Serveur d'exploration sur les chloroplastes dans l'oxydoréduction chez les plantes

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Leaf Senescence: The Chloroplast Connection Comes of Age.

Identifieur interne : 000091 ( Main/Corpus ); précédent : 000090; suivant : 000092

Leaf Senescence: The Chloroplast Connection Comes of Age.

Auteurs : Martín L. Mayta ; Mohammad-Reza Hajirezaei ; Néstor Carrillo ; Anabella F. Lodeyro

Source :

RBID : pubmed:31718069

Abstract

Leaf senescence is a developmental process critical for plant fitness, which involves genetically controlled cell death and ordered disassembly of macromolecules for reallocating nutrients to juvenile and reproductive organs. While natural leaf senescence is primarily associated with aging, it can also be induced by environmental and nutritional inputs including biotic and abiotic stresses, darkness, phytohormones and oxidants. Reactive oxygen species (ROS) are a common thread in stress-dependent cell death and also increase during leaf senescence. Involvement of chloroplast redox chemistry (including ROS propagation) in modulating cell death is well supported, with photosynthesis playing a crucial role in providing redox-based signals to this process. While chloroplast contribution to senescence received less attention, recent findings indicate that changes in the redox poise of these organelles strongly affect senescence timing and progress. In this review, the involvement of chloroplasts in leaf senescence execution is critically assessed in relation to available evidence and the role played by environmental and developmental cues such as stress and phytohormones. The collected results indicate that chloroplasts could cooperate with other redox sources (e.g., mitochondria) and signaling molecules to initiate the committed steps of leaf senescence for a best use of the recycled nutrients in plant reproduction.

DOI: 10.3390/plants8110495
PubMed: 31718069
PubMed Central: PMC6918220

Links to Exploration step

pubmed:31718069

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Leaf Senescence: The Chloroplast Connection Comes of Age.</title>
<author>
<name sortKey="Mayta, Martin L" sort="Mayta, Martin L" uniqKey="Mayta M" first="Martín L" last="Mayta">Martín L. Mayta</name>
<affiliation>
<nlm:affiliation>Instituto de Biología Molecular y Celular de Rosario (IBR-UNR/CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), 2000 Rosario, Argentina.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hajirezaei, Mohammad Reza" sort="Hajirezaei, Mohammad Reza" uniqKey="Hajirezaei M" first="Mohammad-Reza" last="Hajirezaei">Mohammad-Reza Hajirezaei</name>
<affiliation>
<nlm:affiliation>Leibniz Institute of Plant Genetics and Crop Plant Research, OT Gatersleben, Corrensstrasse, D-06466 Stadt Seeland, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Carrillo, Nestor" sort="Carrillo, Nestor" uniqKey="Carrillo N" first="Néstor" last="Carrillo">Néstor Carrillo</name>
<affiliation>
<nlm:affiliation>Instituto de Biología Molecular y Celular de Rosario (IBR-UNR/CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), 2000 Rosario, Argentina.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lodeyro, Anabella F" sort="Lodeyro, Anabella F" uniqKey="Lodeyro A" first="Anabella F" last="Lodeyro">Anabella F. Lodeyro</name>
<affiliation>
<nlm:affiliation>Instituto de Biología Molecular y Celular de Rosario (IBR-UNR/CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), 2000 Rosario, Argentina.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31718069</idno>
<idno type="pmid">31718069</idno>
<idno type="doi">10.3390/plants8110495</idno>
<idno type="pmc">PMC6918220</idno>
<idno type="wicri:Area/Main/Corpus">000091</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000091</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Leaf Senescence: The Chloroplast Connection Comes of Age.</title>
<author>
<name sortKey="Mayta, Martin L" sort="Mayta, Martin L" uniqKey="Mayta M" first="Martín L" last="Mayta">Martín L. Mayta</name>
<affiliation>
<nlm:affiliation>Instituto de Biología Molecular y Celular de Rosario (IBR-UNR/CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), 2000 Rosario, Argentina.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hajirezaei, Mohammad Reza" sort="Hajirezaei, Mohammad Reza" uniqKey="Hajirezaei M" first="Mohammad-Reza" last="Hajirezaei">Mohammad-Reza Hajirezaei</name>
<affiliation>
<nlm:affiliation>Leibniz Institute of Plant Genetics and Crop Plant Research, OT Gatersleben, Corrensstrasse, D-06466 Stadt Seeland, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Carrillo, Nestor" sort="Carrillo, Nestor" uniqKey="Carrillo N" first="Néstor" last="Carrillo">Néstor Carrillo</name>
<affiliation>
<nlm:affiliation>Instituto de Biología Molecular y Celular de Rosario (IBR-UNR/CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), 2000 Rosario, Argentina.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lodeyro, Anabella F" sort="Lodeyro, Anabella F" uniqKey="Lodeyro A" first="Anabella F" last="Lodeyro">Anabella F. Lodeyro</name>
<affiliation>
<nlm:affiliation>Instituto de Biología Molecular y Celular de Rosario (IBR-UNR/CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), 2000 Rosario, Argentina.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Plants (Basel, Switzerland)</title>
<idno type="ISSN">2223-7747</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Leaf senescence is a developmental process critical for plant fitness, which involves genetically controlled cell death and ordered disassembly of macromolecules for reallocating nutrients to juvenile and reproductive organs. While natural leaf senescence is primarily associated with aging, it can also be induced by environmental and nutritional inputs including biotic and abiotic stresses, darkness, phytohormones and oxidants. Reactive oxygen species (ROS) are a common thread in stress-dependent cell death and also increase during leaf senescence. Involvement of chloroplast redox chemistry (including ROS propagation) in modulating cell death is well supported, with photosynthesis playing a crucial role in providing redox-based signals to this process. While chloroplast contribution to senescence received less attention, recent findings indicate that changes in the redox poise of these organelles strongly affect senescence timing and progress. In this review, the involvement of chloroplasts in leaf senescence execution is critically assessed in relation to available evidence and the role played by environmental and developmental cues such as stress and phytohormones. The collected results indicate that chloroplasts could cooperate with other redox sources (e.g., mitochondria) and signaling molecules to initiate the committed steps of leaf senescence for a best use of the recycled nutrients in plant reproduction.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">31718069</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>28</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Print">2223-7747</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>8</Volume>
<Issue>11</Issue>
<PubDate>
<Year>2019</Year>
<Month>Nov</Month>
<Day>12</Day>
</PubDate>
</JournalIssue>
<Title>Plants (Basel, Switzerland)</Title>
<ISOAbbreviation>Plants (Basel)</ISOAbbreviation>
</Journal>
<ArticleTitle>Leaf Senescence: The Chloroplast Connection Comes of Age.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">E495</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.3390/plants8110495</ELocationID>
<Abstract>
<AbstractText>Leaf senescence is a developmental process critical for plant fitness, which involves genetically controlled cell death and ordered disassembly of macromolecules for reallocating nutrients to juvenile and reproductive organs. While natural leaf senescence is primarily associated with aging, it can also be induced by environmental and nutritional inputs including biotic and abiotic stresses, darkness, phytohormones and oxidants. Reactive oxygen species (ROS) are a common thread in stress-dependent cell death and also increase during leaf senescence. Involvement of chloroplast redox chemistry (including ROS propagation) in modulating cell death is well supported, with photosynthesis playing a crucial role in providing redox-based signals to this process. While chloroplast contribution to senescence received less attention, recent findings indicate that changes in the redox poise of these organelles strongly affect senescence timing and progress. In this review, the involvement of chloroplasts in leaf senescence execution is critically assessed in relation to available evidence and the role played by environmental and developmental cues such as stress and phytohormones. The collected results indicate that chloroplasts could cooperate with other redox sources (e.g., mitochondria) and signaling molecules to initiate the committed steps of leaf senescence for a best use of the recycled nutrients in plant reproduction.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Mayta</LastName>
<ForeName>Martín L</ForeName>
<Initials>ML</Initials>
<AffiliationInfo>
<Affiliation>Instituto de Biología Molecular y Celular de Rosario (IBR-UNR/CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), 2000 Rosario, Argentina.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hajirezaei</LastName>
<ForeName>Mohammad-Reza</ForeName>
<Initials>MR</Initials>
<AffiliationInfo>
<Affiliation>Leibniz Institute of Plant Genetics and Crop Plant Research, OT Gatersleben, Corrensstrasse, D-06466 Stadt Seeland, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Carrillo</LastName>
<ForeName>Néstor</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>Instituto de Biología Molecular y Celular de Rosario (IBR-UNR/CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), 2000 Rosario, Argentina.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lodeyro</LastName>
<ForeName>Anabella F</ForeName>
<Initials>AF</Initials>
<AffiliationInfo>
<Affiliation>Instituto de Biología Molecular y Celular de Rosario (IBR-UNR/CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), 2000 Rosario, Argentina.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>PICT 2015-3828, PICT 2017-3080</GrantID>
<Agency>Agencia Nacional de Promoción Científica y Tecnológica</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>11</Month>
<Day>12</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Plants (Basel)</MedlineTA>
<NlmUniqueID>101596181</NlmUniqueID>
<ISSNLinking>2223-7747</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">chloroplast</Keyword>
<Keyword MajorTopicYN="N">photosynthetic electron transport chain</Keyword>
<Keyword MajorTopicYN="N">phytohormones</Keyword>
<Keyword MajorTopicYN="N">reactive oxygen species</Keyword>
<Keyword MajorTopicYN="N">senescence</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>10</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2019</Year>
<Month>11</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>11</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>11</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>11</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>11</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31718069</ArticleId>
<ArticleId IdType="pii">plants8110495</ArticleId>
<ArticleId IdType="doi">10.3390/plants8110495</ArticleId>
<ArticleId IdType="pmc">PMC6918220</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Cell Physiol. 2018 Jun 1;59(6):1135-1143</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29767769</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Death Differ. 2005 Oct;12(10):1277-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15905880</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plants (Basel). 2015 Jul 08;4(3):393-411</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27135335</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2010 Apr;62(2):250-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20113437</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2013 Aug;82(6):539-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23096425</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2013 Aug;82(6):547-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23504405</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>AoB Plants. 2013;5:plt023</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23671789</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002 Apr;14(4):805-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11971136</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2011 Jan;62(1):383-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20841349</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Jul;153(3):1321-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20484024</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2013 Nov 15;170(17):1501-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23850030</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 May;156(1):185-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21372201</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2014 Oct;65(18):5161-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25009172</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2015;10(2):e989752</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25760871</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Feb;149(2):803-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19028878</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2016 Jun 06;17 Suppl 5:174</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27295368</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2013 Jan;161(1):5-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23151347</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2014 Jul;65(14):3875-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24683182</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protoplasma. 2019 Mar;256(2):313-329</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30311054</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2013 May;148(1):105-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22974423</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2015 Nov;66(21):6891-903</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26272903</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2014 Apr;1837(4):512-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24269172</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plants (Basel). 2015 Jul 13;4(3):449-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27135337</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2015 Jan 29;6:20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25688252</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2019 Mar 26;10:359</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30972092</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2015 Oct;169(2):914-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26276844</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2011 Nov 11;147(4):742-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22078876</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2002 Apr;53(370):801-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11912223</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2016 Mar;67(6):1839-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26826216</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2016 Jun;67(13):3831-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26976816</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2011 Mar;23(3):873-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21447789</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2014 Jul;65(14):3859-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24600015</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1991 Jan;16(1):11-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1653626</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2012 Apr;63(7):2739-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22268153</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2018 Jun 19;69(14):3373-3391</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29722828</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2008 Sep 23;6(9):e230</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18816164</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2013 Apr;140(7):1373-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23482484</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2014 Jul;65(12):3081-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24723397</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2010 Oct;188(1):161-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20704660</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2016 Jul;171(3):1560-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27208233</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2017 Apr 04;8:475</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28421102</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2009;60(14):4189-200</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19773387</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2019 Jun 19;10:747</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31275332</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2017 May;94(1-2):215-227</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28342018</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1997 Mar;33(4):641-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9132056</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2013 Oct;163(2):1071-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23922270</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2018 Mar 14;19(3):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29538307</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Photochem Photobiol B. 2015 Nov;152(Pt B):176-214</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26498710</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Death Differ. 2005 Apr;12(4):405-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15706353</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2013 Aug;82(6):623-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23595200</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2018 Apr 16;9:490</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29713332</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Crit Rev Biotechnol. 2019 Aug;39(5):693-708</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30991845</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2016 Jul;171(3):1720-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27246095</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2015 Dec 08;6:1092</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26697045</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2017 Sep 29;8:1687</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29033963</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2011 Jan;6(1):147-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21270537</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2016 Feb 23;7:187</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26941757</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2003 Aug;6(4):390-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12873535</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2016 Dec 26;7:1950</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28082998</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2014 Dec;26(12):4875-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25538186</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2015;66:75-111</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25580835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2016 Jul;96:313-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27130034</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Apr;134(4):1784-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15064386</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2016 Dec 08;7:1855</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28018391</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2014 Sep;166(1):44-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25033826</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2019 Aug;141:353-369</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31207496</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Plants. 2019 Feb;5(2):129-130</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30679812</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2013;51:407-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23725473</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protoplasma. 2016 Mar;253(2):259-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25837009</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2018 Jul 17;9:1039</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30065745</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2014 May 13;5:188</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24860580</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2009 Jan 1;417(1):1-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19061483</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2019 Apr 29;70:347-376</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30811218</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2017 Jul 04;8:1158</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28725231</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2005 Mar;41(6):831-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15743448</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Aug 4;95(16):9705-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9689145</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2015 Feb;27(2):391-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25649438</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2015 Jul;168(3):1122-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25953103</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2014 Jul;65(14):3993-4008</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24803504</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2019 Mar 22;10:280</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30967883</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2019 Mar 18;10:319</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30936887</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Res Notes. 2011 Nov 02;4:477</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22047555</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2015 Jul;168(3):885-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26025050</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2018 Feb 12;69(4):741-750</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28992297</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2013 Nov;64(16):4967-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24106291</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2009 Feb;32(2):144-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19021891</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2016 Jul;57(7):1397-1404</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27016099</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2019 Mar 11;70(5):1525-1538</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30715415</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2016 Nov 17;11(11):e0166676</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27855226</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2010;61(2):473-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19933317</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2016 Aug;171(4):2280-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27288365</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Jun 12;104(24):10270-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17540731</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2011 Aug;1807(8):977-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21167811</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2015 Nov;20(11):754-766</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26442680</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2016 Jul;171(3):1581-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27208308</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2013 Aug;82(6):603-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23354836</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2011 Jul;62(11):3981-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21511905</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2019 Feb 28;9(1):3022</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30816299</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2013 Feb;197(3):696-711</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23176101</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2017 Nov;29(11):2854-2870</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29061866</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2018 Feb 12;69(4):845-853</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28992323</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>IUBMB Life. 2005 Mar;57(3):181-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16036580</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2014 Dec;7(12):1776-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25296857</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2009 Apr;21(4):1109-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19376934</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2018 May 3;16(5):e2004122</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29723186</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2000 Feb;51 Spec No:329-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10938840</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Direct. 2019 Mar 20;3(3):e00127</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31245770</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2018 Feb;176(2):1004-1014</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29051197</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plants (Basel). 2019 Sep 26;8(10):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31561513</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2014 Jul;65(14):3889-900</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24600017</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Jun;141(2):776-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16603661</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2018;1744:161-171</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29392666</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plants (Basel). 2019 Sep 23;8(10):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31547618</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2012 Jul;24(7):3026-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22797473</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2012 Feb;24(2):482-506</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22345491</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2019 Sep;31(9):1968-1989</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31239390</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Integr Plant Biol. 2016 Jan;58(1):29-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26031939</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2009 Dec;60(6):962-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19719480</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2013 Nov 25;4:479</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24324479</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Oct;142(2):775-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16891549</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2015 Jun;27(6):1755-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25991734</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2010 Apr;33(4):453-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19712065</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Sep;51(6):941-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17651371</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biosci Rep. 2003 Apr-Jun;23(2-3):103-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14570380</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2019 May;166(1):148-164</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30629302</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2004 Nov;220(1):97-104</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15252735</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Aug;18(8):2035-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16829589</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol Evol. 2015 Feb 16;7(3):750-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25688107</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2009 May 15;166(8):819-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19106015</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2014 Dec;141(24):4772-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25395454</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2017 Dec;92(5):761-773</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28906064</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2015 Feb 18;6:69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25741354</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2011 Mar;1807(3):384-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21118673</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2010 Mar 15;48(6):749-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20045723</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/ChloroPlantRedoxV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000091 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000091 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    ChloroPlantRedoxV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:31718069
   |texte=   Leaf Senescence: The Chloroplast Connection Comes of Age.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:31718069" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a ChloroPlantRedoxV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 12:07:36 2020. Site generation: Sat Nov 21 12:08:05 2020