Serveur d'exploration sur le chêne en Belgique

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Reducing and correcting for contamination of ecosystem water stable isotopes measured by isotope ratio infrared spectroscopy

Identifieur interne : 000356 ( Istex/Corpus ); précédent : 000355; suivant : 000357

Reducing and correcting for contamination of ecosystem water stable isotopes measured by isotope ratio infrared spectroscopy

Auteurs : Markus Schmidt ; Kadmiel Maseyk ; Céline Lett ; Philippe Biron ; Patricia Richard ; Thierry Bariac ; Ulli Seibt

Source :

RBID : ISTEX:D7122A973DFEED3891B32D2FF757CB58A41F2916

Abstract

Concern exists about the suitability of laser spectroscopic instruments for the measurement of the 18O/16O and 2H/1H values of liquid samples other than pure water. It is possible to derive erroneous isotope values due to optical interference by certain organic compounds, including some commonly present in ecosystem‐derived samples such as leaf or soil waters. Here we investigated the reliability of wavelength‐scanned cavity ring‐down spectroscopy (CRDS) 18O/16O and 2H/1H measurements from a range of ecosystem‐derived waters, through comparison with isotope ratio mass spectrometry (IRMS). We tested the residual of the spectral fit Sr calculated by the CRDS instrument as a means to quantify the difference between the CRDS and IRMS δ‐values. There was very good overall agreement between the CRDS and IRMS values for both isotopes, but differences of up to 2.3 ‰ (δ18O values) and 23 ‰ (δ2H values) were observed in leaf water extracts from Citrus limon and Alnus cordata. The Sr statistic successfully detected contaminated samples. Treatment of Citrus leaf water with activated charcoal reduced, but did not eliminate, δ2HCRDS‐ δ2HIRMS linearly for the tested range of 0–20 % charcoal. The effect of distillation temperature on the degree of contamination was large, particularly for δ2H values but variable, resulting in positive, negative or no correlation with distillation temperature. Sr and δCRDS – δIRMS were highly correlated, in particular for δ2H values, across the range of samples that we tested, indicating the potential to use this relationship to correct the δ‐values of contaminated plant water extracts. We also examined the sensitivity of the CRDS system to changes in the temperature of its operating environment. We found that temperature changes ≥4 °C for δ18O values and ≥10 °C for δ2H values resulted in errors larger than the CRDS precision for the respective isotopes and advise the use of such instruments only in sufficiently temperature‐stabilised environments. Copyright © 2011 John Wiley & Sons, Ltd.

Url:
DOI: 10.1002/rcm.5317

Links to Exploration step

ISTEX:D7122A973DFEED3891B32D2FF757CB58A41F2916

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Reducing and correcting for contamination of ecosystem water stable isotopes measured by isotope ratio infrared spectroscopy</title>
<author>
<name sortKey="Schmidt, Markus" sort="Schmidt, Markus" uniqKey="Schmidt M" first="Markus" last="Schmidt">Markus Schmidt</name>
<affiliation>
<mods:affiliation>BIOEMCO (UMR 7618: UPMC − Paris 6, INRA, CNRS, ENS, AgroParisTech, IRD, Paris 12), Campus AgroParisTech, Bâtiment EGER, 78850, Thiverval‐Grignon, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>M. Schmidt, Université Pierre et Marie Curie  Paris 6, BIOEMCO, Campus AgroParisTech Grignon, Bâtiment EGER, 78850 Thiverval‐Grignon, France.E‐mail:</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: mwtschmidt@gmx.com</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Maseyk, Kadmiel" sort="Maseyk, Kadmiel" uniqKey="Maseyk K" first="Kadmiel" last="Maseyk">Kadmiel Maseyk</name>
<affiliation>
<mods:affiliation>BIOEMCO (UMR 7618: UPMC − Paris 6, INRA, CNRS, ENS, AgroParisTech, IRD, Paris 12), Campus AgroParisTech, Bâtiment EGER, 78850, Thiverval‐Grignon, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lett, Celine" sort="Lett, Celine" uniqKey="Lett C" first="Céline" last="Lett">Céline Lett</name>
<affiliation>
<mods:affiliation>BIOEMCO (UMR 7618: UPMC − Paris 6, INRA, CNRS, ENS, AgroParisTech, IRD, Paris 12), Campus AgroParisTech, Bâtiment EGER, 78850, Thiverval‐Grignon, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Biron, Philippe" sort="Biron, Philippe" uniqKey="Biron P" first="Philippe" last="Biron">Philippe Biron</name>
<affiliation>
<mods:affiliation>BIOEMCO (UMR 7618: UPMC − Paris 6, INRA, CNRS, ENS, AgroParisTech, IRD, Paris 12), Campus AgroParisTech, Bâtiment EGER, 78850, Thiverval‐Grignon, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Richard, Patricia" sort="Richard, Patricia" uniqKey="Richard P" first="Patricia" last="Richard">Patricia Richard</name>
<affiliation>
<mods:affiliation>BIOEMCO (UMR 7618: UPMC − Paris 6, INRA, CNRS, ENS, AgroParisTech, IRD, Paris 12), Campus AgroParisTech, Bâtiment EGER, 78850, Thiverval‐Grignon, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bariac, Thierry" sort="Bariac, Thierry" uniqKey="Bariac T" first="Thierry" last="Bariac">Thierry Bariac</name>
<affiliation>
<mods:affiliation>BIOEMCO (UMR 7618: UPMC − Paris 6, INRA, CNRS, ENS, AgroParisTech, IRD, Paris 12), Campus AgroParisTech, Bâtiment EGER, 78850, Thiverval‐Grignon, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Seibt, Ulli" sort="Seibt, Ulli" uniqKey="Seibt U" first="Ulli" last="Seibt">Ulli Seibt</name>
<affiliation>
<mods:affiliation>BIOEMCO (UMR 7618: UPMC − Paris 6, INRA, CNRS, ENS, AgroParisTech, IRD, Paris 12), Campus AgroParisTech, Bâtiment EGER, 78850, Thiverval‐Grignon, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Dept of Atmospheric & Oceanic Sciences, UCLA, 405 Hilgard Ave, CA, 90095, Los Angeles, USA</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:D7122A973DFEED3891B32D2FF757CB58A41F2916</idno>
<date when="2012" year="2012">2012</date>
<idno type="doi">10.1002/rcm.5317</idno>
<idno type="url">https://api.istex.fr/document/D7122A973DFEED3891B32D2FF757CB58A41F2916/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000356</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000356</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Reducing and correcting for contamination of ecosystem water stable isotopes measured by isotope ratio infrared spectroscopy</title>
<author>
<name sortKey="Schmidt, Markus" sort="Schmidt, Markus" uniqKey="Schmidt M" first="Markus" last="Schmidt">Markus Schmidt</name>
<affiliation>
<mods:affiliation>BIOEMCO (UMR 7618: UPMC − Paris 6, INRA, CNRS, ENS, AgroParisTech, IRD, Paris 12), Campus AgroParisTech, Bâtiment EGER, 78850, Thiverval‐Grignon, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>M. Schmidt, Université Pierre et Marie Curie  Paris 6, BIOEMCO, Campus AgroParisTech Grignon, Bâtiment EGER, 78850 Thiverval‐Grignon, France.E‐mail:</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: mwtschmidt@gmx.com</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Maseyk, Kadmiel" sort="Maseyk, Kadmiel" uniqKey="Maseyk K" first="Kadmiel" last="Maseyk">Kadmiel Maseyk</name>
<affiliation>
<mods:affiliation>BIOEMCO (UMR 7618: UPMC − Paris 6, INRA, CNRS, ENS, AgroParisTech, IRD, Paris 12), Campus AgroParisTech, Bâtiment EGER, 78850, Thiverval‐Grignon, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lett, Celine" sort="Lett, Celine" uniqKey="Lett C" first="Céline" last="Lett">Céline Lett</name>
<affiliation>
<mods:affiliation>BIOEMCO (UMR 7618: UPMC − Paris 6, INRA, CNRS, ENS, AgroParisTech, IRD, Paris 12), Campus AgroParisTech, Bâtiment EGER, 78850, Thiverval‐Grignon, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Biron, Philippe" sort="Biron, Philippe" uniqKey="Biron P" first="Philippe" last="Biron">Philippe Biron</name>
<affiliation>
<mods:affiliation>BIOEMCO (UMR 7618: UPMC − Paris 6, INRA, CNRS, ENS, AgroParisTech, IRD, Paris 12), Campus AgroParisTech, Bâtiment EGER, 78850, Thiverval‐Grignon, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Richard, Patricia" sort="Richard, Patricia" uniqKey="Richard P" first="Patricia" last="Richard">Patricia Richard</name>
<affiliation>
<mods:affiliation>BIOEMCO (UMR 7618: UPMC − Paris 6, INRA, CNRS, ENS, AgroParisTech, IRD, Paris 12), Campus AgroParisTech, Bâtiment EGER, 78850, Thiverval‐Grignon, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bariac, Thierry" sort="Bariac, Thierry" uniqKey="Bariac T" first="Thierry" last="Bariac">Thierry Bariac</name>
<affiliation>
<mods:affiliation>BIOEMCO (UMR 7618: UPMC − Paris 6, INRA, CNRS, ENS, AgroParisTech, IRD, Paris 12), Campus AgroParisTech, Bâtiment EGER, 78850, Thiverval‐Grignon, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Seibt, Ulli" sort="Seibt, Ulli" uniqKey="Seibt U" first="Ulli" last="Seibt">Ulli Seibt</name>
<affiliation>
<mods:affiliation>BIOEMCO (UMR 7618: UPMC − Paris 6, INRA, CNRS, ENS, AgroParisTech, IRD, Paris 12), Campus AgroParisTech, Bâtiment EGER, 78850, Thiverval‐Grignon, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Dept of Atmospheric & Oceanic Sciences, UCLA, 405 Hilgard Ave, CA, 90095, Los Angeles, USA</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Rapid Communications in Mass Spectrometry</title>
<title level="j" type="abbrev">Rapid Commun. Mass Spectrom.</title>
<idno type="ISSN">0951-4198</idno>
<idno type="eISSN">1097-0231</idno>
<imprint>
<publisher>John Wiley & Sons, Ltd</publisher>
<pubPlace>Chichester, UK</pubPlace>
<date type="published" when="2012-01-30">2012-01-30</date>
<biblScope unit="volume">26</biblScope>
<biblScope unit="issue">2</biblScope>
<biblScope unit="page" from="141">141</biblScope>
<biblScope unit="page" to="153">153</biblScope>
</imprint>
<idno type="ISSN">0951-4198</idno>
</series>
<idno type="istex">D7122A973DFEED3891B32D2FF757CB58A41F2916</idno>
<idno type="DOI">10.1002/rcm.5317</idno>
<idno type="ArticleID">RCM5317</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0951-4198</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">Concern exists about the suitability of laser spectroscopic instruments for the measurement of the 18O/16O and 2H/1H values of liquid samples other than pure water. It is possible to derive erroneous isotope values due to optical interference by certain organic compounds, including some commonly present in ecosystem‐derived samples such as leaf or soil waters. Here we investigated the reliability of wavelength‐scanned cavity ring‐down spectroscopy (CRDS) 18O/16O and 2H/1H measurements from a range of ecosystem‐derived waters, through comparison with isotope ratio mass spectrometry (IRMS). We tested the residual of the spectral fit Sr calculated by the CRDS instrument as a means to quantify the difference between the CRDS and IRMS δ‐values. There was very good overall agreement between the CRDS and IRMS values for both isotopes, but differences of up to 2.3 ‰ (δ18O values) and 23 ‰ (δ2H values) were observed in leaf water extracts from Citrus limon and Alnus cordata. The Sr statistic successfully detected contaminated samples. Treatment of Citrus leaf water with activated charcoal reduced, but did not eliminate, δ2HCRDS‐ δ2HIRMS linearly for the tested range of 0–20 % charcoal. The effect of distillation temperature on the degree of contamination was large, particularly for δ2H values but variable, resulting in positive, negative or no correlation with distillation temperature. Sr and δCRDS – δIRMS were highly correlated, in particular for δ2H values, across the range of samples that we tested, indicating the potential to use this relationship to correct the δ‐values of contaminated plant water extracts. We also examined the sensitivity of the CRDS system to changes in the temperature of its operating environment. We found that temperature changes ≥4 °C for δ18O values and ≥10 °C for δ2H values resulted in errors larger than the CRDS precision for the respective isotopes and advise the use of such instruments only in sufficiently temperature‐stabilised environments. Copyright © 2011 John Wiley & Sons, Ltd.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<author>
<json:item>
<name>Markus Schmidt</name>
<affiliations>
<json:string>BIOEMCO (UMR 7618: UPMC − Paris 6, INRA, CNRS, ENS, AgroParisTech, IRD, Paris 12), Campus AgroParisTech, Bâtiment EGER, 78850, Thiverval‐Grignon, France</json:string>
<json:string>M. Schmidt, Université Pierre et Marie Curie  Paris 6, BIOEMCO, Campus AgroParisTech Grignon, Bâtiment EGER, 78850 Thiverval‐Grignon, France.E‐mail:</json:string>
<json:string>E-mail: mwtschmidt@gmx.com</json:string>
</affiliations>
</json:item>
<json:item>
<name>Kadmiel Maseyk</name>
<affiliations>
<json:string>BIOEMCO (UMR 7618: UPMC − Paris 6, INRA, CNRS, ENS, AgroParisTech, IRD, Paris 12), Campus AgroParisTech, Bâtiment EGER, 78850, Thiverval‐Grignon, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>Céline Lett</name>
<affiliations>
<json:string>BIOEMCO (UMR 7618: UPMC − Paris 6, INRA, CNRS, ENS, AgroParisTech, IRD, Paris 12), Campus AgroParisTech, Bâtiment EGER, 78850, Thiverval‐Grignon, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>Philippe Biron</name>
<affiliations>
<json:string>BIOEMCO (UMR 7618: UPMC − Paris 6, INRA, CNRS, ENS, AgroParisTech, IRD, Paris 12), Campus AgroParisTech, Bâtiment EGER, 78850, Thiverval‐Grignon, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>Patricia Richard</name>
<affiliations>
<json:string>BIOEMCO (UMR 7618: UPMC − Paris 6, INRA, CNRS, ENS, AgroParisTech, IRD, Paris 12), Campus AgroParisTech, Bâtiment EGER, 78850, Thiverval‐Grignon, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>Thierry Bariac</name>
<affiliations>
<json:string>BIOEMCO (UMR 7618: UPMC − Paris 6, INRA, CNRS, ENS, AgroParisTech, IRD, Paris 12), Campus AgroParisTech, Bâtiment EGER, 78850, Thiverval‐Grignon, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>Ulli Seibt</name>
<affiliations>
<json:string>BIOEMCO (UMR 7618: UPMC − Paris 6, INRA, CNRS, ENS, AgroParisTech, IRD, Paris 12), Campus AgroParisTech, Bâtiment EGER, 78850, Thiverval‐Grignon, France</json:string>
<json:string>Dept of Atmospheric & Oceanic Sciences, UCLA, 405 Hilgard Ave, CA, 90095, Los Angeles, USA</json:string>
</affiliations>
</json:item>
</author>
<articleId>
<json:string>RCM5317</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>Concern exists about the suitability of laser spectroscopic instruments for the measurement of the 18O/16O and 2H/1H values of liquid samples other than pure water. It is possible to derive erroneous isotope values due to optical interference by certain organic compounds, including some commonly present in ecosystem‐derived samples such as leaf or soil waters. Here we investigated the reliability of wavelength‐scanned cavity ring‐down spectroscopy (CRDS) 18O/16O and 2H/1H measurements from a range of ecosystem‐derived waters, through comparison with isotope ratio mass spectrometry (IRMS). We tested the residual of the spectral fit Sr calculated by the CRDS instrument as a means to quantify the difference between the CRDS and IRMS δ‐values. There was very good overall agreement between the CRDS and IRMS values for both isotopes, but differences of up to 2.3 ‰ (δ18O values) and 23 ‰ (δ2H values) were observed in leaf water extracts from Citrus limon and Alnus cordata. The Sr statistic successfully detected contaminated samples. Treatment of Citrus leaf water with activated charcoal reduced, but did not eliminate, δ2HCRDS‐ δ2HIRMS linearly for the tested range of 0–20 % charcoal. The effect of distillation temperature on the degree of contamination was large, particularly for δ2H values but variable, resulting in positive, negative or no correlation with distillation temperature. Sr and δCRDS – δIRMS were highly correlated, in particular for δ2H values, across the range of samples that we tested, indicating the potential to use this relationship to correct the δ‐values of contaminated plant water extracts. We also examined the sensitivity of the CRDS system to changes in the temperature of its operating environment. We found that temperature changes ≥4 °C for δ18O values and ≥10 °C for δ2H values resulted in errors larger than the CRDS precision for the respective isotopes and advise the use of such instruments only in sufficiently temperature‐stabilised environments. Copyright © 2011 John Wiley & Sons, Ltd.</abstract>
<qualityIndicators>
<score>8</score>
<pdfVersion>1.3</pdfVersion>
<pdfPageSize>595.276 x 790.866 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractCharCount>2040</abstractCharCount>
<pdfWordCount>9082</pdfWordCount>
<pdfCharCount>54085</pdfCharCount>
<pdfPageCount>13</pdfPageCount>
<abstractWordCount>311</abstractWordCount>
</qualityIndicators>
<title>Reducing and correcting for contamination of ecosystem water stable isotopes measured by isotope ratio infrared spectroscopy</title>
<refBibs>
<json:item>
<author>
<json:item>
<name>G. Lis</name>
</json:item>
<json:item>
<name>L. I. Wassenaar</name>
</json:item>
<json:item>
<name>M. J. Hendry</name>
</json:item>
</author>
<host>
<volume>80</volume>
<pages>
<first>287</first>
</pages>
<author></author>
<title>Anal. Chem.</title>
</host>
<title>High‐precision laser spectroscopy D/H and 18O/16O measurements of microliter natural water samples</title>
</json:item>
<json:item>
<author>
<json:item>
<name>E. S. F. Berman</name>
</json:item>
<json:item>
<name>M. Gupta</name>
</json:item>
<json:item>
<name>C. Gabrielli</name>
</json:item>
<json:item>
<name>T. Garland</name>
</json:item>
<json:item>
<name>J. J. McDonnell</name>
</json:item>
</author>
<host>
<volume>45</volume>
<pages>
<first>10201</first>
</pages>
<author></author>
<title>Water Resources Res.</title>
</host>
<title>High‐frequency field‐deployable isotope analyzer for hydrological applications</title>
</json:item>
<json:item>
<author>
<json:item>
<name>W. A. Brand</name>
</json:item>
<json:item>
<name>H. Geilmann</name>
</json:item>
<json:item>
<name>E. R. Crosson</name>
</json:item>
<json:item>
<name>C. W. Rella</name>
</json:item>
</author>
<host>
<volume>23</volume>
<pages>
<first>1879</first>
</pages>
<author></author>
<title>Rapid Commun. Mass Spectrom.</title>
</host>
<title>Cavity ring‐down spectroscopy versus high‐temperature conversion isotope ratio mass spectrometry; a case study on δ2H and δ18O of pure water samples and alcohol/water mixtures</title>
</json:item>
<json:item>
<author>
<json:item>
<name>P. Sturm</name>
</json:item>
<json:item>
<name>A. Knohl</name>
</json:item>
</author>
<host>
<volume>3</volume>
<pages>
<first>67</first>
</pages>
<author></author>
<title>Atmos. Meas. Technol.</title>
</host>
<title>Water vapor δ2H and δ18O measurements using off‐axis integrated cavity output spectroscopy</title>
</json:item>
<json:item>
<author>
<json:item>
<name>X. H. Lee</name>
</json:item>
<json:item>
<name>S. Sargent</name>
</json:item>
<json:item>
<name>R. Smith</name>
</json:item>
<json:item>
<name>B. Tanner</name>
</json:item>
</author>
<host>
<volume>22</volume>
<pages>
<first>555</first>
</pages>
<author></author>
<title>J. Atmos. Oceanic Technol.</title>
</host>
<title>In situ measurement of the water vapor O‐18/O‐16 isotope ratio for atmospheric and ecological applications</title>
</json:item>
<json:item>
<author>
<json:item>
<name>P. Gupta</name>
</json:item>
<json:item>
<name>D. Noone</name>
</json:item>
<json:item>
<name>J. Galewsky</name>
</json:item>
<json:item>
<name>C. Sweeney</name>
</json:item>
<json:item>
<name>B. H. Vaughn</name>
</json:item>
</author>
<host>
<volume>23</volume>
<pages>
<first>2534</first>
</pages>
<author></author>
<title>Rapid Commun. Mass Spectrom.</title>
</host>
<title>Demonstration of high‐precision continuous measurements of water vapor isotopologues in laboratory and remote field deployments using wavelength‐scanned cavity ring‐down spectroscopy (WS‐CRDS) technology</title>
</json:item>
<json:item>
<author>
<json:item>
<name>L. Wang</name>
</json:item>
<json:item>
<name>K. K. Caylor</name>
</json:item>
<json:item>
<name>J. C. Villegas</name>
</json:item>
<json:item>
<name>G. A. Barron‐Gafford</name>
</json:item>
<json:item>
<name>D. D. Breshears</name>
</json:item>
<json:item>
<name>T. E. Huxman</name>
</json:item>
</author>
<host>
<volume>37</volume>
<pages>
<first>09401</first>
</pages>
<author></author>
<title>Geophys. Res. Lett.</title>
</host>
<title>Partitioning evapotranspiration across gradients of woody plant cover: Assessment of a stable isotope technique</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M. Schmidt</name>
</json:item>
<json:item>
<name>K. Maseyk</name>
</json:item>
<json:item>
<name>C. Lett</name>
</json:item>
<json:item>
<name>P. Biron</name>
</json:item>
<json:item>
<name>P. Richard</name>
</json:item>
<json:item>
<name>T. Bariac</name>
</json:item>
<json:item>
<name>U. Seibt</name>
</json:item>
</author>
<host>
<volume>24</volume>
<pages>
<first>3553</first>
</pages>
<author></author>
<title>Rapid Commun. Mass Spectrom.</title>
</host>
<title>Concentration effects on laser‐based δ18O and δ2H measurements and implications for the calibration of vapour measurements with liquid standards</title>
</json:item>
<json:item>
<author>
<json:item>
<name>L. R. Johnson</name>
</json:item>
<json:item>
<name>Z. D. Sharp</name>
</json:item>
<json:item>
<name>J. Galewsky</name>
</json:item>
<json:item>
<name>M. Strong</name>
</json:item>
<json:item>
<name>A. D. Van Pelt</name>
</json:item>
<json:item>
<name>F. Dong</name>
</json:item>
<json:item>
<name>D. Noone</name>
</json:item>
</author>
<host>
<volume>25</volume>
<pages>
<first>608</first>
</pages>
<author></author>
<title>Rapid Commun. Mass Spectrom.</title>
</host>
<title>Hydrogen isotope correction for laser instrument measurement bias at low water vapor concentration using conventional isotope analyses: application to measurements from Mauna Loa Observatory, Hawaii</title>
</json:item>
<json:item>
<author>
<json:item>
<name>A. G. West</name>
</json:item>
<json:item>
<name>G. R. Goldsmith</name>
</json:item>
<json:item>
<name>P. D. Brooks</name>
</json:item>
<json:item>
<name>T. E. Dawson</name>
</json:item>
</author>
<host>
<volume>24</volume>
<pages>
<first>1948</first>
</pages>
<author></author>
<title>Rapid Commun. Mass Spectrom.</title>
</host>
<title>Discrepancies between isotope ratio infrared spectroscopy and isotope ratio mass spectrometry for the stable isotope analysis of plant and soil waters</title>
</json:item>
<json:item>
<author>
<json:item>
<name>L. A. Chesson</name>
</json:item>
<json:item>
<name>G. J. Bowen</name>
</json:item>
<json:item>
<name>J. R. Ehleringer</name>
</json:item>
</author>
<host>
<volume>24</volume>
<pages>
<first>3205</first>
</pages>
<author></author>
<title>Rapid Commun. Mass Spectrom.</title>
</host>
<title>Analysis of the hydrogen and oxygen stable isotope ratios of beverage waters without prior water extraction using isotope ratio infrared spectroscopy</title>
</json:item>
<json:item>
<author>
<json:item>
<name>N. M. Schultz</name>
</json:item>
<json:item>
<name>T. J. Griffis</name>
</json:item>
<json:item>
<name>X. Lee</name>
</json:item>
<json:item>
<name>J. M. Baker</name>
</json:item>
</author>
<host>
<volume>25</volume>
<pages>
<first>3360</first>
</pages>
<author></author>
<title>Rapid Commun. Mass Spectrom.</title>
</host>
<title>Identification and correction of spectral contamination in 2H/1H and 18O/16O measured in leaf, stem, and soil water</title>
</json:item>
<json:item>
<author>
<json:item>
<name>A. G. West</name>
</json:item>
<json:item>
<name>G. R. Goldsmith</name>
</json:item>
<json:item>
<name>I. Matimati</name>
</json:item>
<json:item>
<name>T. E. Dawson</name>
</json:item>
</author>
<host>
<volume>25</volume>
<pages>
<first>2268</first>
</pages>
<author></author>
<title>Rapid Commun. Mass Spectrom.</title>
</host>
<title>Spectral analysis software improves confidence in plant and soil water stable isotope analyses performed by isotope ratio infrared spectroscopy (IRIS)</title>
</json:item>
<json:item>
<author>
<json:item>
<name>W. A. Brand</name>
</json:item>
</author>
<host>
<volume>24</volume>
<pages>
<first>2687</first>
</pages>
<author></author>
<title>Rapid Commun. Mass Spectrom.</title>
</host>
<title>Comments on “Discrepancies between isotope ratio infrared spectroscopy and isotope ratio mass spectrometry for the stable isotope analysis of plant and soil waters”</title>
</json:item>
<json:item>
<author>
<json:item>
<name>L. Zhao</name>
</json:item>
<json:item>
<name>H. Xiao</name>
</json:item>
<json:item>
<name>J. Zhou</name>
</json:item>
<json:item>
<name>L. Wang</name>
</json:item>
<json:item>
<name>G. Cheng</name>
</json:item>
<json:item>
<name>M. Zhou</name>
</json:item>
<json:item>
<name>L. Yin</name>
</json:item>
<json:item>
<name>M. F. McCabe</name>
</json:item>
</author>
<host>
<volume>25</volume>
<pages>
<first>3071</first>
</pages>
<author></author>
<title>Rapid Commun. Mass Spectrom.</title>
</host>
<title>Detailed assessment of isotope ratio infrared spectroscopy and isotope ratio mass spectrometry for the stable isotope analysis of plant and soil waters</title>
</json:item>
<json:item>
<author>
<json:item>
<name>E. R. Crosson</name>
</json:item>
</author>
<host>
<volume>92</volume>
<pages>
<first>403</first>
</pages>
<author></author>
<title>Appl. Phys. B‐Laser Opt.</title>
</host>
<title>A cavity ring‐down analyzer for measuring atmospheric levels of methane, carbon dioxide, and water vapor</title>
</json:item>
<json:item>
<author>
<json:item>
<name>L. Araguás‐Araguás</name>
</json:item>
<json:item>
<name>K. Rozanski</name>
</json:item>
<json:item>
<name>R. Gonfiantini</name>
</json:item>
<json:item>
<name>D. Louvat</name>
</json:item>
</author>
<host>
<volume>168</volume>
<pages>
<first>159</first>
</pages>
<author></author>
<title>J. Hydrol.</title>
</host>
<title>Isotope effects accompanying vacuum extraction of soil water for stable isotope analyses</title>
</json:item>
<json:item>
<author>
<json:item>
<name>A. G. West</name>
</json:item>
<json:item>
<name>S. J. Patrickson</name>
</json:item>
<json:item>
<name>J. R. Ehleringer</name>
</json:item>
</author>
<host>
<volume>20</volume>
<pages>
<first>1317</first>
</pages>
<author></author>
<title>Rapid Commun. Mass Spectrom.</title>
</host>
<title>Water extraction times for plant and soil materials used in stable isotope analysis</title>
</json:item>
<json:item>
<author>
<json:item>
<name>L. I. Peters</name>
</json:item>
<json:item>
<name>D. Yakir</name>
</json:item>
</author>
<host>
<volume>22</volume>
<pages>
<first>2929</first>
</pages>
<author></author>
<title>Rapid Commun. Mass Spectrom.</title>
</host>
<title>A direct and rapid leaf water extraction method for isotopic analysis</title>
</json:item>
<json:item>
<author>
<json:item>
<name>T. Bariac</name>
</json:item>
<json:item>
<name>J. Gonzalez‐Dunia</name>
</json:item>
<json:item>
<name>F. Tardieu</name>
</json:item>
<json:item>
<name>D. Tessier</name>
</json:item>
<json:item>
<name>A. Mariotti</name>
</json:item>
</author>
<host>
<volume>115</volume>
<pages>
<first>307</first>
</pages>
<author></author>
<title>Chem. Geol.</title>
</host>
<title>Spatial variation of the isotopic composition of water (18O, 2H) in organs of aerophytic plants: 1. Assessment under laboratory conditions</title>
</json:item>
<json:item>
<author>
<json:item>
<name>T. Bariac</name>
</json:item>
<json:item>
<name>J. Gonzalez‐Dunia</name>
</json:item>
<json:item>
<name>N. Katerji</name>
</json:item>
<json:item>
<name>O. Béthenod</name>
</json:item>
<json:item>
<name>J. M. Bertolini</name>
</json:item>
<json:item>
<name>A. Mariotti</name>
</json:item>
</author>
<host>
<volume>115</volume>
<pages>
<first>317</first>
</pages>
<author></author>
<title>Chem. Geol.</title>
</host>
<title>Spatial variation of the isotopic composition of water (18O, 2H) in the soil‐plant‐atmosphere system, 2. Assessment under field conditions</title>
</json:item>
<json:item>
<author>
<json:item>
<name>X.‐F. Wang</name>
</json:item>
<json:item>
<name>D. Yakir</name>
</json:item>
</author>
<host>
<volume>18</volume>
<pages>
<first>1377</first>
</pages>
<author></author>
<title>Plant Cell Environ.</title>
</host>
<title>Temporal and spatial variations in the oxygen‐18 content of leaf water in different plant species</title>
</json:item>
<json:item>
<host>
<author></author>
<title>G. Hsiao, Picarro, Inc., Santa Clara, CA, USA. Available: http://www.picarro.com/community/picarro_community/checking_pre_chemcorrect_water_isotope_data_for_interference.</title>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>T. Thorsen</name>
</json:item>
<json:item>
<name>T. Shriver</name>
</json:item>
<json:item>
<name>N. Racine</name>
</json:item>
<json:item>
<name>B. A. Richman</name>
</json:item>
<json:item>
<name>D. A. Schoeller</name>
</json:item>
</author>
<host>
<volume>25</volume>
<pages>
<first>3</first>
</pages>
<author></author>
<title>Rapid Commun. Mass Spectrom.</title>
</host>
<title>Doubly labeled water analysis using cavity ring‐down spectroscopy</title>
</json:item>
<json:item>
<host>
<author></author>
<title>GraphPad Software, Inc., La Jolla, CA, USA. Available: http://www.graphpad.com/quickcalcs/Grubbs1.cfm</title>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>Ü. Niinemets</name>
</json:item>
<json:item>
<name>U. Kuhn</name>
</json:item>
<json:item>
<name>P. C. Harley</name>
</json:item>
<json:item>
<name>M. Staudt</name>
</json:item>
<json:item>
<name>A. Arneth</name>
</json:item>
<json:item>
<name>A. Cescatti</name>
</json:item>
<json:item>
<name>P. Ciccioli</name>
</json:item>
<json:item>
<name>L. Copolovici</name>
</json:item>
<json:item>
<name>C. Geron</name>
</json:item>
<json:item>
<name>A. Guenther</name>
</json:item>
<json:item>
<name>J. Kesselmeier</name>
</json:item>
<json:item>
<name>M. T. Lerdau</name>
</json:item>
<json:item>
<name>R. K. Monson</name>
</json:item>
<json:item>
<name>J. Peñuelas</name>
</json:item>
</author>
<host>
<volume>8</volume>
<pages>
<first>2209</first>
</pages>
<author></author>
<title>Biogeosciences</title>
</host>
<title>Estimation of isoprenoid emission factors from enclosure studies: measurements, data processing, quality and standardized measurement protocols</title>
</json:item>
<json:item>
<author>
<json:item>
<name>G. R. Walker</name>
</json:item>
<json:item>
<name>P. H. Woods</name>
</json:item>
<json:item>
<name>G. B. Allison</name>
</json:item>
</author>
<host>
<volume>111</volume>
<pages>
<first>297</first>
</pages>
<author></author>
<title>Chem. Geol.</title>
</host>
<title>Interlaboratory comparison of methods to determine the stable isotope composition of soil water</title>
</json:item>
</refBibs>
<genre>
<json:string>article</json:string>
</genre>
<host>
<volume>26</volume>
<publisherId>
<json:string>RCM</json:string>
</publisherId>
<pages>
<total>13</total>
<last>153</last>
<first>141</first>
</pages>
<issn>
<json:string>0951-4198</json:string>
</issn>
<issue>2</issue>
<subject>
<json:item>
<value>Research Article</value>
</json:item>
</subject>
<genre>
<json:string>journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<eissn>
<json:string>1097-0231</json:string>
</eissn>
<title>Rapid Communications in Mass Spectrometry</title>
<doi>
<json:string>10.1002/(ISSN)1097-0231</json:string>
</doi>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>spectroscopy</json:string>
<json:string>chemistry, analytical</json:string>
<json:string>biochemical research methods</json:string>
</wos>
<scienceMetrix>
<json:string>natural sciences</json:string>
<json:string>chemistry</json:string>
<json:string>analytical chemistry</json:string>
</scienceMetrix>
</categories>
<publicationDate>2012</publicationDate>
<copyrightDate>2012</copyrightDate>
<doi>
<json:string>10.1002/rcm.5317</json:string>
</doi>
<id>D7122A973DFEED3891B32D2FF757CB58A41F2916</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/D7122A973DFEED3891B32D2FF757CB58A41F2916/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/D7122A973DFEED3891B32D2FF757CB58A41F2916/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/D7122A973DFEED3891B32D2FF757CB58A41F2916/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Reducing and correcting for contamination of ecosystem water stable isotopes measured by isotope ratio infrared spectroscopy</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>John Wiley & Sons, Ltd</publisher>
<pubPlace>Chichester, UK</pubPlace>
<availability>
<p>Copyright © 2012 John Wiley & Sons, Ltd.Copyright © 2011 John Wiley & Sons, Ltd.</p>
</availability>
<date>2011-11-21</date>
</publicationStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Reducing and correcting for contamination of ecosystem water stable isotopes measured by isotope ratio infrared spectroscopy</title>
<author xml:id="author-1">
<persName>
<forename type="first">Markus</forename>
<surname>Schmidt</surname>
</persName>
<email>mwtschmidt@gmx.com</email>
<affiliation>BIOEMCO (UMR 7618: UPMC − Paris 6, INRA, CNRS, ENS, AgroParisTech, IRD, Paris 12), Campus AgroParisTech, Bâtiment EGER, 78850, Thiverval‐Grignon, France</affiliation>
<affiliation>M. Schmidt, Université Pierre et Marie Curie  Paris 6, BIOEMCO, Campus AgroParisTech Grignon, Bâtiment EGER, 78850 Thiverval‐Grignon, France.E‐mail:</affiliation>
</author>
<author xml:id="author-2">
<persName>
<forename type="first">Kadmiel</forename>
<surname>Maseyk</surname>
</persName>
<affiliation>BIOEMCO (UMR 7618: UPMC − Paris 6, INRA, CNRS, ENS, AgroParisTech, IRD, Paris 12), Campus AgroParisTech, Bâtiment EGER, 78850, Thiverval‐Grignon, France</affiliation>
</author>
<author xml:id="author-3">
<persName>
<forename type="first">Céline</forename>
<surname>Lett</surname>
</persName>
<affiliation>BIOEMCO (UMR 7618: UPMC − Paris 6, INRA, CNRS, ENS, AgroParisTech, IRD, Paris 12), Campus AgroParisTech, Bâtiment EGER, 78850, Thiverval‐Grignon, France</affiliation>
</author>
<author xml:id="author-4">
<persName>
<forename type="first">Philippe</forename>
<surname>Biron</surname>
</persName>
<affiliation>BIOEMCO (UMR 7618: UPMC − Paris 6, INRA, CNRS, ENS, AgroParisTech, IRD, Paris 12), Campus AgroParisTech, Bâtiment EGER, 78850, Thiverval‐Grignon, France</affiliation>
</author>
<author xml:id="author-5">
<persName>
<forename type="first">Patricia</forename>
<surname>Richard</surname>
</persName>
<affiliation>BIOEMCO (UMR 7618: UPMC − Paris 6, INRA, CNRS, ENS, AgroParisTech, IRD, Paris 12), Campus AgroParisTech, Bâtiment EGER, 78850, Thiverval‐Grignon, France</affiliation>
</author>
<author xml:id="author-6">
<persName>
<forename type="first">Thierry</forename>
<surname>Bariac</surname>
</persName>
<affiliation>BIOEMCO (UMR 7618: UPMC − Paris 6, INRA, CNRS, ENS, AgroParisTech, IRD, Paris 12), Campus AgroParisTech, Bâtiment EGER, 78850, Thiverval‐Grignon, France</affiliation>
</author>
<author xml:id="author-7">
<persName>
<forename type="first">Ulli</forename>
<surname>Seibt</surname>
</persName>
<affiliation>BIOEMCO (UMR 7618: UPMC − Paris 6, INRA, CNRS, ENS, AgroParisTech, IRD, Paris 12), Campus AgroParisTech, Bâtiment EGER, 78850, Thiverval‐Grignon, France</affiliation>
<affiliation>Dept of Atmospheric & Oceanic Sciences, UCLA, 405 Hilgard Ave, CA, 90095, Los Angeles, USA</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Rapid Communications in Mass Spectrometry</title>
<title level="j" type="abbrev">Rapid Commun. Mass Spectrom.</title>
<idno type="pISSN">0951-4198</idno>
<idno type="eISSN">1097-0231</idno>
<idno type="DOI">10.1002/(ISSN)1097-0231</idno>
<imprint>
<publisher>John Wiley & Sons, Ltd</publisher>
<pubPlace>Chichester, UK</pubPlace>
<date type="published" when="2012-01-30"></date>
<biblScope unit="volume">26</biblScope>
<biblScope unit="issue">2</biblScope>
<biblScope unit="page" from="141">141</biblScope>
<biblScope unit="page" to="153">153</biblScope>
</imprint>
</monogr>
<idno type="istex">D7122A973DFEED3891B32D2FF757CB58A41F2916</idno>
<idno type="DOI">10.1002/rcm.5317</idno>
<idno type="ArticleID">RCM5317</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2011-11-21</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract>
<p>Concern exists about the suitability of laser spectroscopic instruments for the measurement of the 18O/16O and 2H/1H values of liquid samples other than pure water. It is possible to derive erroneous isotope values due to optical interference by certain organic compounds, including some commonly present in ecosystem‐derived samples such as leaf or soil waters. Here we investigated the reliability of wavelength‐scanned cavity ring‐down spectroscopy (CRDS) 18O/16O and 2H/1H measurements from a range of ecosystem‐derived waters, through comparison with isotope ratio mass spectrometry (IRMS). We tested the residual of the spectral fit Sr calculated by the CRDS instrument as a means to quantify the difference between the CRDS and IRMS δ‐values. There was very good overall agreement between the CRDS and IRMS values for both isotopes, but differences of up to 2.3 ‰ (δ18O values) and 23 ‰ (δ2H values) were observed in leaf water extracts from Citrus limon and Alnus cordata. The Sr statistic successfully detected contaminated samples. Treatment of Citrus leaf water with activated charcoal reduced, but did not eliminate, δ2HCRDS‐ δ2HIRMS linearly for the tested range of 0–20 % charcoal. The effect of distillation temperature on the degree of contamination was large, particularly for δ2H values but variable, resulting in positive, negative or no correlation with distillation temperature. Sr and δCRDS – δIRMS were highly correlated, in particular for δ2H values, across the range of samples that we tested, indicating the potential to use this relationship to correct the δ‐values of contaminated plant water extracts. We also examined the sensitivity of the CRDS system to changes in the temperature of its operating environment. We found that temperature changes ≥4 °C for δ18O values and ≥10 °C for δ2H values resulted in errors larger than the CRDS precision for the respective isotopes and advise the use of such instruments only in sufficiently temperature‐stabilised environments. Copyright © 2011 John Wiley & Sons, Ltd.</p>
</abstract>
<textClass>
<keywords scheme="Journal Subject">
<list>
<head>article-category</head>
<item>
<term>Research Article</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2011-07-22">Received</change>
<change when="2011-10-27">Registration</change>
<change when="2011-11-21">Created</change>
<change when="2012-01-30">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/D7122A973DFEED3891B32D2FF757CB58A41F2916/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component type="serialArticle" version="2.0" xml:lang="en" xml:id="rcm5317">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>John Wiley & Sons, Ltd</publisherName>
<publisherLoc>Chichester, UK</publisherLoc>
</publisherInfo>
<doi>10.1002/(ISSN)1097-0231</doi>
<issn type="print">0951-4198</issn>
<issn type="electronic">1097-0231</issn>
<idGroup>
<id type="product" value="RCM"></id>
</idGroup>
<titleGroup>
<title type="main" sort="RAPID COMMUNICATIONS IN MASS SPECTROMETRY">Rapid Communications in Mass Spectrometry</title>
<title type="short">Rapid Commun. Mass Spectrom.</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="20">
<doi>10.1002/rcm.v26.2</doi>
<copyright ownership="publisher">Copyright © 2012 John Wiley & Sons, Ltd.</copyright>
<numberingGroup>
<numbering type="journalVolume" number="26">26</numbering>
<numbering type="journalIssue">2</numbering>
</numberingGroup>
<coverDate startDate="2012-01-30">30 January 2012</coverDate>
</publicationMeta>
<publicationMeta level="unit" position="6" type="article" status="forIssue">
<doi>10.1002/rcm.5317</doi>
<idGroup>
<id type="unit" value="RCM5317"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="13"></count>
</countGroup>
<titleGroup>
<title type="articleCategory">Research Article</title>
<title type="tocHeading1">Research Articles</title>
</titleGroup>
<copyright ownership="publisher">Copyright © 2011 John Wiley & Sons, Ltd.</copyright>
<eventGroup>
<event type="manuscriptReceived" date="2011-07-22"></event>
<event type="manuscriptRevised" date="2011-10-26"></event>
<event type="manuscriptAccepted" date="2011-10-27"></event>
<event type="xmlCreated" agent="SPi Global" date="2011-11-21"></event>
<event type="firstOnline" date="2011-12-15"></event>
<event type="publishedOnlineFinalForm" date="2011-12-15"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-02-08"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.3.4 mode:FullText" date="2015-02-24"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">141</numbering>
<numbering type="pageLast">153</numbering>
</numberingGroup>
<correspondenceTo>
<lineatedText>
<line>M. Schmidt, Université Pierre et Marie Curie 
<i></i>
 Paris 6, BIOEMCO, Campus AgroParisTech Grignon, Bâtiment EGER, 78850 Thiverval‐Grignon, France.</line>
<line>E‐mail:
<email>mwtschmidt@gmx.com</email>
</line>
</lineatedText>
</correspondenceTo>
<linkGroup>
<link type="toTypesetVersion" href="file:RCM.RCM5317.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<titleGroup>
<title type="main">Reducing and correcting for contamination of ecosystem water stable isotopes measured by isotope ratio infrared spectroscopy</title>
<title type="short">Organic contaminants in water samples affecting δ
<sup>18</sup>
O and δ
<sup>2</sup>
H in CRDS</title>
<title type="shortAuthors">M. Schmidt
<i>et al.</i>
</title>
</titleGroup>
<creators>
<creator creatorRole="author" xml:id="rcm5317-cr-0001" affiliationRef="#rcm5317-aff-0001" corresponding="yes">
<personName>
<givenNames>Markus</givenNames>
<familyName>Schmidt</familyName>
</personName>
<contactDetails>
<email>mwtschmidt@gmx.com</email>
</contactDetails>
</creator>
<creator creatorRole="author" xml:id="rcm5317-cr-0002" affiliationRef="#rcm5317-aff-0001">
<personName>
<givenNames>Kadmiel</givenNames>
<familyName>Maseyk</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="rcm5317-cr-0003" affiliationRef="#rcm5317-aff-0001">
<personName>
<givenNames>Céline</givenNames>
<familyName>Lett</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="rcm5317-cr-0004" affiliationRef="#rcm5317-aff-0001">
<personName>
<givenNames>Philippe</givenNames>
<familyName>Biron</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="rcm5317-cr-0005" affiliationRef="#rcm5317-aff-0001">
<personName>
<givenNames>Patricia</givenNames>
<familyName>Richard</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="rcm5317-cr-0006" affiliationRef="#rcm5317-aff-0001">
<personName>
<givenNames>Thierry</givenNames>
<familyName>Bariac</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="rcm5317-cr-0007" affiliationRef="#rcm5317-aff-0001 #rcm5317-aff-0002">
<personName>
<givenNames>Ulli</givenNames>
<familyName>Seibt</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="rcm5317-aff-0001" countryCode="FR" type="organization">
<orgDiv>BIOEMCO (UMR 7618: UPMC − Paris 6, INRA, CNRS, ENS, AgroParisTech, IRD, Paris 12)</orgDiv>
<orgName>Campus AgroParisTech, Bâtiment EGER</orgName>
<address>
<postCode>78850</postCode>
<city>Thiverval‐Grignon</city>
<country>France</country>
</address>
</affiliation>
<affiliation xml:id="rcm5317-aff-0002" countryCode="US" type="organization">
<orgDiv>Dept of Atmospheric & Oceanic Sciences</orgDiv>
<orgName>UCLA</orgName>
<address>
<street>405 Hilgard Ave</street>
<city>Los Angeles</city>
<countryPart>CA</countryPart>
<postCode>90095</postCode>
<country>USA</country>
</address>
</affiliation>
</affiliationGroup>
<abstractGroup>
<abstract type="main">
<p>Concern exists about the suitability of laser spectroscopic instruments for the measurement of the
<sup>18</sup>
O/
<sup>16</sup>
O and
<sup>2</sup>
H/
<sup>1</sup>
H values of liquid samples other than pure water. It is possible to derive erroneous isotope values due to optical interference by certain organic compounds, including some commonly present in ecosystem‐derived samples such as leaf or soil waters. Here we investigated the reliability of wavelength‐scanned cavity ring‐down spectroscopy (CRDS)
<sup>18</sup>
O/
<sup>16</sup>
O and
<sup>2</sup>
H/
<sup>1</sup>
H measurements from a range of ecosystem‐derived waters, through comparison with isotope ratio mass spectrometry (IRMS). We tested the residual of the spectral fit S
<sub>r</sub>
calculated by the CRDS instrument as a means to quantify the difference between the CRDS and IRMS δ‐values. There was very good overall agreement between the CRDS and IRMS values for both isotopes, but differences of up to 2.3 ‰ (δ
<sup>18</sup>
O values) and 23 ‰ (δ
<sup>2</sup>
H values) were observed in leaf water extracts from
<i>Citrus limon</i>
and
<i>Alnus cordata</i>
. The S
<sub>r</sub>
statistic successfully detected contaminated samples. Treatment of
<i>Citrus</i>
leaf water with activated charcoal reduced, but did not eliminate, δ
<sup>2</sup>
H
<sub>CRDS</sub>
‐ δ
<sup>2</sup>
H
<sub>IRMS</sub>
linearly for the tested range of 0–20 % charcoal. The effect of distillation temperature on the degree of contamination was large, particularly for δ
<sup>2</sup>
H values but variable, resulting in positive, negative or no correlation with distillation temperature. S
<sub>r</sub>
and δ
<sub>CRDS</sub>
– δ
<sub>IRMS</sub>
were highly correlated, in particular for δ
<sup>2</sup>
H values, across the range of samples that we tested, indicating the potential to use this relationship to correct the δ‐values of contaminated plant water extracts. We also examined the sensitivity of the CRDS system to changes in the temperature of its operating environment. We found that temperature changes ≥4 °C for δ
<sup>18</sup>
O values and ≥10 °C for δ
<sup>2</sup>
H values resulted in errors larger than the CRDS precision for the respective isotopes and advise the use of such instruments only in sufficiently temperature‐stabilised environments. Copyright © 2011 John Wiley & Sons, Ltd.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Reducing and correcting for contamination of ecosystem water stable isotopes measured by isotope ratio infrared spectroscopy</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>Organic contaminants in water samples affecting δ18O and δ2H in CRDS</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Reducing and correcting for contamination of ecosystem water stable isotopes measured by isotope ratio infrared spectroscopy</title>
</titleInfo>
<name type="personal">
<namePart type="given">Markus</namePart>
<namePart type="family">Schmidt</namePart>
<affiliation>BIOEMCO (UMR 7618: UPMC − Paris 6, INRA, CNRS, ENS, AgroParisTech, IRD, Paris 12), Campus AgroParisTech, Bâtiment EGER, 78850, Thiverval‐Grignon, France</affiliation>
<affiliation>M. Schmidt, Université Pierre et Marie Curie  Paris 6, BIOEMCO, Campus AgroParisTech Grignon, Bâtiment EGER, 78850 Thiverval‐Grignon, France.E‐mail:</affiliation>
<affiliation>E-mail: mwtschmidt@gmx.com</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kadmiel</namePart>
<namePart type="family">Maseyk</namePart>
<affiliation>BIOEMCO (UMR 7618: UPMC − Paris 6, INRA, CNRS, ENS, AgroParisTech, IRD, Paris 12), Campus AgroParisTech, Bâtiment EGER, 78850, Thiverval‐Grignon, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Céline</namePart>
<namePart type="family">Lett</namePart>
<affiliation>BIOEMCO (UMR 7618: UPMC − Paris 6, INRA, CNRS, ENS, AgroParisTech, IRD, Paris 12), Campus AgroParisTech, Bâtiment EGER, 78850, Thiverval‐Grignon, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Philippe</namePart>
<namePart type="family">Biron</namePart>
<affiliation>BIOEMCO (UMR 7618: UPMC − Paris 6, INRA, CNRS, ENS, AgroParisTech, IRD, Paris 12), Campus AgroParisTech, Bâtiment EGER, 78850, Thiverval‐Grignon, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Patricia</namePart>
<namePart type="family">Richard</namePart>
<affiliation>BIOEMCO (UMR 7618: UPMC − Paris 6, INRA, CNRS, ENS, AgroParisTech, IRD, Paris 12), Campus AgroParisTech, Bâtiment EGER, 78850, Thiverval‐Grignon, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thierry</namePart>
<namePart type="family">Bariac</namePart>
<affiliation>BIOEMCO (UMR 7618: UPMC − Paris 6, INRA, CNRS, ENS, AgroParisTech, IRD, Paris 12), Campus AgroParisTech, Bâtiment EGER, 78850, Thiverval‐Grignon, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ulli</namePart>
<namePart type="family">Seibt</namePart>
<affiliation>BIOEMCO (UMR 7618: UPMC − Paris 6, INRA, CNRS, ENS, AgroParisTech, IRD, Paris 12), Campus AgroParisTech, Bâtiment EGER, 78850, Thiverval‐Grignon, France</affiliation>
<affiliation>Dept of Atmospheric & Oceanic Sciences, UCLA, 405 Hilgard Ave, CA, 90095, Los Angeles, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article"></genre>
<originInfo>
<publisher>John Wiley & Sons, Ltd</publisher>
<place>
<placeTerm type="text">Chichester, UK</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2012-01-30</dateIssued>
<dateCreated encoding="w3cdtf">2011-11-21</dateCreated>
<dateCaptured encoding="w3cdtf">2011-07-22</dateCaptured>
<dateValid encoding="w3cdtf">2011-10-27</dateValid>
<copyrightDate encoding="w3cdtf">2012</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
</physicalDescription>
<abstract>Concern exists about the suitability of laser spectroscopic instruments for the measurement of the 18O/16O and 2H/1H values of liquid samples other than pure water. It is possible to derive erroneous isotope values due to optical interference by certain organic compounds, including some commonly present in ecosystem‐derived samples such as leaf or soil waters. Here we investigated the reliability of wavelength‐scanned cavity ring‐down spectroscopy (CRDS) 18O/16O and 2H/1H measurements from a range of ecosystem‐derived waters, through comparison with isotope ratio mass spectrometry (IRMS). We tested the residual of the spectral fit Sr calculated by the CRDS instrument as a means to quantify the difference between the CRDS and IRMS δ‐values. There was very good overall agreement between the CRDS and IRMS values for both isotopes, but differences of up to 2.3 ‰ (δ18O values) and 23 ‰ (δ2H values) were observed in leaf water extracts from Citrus limon and Alnus cordata. The Sr statistic successfully detected contaminated samples. Treatment of Citrus leaf water with activated charcoal reduced, but did not eliminate, δ2HCRDS‐ δ2HIRMS linearly for the tested range of 0–20 % charcoal. The effect of distillation temperature on the degree of contamination was large, particularly for δ2H values but variable, resulting in positive, negative or no correlation with distillation temperature. Sr and δCRDS – δIRMS were highly correlated, in particular for δ2H values, across the range of samples that we tested, indicating the potential to use this relationship to correct the δ‐values of contaminated plant water extracts. We also examined the sensitivity of the CRDS system to changes in the temperature of its operating environment. We found that temperature changes ≥4 °C for δ18O values and ≥10 °C for δ2H values resulted in errors larger than the CRDS precision for the respective isotopes and advise the use of such instruments only in sufficiently temperature‐stabilised environments. Copyright © 2011 John Wiley & Sons, Ltd.</abstract>
<relatedItem type="host">
<titleInfo>
<title>Rapid Communications in Mass Spectrometry</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>Rapid Commun. Mass Spectrom.</title>
</titleInfo>
<genre type="journal">journal</genre>
<subject>
<genre>article-category</genre>
<topic>Research Article</topic>
</subject>
<identifier type="ISSN">0951-4198</identifier>
<identifier type="eISSN">1097-0231</identifier>
<identifier type="DOI">10.1002/(ISSN)1097-0231</identifier>
<identifier type="PublisherID">RCM</identifier>
<part>
<date>2012</date>
<detail type="volume">
<caption>vol.</caption>
<number>26</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>2</number>
</detail>
<extent unit="pages">
<start>141</start>
<end>153</end>
<total>13</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">D7122A973DFEED3891B32D2FF757CB58A41F2916</identifier>
<identifier type="DOI">10.1002/rcm.5317</identifier>
<identifier type="ArticleID">RCM5317</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Copyright © 2012 John Wiley & Sons, Ltd.Copyright © 2011 John Wiley & Sons, Ltd.</accessCondition>
<recordInfo>
<recordContentSource>WILEY</recordContentSource>
<recordOrigin>John Wiley & Sons, Ltd</recordOrigin>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Bois/explor/CheneBelgiqueV2/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000356 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000356 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Bois
   |area=    CheneBelgiqueV2
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:D7122A973DFEED3891B32D2FF757CB58A41F2916
   |texte=   Reducing and correcting for contamination of ecosystem water stable isotopes measured by isotope ratio infrared spectroscopy
}}

Wicri

This area was generated with Dilib version V0.6.27.
Data generation: Wed Mar 22 20:06:11 2017. Site generation: Wed Mar 6 16:09:04 2024