanxi</wicri:regionArea>
<wicri:noRegion>Shaanxi</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Shen, Xihui" sort="Shen, Xihui" uniqKey="Shen X" first="Xihui" last="Shen">Xihui Shen</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, People's Republic of China xihuishen@nwsuaf.edu.cn.</nlm:affiliation>
<country wicri:rule="url">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A & F University, Yangling, Shaanxi</wicri:regionArea>
<wicri:noRegion>Shaanxi</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Liu, Shuang Jiang" sort="Liu, Shuang Jiang" uniqKey="Liu S" first="Shuang-Jiang" last="Liu">Shuang-Jiang Liu</name>
<affiliation wicri:level="3">
<nlm:affiliation>State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center at Institute of Microbiology, Chinese Academy of Sciences, Beijing, People's Republic of China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center at Institute of Microbiology, Chinese Academy of Sciences, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Applied and environmental microbiology</title>
<idno type="eISSN">1098-5336</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence (MeSH)</term>
<term>Bacterial Proteins (chemistry)</term>
<term>Bacterial Proteins (genetics)</term>
<term>Bacterial Proteins (metabolism)</term>
<term>Corynebacterium glutamicum (genetics)</term>
<term>Corynebacterium glutamicum (physiology)</term>
<term>Methionine Sulfoxide Reductases (chemistry)</term>
<term>Methionine Sulfoxide Reductases (genetics)</term>
<term>Methionine Sulfoxide Reductases (metabolism)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Oxidative Stress (MeSH)</term>
<term>Sequence Alignment (MeSH)</term>
<term>Thioredoxins (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Alignement de séquences (MeSH)</term>
<term>Corynebacterium glutamicum (génétique)</term>
<term>Corynebacterium glutamicum (physiologie)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Methionine Sulfoxide Reductases (composition chimique)</term>
<term>Methionine Sulfoxide Reductases (génétique)</term>
<term>Methionine Sulfoxide Reductases (métabolisme)</term>
<term>Protéines bactériennes (composition chimique)</term>
<term>Protéines bactériennes (génétique)</term>
<term>Protéines bactériennes (métabolisme)</term>
<term>Stress oxydatif (MeSH)</term>
<term>Séquence d'acides aminés (MeSH)</term>
<term>Thiorédoxines (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Bacterial Proteins</term>
<term>Methionine Sulfoxide Reductases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Bacterial Proteins</term>
<term>Methionine Sulfoxide Reductases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Bacterial Proteins</term>
<term>Methionine Sulfoxide Reductases</term>
<term>Thioredoxins</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Methionine Sulfoxide Reductases</term>
<term>Protéines bactériennes</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Corynebacterium glutamicum</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Corynebacterium glutamicum</term>
<term>Methionine Sulfoxide Reductases</term>
<term>Protéines bactériennes</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Methionine Sulfoxide Reductases</term>
<term>Protéines bactériennes</term>
<term>Thiorédoxines</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Corynebacterium glutamicum</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Corynebacterium glutamicum</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Molecular Sequence Data</term>
<term>Oxidative Stress</term>
<term>Sequence Alignment</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Alignement de séquences</term>
<term>Données de séquences moléculaires</term>
<term>Stress oxydatif</term>
<term>Séquence d'acides aminés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Oxidation of methionine leads to the formation of the S and R diastereomers of methionine sulfoxide (MetO), which can be reversed by the actions of two structurally unrelated classes of methionine sulfoxide reductase (Msr), MsrA and MsrB, respectively. Although MsrAs have long been demonstrated in numerous bacteria, their physiological and biochemical functions remain largely unknown in Actinomycetes. Here, we report that a Corynebacterium glutamicum methionine sulfoxide reductase A (CgMsrA) that belongs to the 3-Cys family of MsrAs plays important roles in oxidative stress resistance. Deletion of the msrA gene in C. glutamicum resulted in decrease of cell viability, increase of ROS production, and increase of protein carbonylation levels under various stress conditions. The physiological roles of CgMsrA in resistance to oxidative stresses were corroborated by its induced expression under various stresses, regulated directly by the stress-responsive extracytoplasmic-function (ECF) sigma factor SigH. Activity assays performed with various regeneration pathways showed that CgMsrA can reduce MetO via both the thioredoxin/thioredoxin reductase (Trx/TrxR) and mycoredoxin 1/mycothione reductase/mycothiol (Mrx1/Mtr/MSH) pathways. Site-directed mutagenesis confirmed that Cys56 is the peroxidatic cysteine that is oxidized to sulfenic acid, while Cys204 and Cys213 are the resolving Cys residues that form an intramolecular disulfide bond. Mrx1 reduces the sulfenic acid intermediate via the formation of an S-mycothiolated MsrA intermediate (MsrA-SSM) which is then recycled by mycoredoxin and the second molecule of mycothiol, similarly to the glutathione/glutaredoxin/glutathione reductase (GSH/Grx/GR) system. However, Trx reduces the Cys204-Cys213 disulfide bond in CgMsrA produced during MetO reduction via the formation of a transient intermolecular disulfide bond between Trx and CgMsrA. While both the Trx/TrxR and Mrx1/Mtr/MSH pathways are operative in reducing CgMsrA under stress conditions in vivo, the Trx/TrxR pathway alone is sufficient to reduce CgMsrA under normal conditions. Based on these results, a catalytic model for the reduction of CgMsrA by Mrx1 and Trx is proposed. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25681179</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>12</Month>
<Day>14</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1098-5336</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>81</Volume>
<Issue>8</Issue>
<PubDate>
<Year>2015</Year>
<Month>Apr</Month>
</PubDate>
</JournalIssue>
<Title>Applied and environmental microbiology</Title>
<ISOAbbreviation>Appl Environ Microbiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Corynebacterium glutamicum methionine sulfoxide reductase A uses both mycoredoxin and thioredoxin for regeneration and oxidative stress resistance.</ArticleTitle>
<Pagination>
<MedlinePgn>2781-96</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/AEM.04221-14</ELocationID>
<Abstract>
<AbstractText>Oxidation of methionine leads to the formation of the S and R diastereomers of methionine sulfoxide (MetO), which can be reversed by the actions of two structurally unrelated classes of methionine sulfoxide reductase (Msr), MsrA and MsrB, respectively. Although MsrAs have long been demonstrated in numerous bacteria, their physiological and biochemical functions remain largely unknown in Actinomycetes. Here, we report that a Corynebacterium glutamicum methionine sulfoxide reductase A (CgMsrA) that belongs to the 3-Cys family of MsrAs plays important roles in oxidative stress resistance. Deletion of the msrA gene in C. glutamicum resulted in decrease of cell viability, increase of ROS production, and increase of protein carbonylation levels under various stress conditions. The physiological roles of CgMsrA in resistance to oxidative stresses were corroborated by its induced expression under various stresses, regulated directly by the stress-responsive extracytoplasmic-function (ECF) sigma factor SigH. Activity assays performed with various regeneration pathways showed that CgMsrA can reduce MetO via both the thioredoxin/thioredoxin reductase (Trx/TrxR) and mycoredoxin 1/mycothione reductase/mycothiol (Mrx1/Mtr/MSH) pathways. Site-directed mutagenesis confirmed that Cys56 is the peroxidatic cysteine that is oxidized to sulfenic acid, while Cys204 and Cys213 are the resolving Cys residues that form an intramolecular disulfide bond. Mrx1 reduces the sulfenic acid intermediate via the formation of an S-mycothiolated MsrA intermediate (MsrA-SSM) which is then recycled by mycoredoxin and the second molecule of mycothiol, similarly to the glutathione/glutaredoxin/glutathione reductase (GSH/Grx/GR) system. However, Trx reduces the Cys204-Cys213 disulfide bond in CgMsrA produced during MetO reduction via the formation of a transient intermolecular disulfide bond between Trx and CgMsrA. While both the Trx/TrxR and Mrx1/Mtr/MSH pathways are operative in reducing CgMsrA under stress conditions in vivo, the Trx/TrxR pathway alone is sufficient to reduce CgMsrA under normal conditions. Based on these results, a catalytic model for the reduction of CgMsrA by Mrx1 and Trx is proposed. </AbstractText>
<CopyrightInformation>Copyright © 2015, American Society for Microbiology. All Rights Reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Si</LastName>
<ForeName>Meiru</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, People's Republic of China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Lei</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, People's Republic of China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chaudhry</LastName>
<ForeName>Muhammad Tausif</ForeName>
<Initials>MT</Initials>
<AffiliationInfo>
<Affiliation>Environmental Analytical Laboratory, National Physical and Standards Laboratory, PCSIR, Islamabad, Pakistan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ding</LastName>
<ForeName>Wei</ForeName>
<Initials>W</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, People's Republic of China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Xu</LastName>
<ForeName>Yixiang</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, People's Republic of China State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center at Institute of Microbiology, Chinese Academy of Sciences, Beijing, People's Republic of China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Can</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, People's Republic of China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Akbar</LastName>
<ForeName>Ali</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, People's Republic of China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Shen</LastName>
<ForeName>Xihui</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, People's Republic of China xihuishen@nwsuaf.edu.cn.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Shuang-Jiang</ForeName>
<Initials>SJ</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center at Institute of Microbiology, Chinese Academy of Sciences, Beijing, People's Republic of China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>02</Month>
<Day>13</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Appl Environ Microbiol</MedlineTA>
<NlmUniqueID>7605801</NlmUniqueID>
<ISSNLinking>0099-2240</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001426">Bacterial Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>52500-60-4</RegistryNumber>
<NameOfSubstance UI="D013879">Thioredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.8.4.-</RegistryNumber>
<NameOfSubstance UI="D051150">Methionine Sulfoxide Reductases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.8.4.11</RegistryNumber>
<NameOfSubstance UI="C027219">methionine sulfoxide reductase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001426" MajorTopicYN="N">Bacterial Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D048230" MajorTopicYN="N">Corynebacterium glutamicum</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051150" MajorTopicYN="N">Methionine Sulfoxide Reductases</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018384" MajorTopicYN="Y">Oxidative Stress</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016415" MajorTopicYN="N">Sequence Alignment</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013879" MajorTopicYN="N">Thioredoxins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>2</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>2</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>12</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25681179</ArticleId>
<ArticleId IdType="pii">AEM.04221-14</ArticleId>
<ArticleId IdType="doi">10.1128/AEM.04221-14</ArticleId>
<ArticleId IdType="pmc">PMC4375309</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>PLoS One. 2014;9(12):e115075</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25514023</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2012 Nov 2;586(21):3894-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23022439</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 2000 Nov 15;8(11):1167-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11080639</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Nov 17;275(46):35908-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10964927</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Sci. 2001 Nov;10(11):2272-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11604533</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci STKE. 2001 Jun 12;2001(86):pl1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11752655</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Apr 19;277(16):13609-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11832487</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Jul 23;99(15):10108-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12096194</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Microbiol. 2002 Nov;45(5):362-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12232668</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2002 Nov;46(11):3348-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12384335</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Mar 14;278(11):9203-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12514184</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biotechnol. 2003 Sep 4;104(1-3):213-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12948640</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2003 Oct;62(5-6):459-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12845493</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Feb 3;101(5):1159-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14745014</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2004 Jun;186(11):3590-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15150247</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1994 Jul 22;145(1):69-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8045426</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 1995 Jan;18(1):93-105</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7896176</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1997 Sep 2;94(18):9585-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9275166</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1997 Dec 2;36(48):15013-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9398227</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Biol Interact. 1998 Apr 24;111-112:1-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9679538</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Nov 24;95(24):14071-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9826655</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 Feb 2;96(3):887-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9927663</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1959 May;82(1):70-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13650640</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2005 Jan;187(1):231-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15601707</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2005 Jan 17;1703(2):93-109</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15680218</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2005 Jan 17;1703(2):231-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15680231</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2008 Jul 4;371(3):490-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18452709</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 2008 Sep;72(3):471-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18772286</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2009 Feb;71(3):583-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19040639</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteins. 2009 Mar;74(4):1008-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18767149</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 2009 Mar 1;483(1):106-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19138658</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2009 May;191(9):2964-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19270092</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 May 29;284(22):15107-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19286650</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Jul 10;284(28):18963-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19457862</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 2009 Aug;155(Pt 8):2522-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19443542</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2009 May;72(3):699-709</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19400786</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2009 Mar;2(2):202-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19825608</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2012;13:445</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22943411</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2012 Nov 23;287(48):40433-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23027868</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2013 Feb;15(2):557-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23094603</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Microbiol. 2013 Jun;195(6):419-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23615850</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2014 Feb 1;20(4):589-605</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23886307</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2014 Mar;80(5):1750-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24375145</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2014 Feb 21;289(8):5228-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24379404</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 2014 Apr 15;548:54-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24632144</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioorg Chem. 2014 Dec;57:222-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25108804</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2005 Jul;71(7):3442-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16000747</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2005 Dec;3(12):e375</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16262444</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Apr 21;281(16):10778-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16481315</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2006 Nov 21;45(46):13697-704</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17105189</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Feb 2;282(5):3367-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17135266</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6463-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10841552</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2010 May 14;285(20):14964-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20236937</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biometals. 2011 Jun;24(3):523-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21207115</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2011 Jun 23;585(12):1905-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21570393</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2012 May 18;287(21):17077-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22474296</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2012 Jul;95(1):77-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22588501</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2007 Sep 18;581(23):4371-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17761174</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Pakistan</li>
<li>République populaire de Chine</li>
</country>
<settlement>
<li>Pékin</li>
</settlement>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Si, Meiru" sort="Si, Meiru" uniqKey="Si M" first="Meiru" last="Si">Meiru Si</name>
</noRegion>
<name sortKey="Akbar, Ali" sort="Akbar, Ali" uniqKey="Akbar A" first="Ali" last="Akbar">Ali Akbar</name>
<name sortKey="Chen, Can" sort="Chen, Can" uniqKey="Chen C" first="Can" last="Chen">Can Chen</name>
<name sortKey="Ding, Wei" sort="Ding, Wei" uniqKey="Ding W" first="Wei" last="Ding">Wei Ding</name>
<name sortKey="Liu, Shuang Jiang" sort="Liu, Shuang Jiang" uniqKey="Liu S" first="Shuang-Jiang" last="Liu">Shuang-Jiang Liu</name>
<name sortKey="Shen, Xihui" sort="Shen, Xihui" uniqKey="Shen X" first="Xihui" last="Shen">Xihui Shen</name>
<name sortKey="Xu, Yixiang" sort="Xu, Yixiang" uniqKey="Xu Y" first="Yixiang" last="Xu">Yixiang Xu</name>
<name sortKey="Zhang, Lei" sort="Zhang, Lei" uniqKey="Zhang L" first="Lei" last="Zhang">Lei Zhang</name>
</country>
<country name="Pakistan">
<noRegion>
<name sortKey="Chaudhry, Muhammad Tausif" sort="Chaudhry, Muhammad Tausif" uniqKey="Chaudhry M" first="Muhammad Tausif" last="Chaudhry">Muhammad Tausif Chaudhry</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000568 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000568 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:25681179
   |texte=   Corynebacterium glutamicum methionine sulfoxide reductase A uses both mycoredoxin and thioredoxin for regeneration and oxidative stress resistance.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:25681179" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020