Serveur d'exploration sur le chêne en Belgique (avant curation)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
***** Acces problem to record *****\

Identifieur interne : 000099 ( Pmc/Corpus ); précédent : 0000989; suivant : 0000A00 ***** probable Xml problem with record *****

Links to Exploration step


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Evolution of
<italic>CDC42</italic>
, a putative virulence factor triggering meristematic growth in black yeasts</title>
<author>
<name sortKey="Deng, S" sort="Deng, S" uniqKey="Deng S" first="S." last="Deng">S. Deng</name>
<affiliation>
<nlm:aff id="aff1">
<italic>Department of Dermatology, First Affiliated Hospital, Xinjiang Medical University, Urumqi, Xinjiang, China</italic>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2">
<italic>CBS Fungal Biodiversity Centre, Utrecht, The Netherlands</italic>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Van Den Ende, A H G Gerrits" sort="Van Den Ende, A H G Gerrits" uniqKey="Van Den Ende A" first="A. H. G. Gerrits" last="Van Den Ende">A. H. G. Gerrits Van Den Ende</name>
<affiliation>
<nlm:aff id="aff2">
<italic>CBS Fungal Biodiversity Centre, Utrecht, The Netherlands</italic>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ram, A F J" sort="Ram, A F J" uniqKey="Ram A" first="A. F. J." last="Ram">A. F. J. Ram</name>
<affiliation>
<nlm:aff id="aff3">
<italic>Institute of Biology, Department of Molecular Microbiology, Kluyver Center for Genomics of Industrial Fermentation, Leiden, The Netherlands</italic>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Arentshorst, M" sort="Arentshorst, M" uniqKey="Arentshorst M" first="M." last="Arentshorst">M. Arentshorst</name>
<affiliation>
<nlm:aff id="aff3">
<italic>Institute of Biology, Department of Molecular Microbiology, Kluyver Center for Genomics of Industrial Fermentation, Leiden, The Netherlands</italic>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Gr Ser, Y" sort="Gr Ser, Y" uniqKey="Gr Ser Y" first="Y." last="Gr Ser">Y. Gr Ser</name>
<affiliation>
<nlm:aff id="aff5">
<italic>Institut für Mikrobiologie und Hygiene, Department of Parasitology (Charité), Humboldt University, Berlin, Germany</italic>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Hu, H" sort="Hu, H" uniqKey="Hu H" first="H." last="Hu">H. Hu</name>
<affiliation>
<nlm:aff id="aff6">
<italic>Xinjiang Medical University, Urumqi, Xinjiang, China</italic>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="De Hoog, G S" sort="De Hoog, G S" uniqKey="De Hoog G" first="G. S." last="De Hoog">G. S. De Hoog</name>
<affiliation>
<nlm:aff id="aff2">
<italic>CBS Fungal Biodiversity Centre, Utrecht, The Netherlands</italic>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff4">
<italic>Institute of Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands</italic>
</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">19287534</idno>
<idno type="pmc">2610298</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2610298</idno>
<idno type="RBID">PMC:2610298</idno>
<idno type="doi">10.3114/sim.2008.61.12</idno>
<date when="2008">2008</date>
<idno type="wicri:Area/Pmc/Corpus">000099</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000099</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Evolution of
<italic>CDC42</italic>
, a putative virulence factor triggering meristematic growth in black yeasts</title>
<author>
<name sortKey="Deng, S" sort="Deng, S" uniqKey="Deng S" first="S." last="Deng">S. Deng</name>
<affiliation>
<nlm:aff id="aff1">
<italic>Department of Dermatology, First Affiliated Hospital, Xinjiang Medical University, Urumqi, Xinjiang, China</italic>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2">
<italic>CBS Fungal Biodiversity Centre, Utrecht, The Netherlands</italic>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Van Den Ende, A H G Gerrits" sort="Van Den Ende, A H G Gerrits" uniqKey="Van Den Ende A" first="A. H. G. Gerrits" last="Van Den Ende">A. H. G. Gerrits Van Den Ende</name>
<affiliation>
<nlm:aff id="aff2">
<italic>CBS Fungal Biodiversity Centre, Utrecht, The Netherlands</italic>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ram, A F J" sort="Ram, A F J" uniqKey="Ram A" first="A. F. J." last="Ram">A. F. J. Ram</name>
<affiliation>
<nlm:aff id="aff3">
<italic>Institute of Biology, Department of Molecular Microbiology, Kluyver Center for Genomics of Industrial Fermentation, Leiden, The Netherlands</italic>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Arentshorst, M" sort="Arentshorst, M" uniqKey="Arentshorst M" first="M." last="Arentshorst">M. Arentshorst</name>
<affiliation>
<nlm:aff id="aff3">
<italic>Institute of Biology, Department of Molecular Microbiology, Kluyver Center for Genomics of Industrial Fermentation, Leiden, The Netherlands</italic>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Gr Ser, Y" sort="Gr Ser, Y" uniqKey="Gr Ser Y" first="Y." last="Gr Ser">Y. Gr Ser</name>
<affiliation>
<nlm:aff id="aff5">
<italic>Institut für Mikrobiologie und Hygiene, Department of Parasitology (Charité), Humboldt University, Berlin, Germany</italic>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Hu, H" sort="Hu, H" uniqKey="Hu H" first="H." last="Hu">H. Hu</name>
<affiliation>
<nlm:aff id="aff6">
<italic>Xinjiang Medical University, Urumqi, Xinjiang, China</italic>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="De Hoog, G S" sort="De Hoog, G S" uniqKey="De Hoog G" first="G. S." last="De Hoog">G. S. De Hoog</name>
<affiliation>
<nlm:aff id="aff2">
<italic>CBS Fungal Biodiversity Centre, Utrecht, The Netherlands</italic>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff4">
<italic>Institute of Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands</italic>
</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Studies in Mycology</title>
<idno type="ISSN">0166-0616</idno>
<idno type="eISSN">1872-9797</idno>
<imprint>
<date when="2008">2008</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>The cell division cycle gene (
<italic>CDC42</italic>
) controlling cellular polarization was studied in members of
<italic>Chaetothyriales</italic>
. Based on ribosomal genes, ancestral members of the order exhibit meristematic growth in view of their colonization of inert surfaces such as rock, whereas in derived members of the order the gene is a putative virulence factor involved in expression of the muriform cell, the invasive phase in human chromoblastomycosis. Specific primers were developed to amplify a portion of the gene of 32 members of the order with known position according to ribosomal phylogeny. Phylogeny of
<italic>CDC42</italic>
proved to be very different. In all members of
<italic>Chaetohyriales</italic>
the protein sequence is highly conserved. In most species, distributed all over the phylogenetic tree, introns and 3
<sup>rd</sup>
codon positions are also invariant. However, a number of species had paralogues with considerable deviation in non-coding exon positions, and synchronous variation in introns, although non-synonomous variation had remained very limited. In some strains both orthologues and paralogues were present. It is concluded that
<italic>CDC42</italic>
does not show any orthologous evolution, and that its paralogues haves the same function but are structurally relaxed. The variation or absence thereof could not be linked to ecological changes, from rock-inhabiting to pathogenic life style. It is concluded that eventual pathogenicity in
<italic>Chaetothyriales</italic>
is not expressed at the DNA level in
<italic>CDC42</italic>
evolution.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Stud Mycol</journal-id>
<journal-id journal-id-type="publisher-id">simycol</journal-id>
<journal-title>Studies in Mycology</journal-title>
<issn pub-type="ppub">0166-0616</issn>
<issn pub-type="epub">1872-9797</issn>
<publisher>
<publisher-name>CBS Fungal Biodiversity Centre</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">19287534</article-id>
<article-id pub-id-type="pmc">2610298</article-id>
<article-id pub-id-type="publisher-id">0121</article-id>
<article-id pub-id-type="doi">10.3114/sim.2008.61.12</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Articles</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Evolution of
<italic>CDC42</italic>
, a putative virulence factor triggering meristematic growth in black yeasts</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Deng</surname>
<given-names>S.</given-names>
</name>
<xref ref-type="aff" rid="aff1">1</xref>
<xref ref-type="aff" rid="aff2">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>van den Ende</surname>
<given-names>A.H.G. Gerrits</given-names>
</name>
<xref ref-type="aff" rid="aff2">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Ram</surname>
<given-names>A.F.J.</given-names>
</name>
<xref ref-type="aff" rid="aff3">3</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Arentshorst</surname>
<given-names>M.</given-names>
</name>
<xref ref-type="aff" rid="aff3">3</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Gräser</surname>
<given-names>Y.</given-names>
</name>
<xref ref-type="aff" rid="aff5">5</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Hu</surname>
<given-names>H.</given-names>
</name>
<xref ref-type="aff" rid="aff6">6</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>de Hoog</surname>
<given-names>G.S.</given-names>
</name>
<xref ref-type="aff" rid="aff2">2</xref>
<xref ref-type="aff" rid="aff4">4</xref>
<xref ref-type="corresp" rid="cor1">*</xref>
</contrib>
</contrib-group>
<aff id="aff1">
<label>1</label>
<italic>Department of Dermatology, First Affiliated Hospital, Xinjiang Medical University, Urumqi, Xinjiang, China</italic>
</aff>
<aff id="aff2">
<label>2</label>
<italic>CBS Fungal Biodiversity Centre, Utrecht, The Netherlands</italic>
</aff>
<aff id="aff3">
<label>3</label>
<italic>Institute of Biology, Department of Molecular Microbiology, Kluyver Center for Genomics of Industrial Fermentation, Leiden, The Netherlands</italic>
</aff>
<aff id="aff4">
<label>4</label>
<italic>Institute of Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands</italic>
</aff>
<aff id="aff5">
<label>5</label>
<italic>Institut für Mikrobiologie und Hygiene, Department of Parasitology (Charité), Humboldt University, Berlin, Germany</italic>
</aff>
<aff id="aff6">
<label>6</label>
<italic>Xinjiang Medical University, Urumqi, Xinjiang, China</italic>
</aff>
<author-notes>
<fn id="cor1">
<label>*</label>
<p>Correspondence: G.S. de Hoog,
<email>de.hoog@cbs.knaw.nl</email>
</p>
</fn>
</author-notes>
<pub-date pub-type="ppub">
<year>2008</year>
</pub-date>
<volume>61</volume>
<issue-title>Black fungal extremes</issue-title>
<fpage>121</fpage>
<lpage>129</lpage>
<permissions>
<copyright-statement>Copyright © Copyright 2008 CBS Fungal Biodiversity Centre</copyright-statement>
<license>
<p>You are free to share - to copy, distribute and transmit the work, under the following conditions:</p>
<p>
<bold>Attribution:</bold>
  You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work).</p>
<p>
<bold>Non-commercial:</bold>
  You may not use this work for commercial purposes.</p>
<p>
<bold>No derivative works:</bold>
  You may not alter, transform, or build upon this work.</p>
<p>For any reuse or distribution, you must make clear to others the license terms of this work, which can be found at
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by-nc-nd/3.0/legalcode">http://creativecommons.org/licenses/by-nc-nd/3.0/legalcode.</ext-link>
Any of the above conditions can be waived if you get permission from the copyright holder. Nothing in this license impairs or restricts the author's moral rights.</p>
</license>
</permissions>
<self-uri xlink:title="pdf" xlink:href="121.pdf"></self-uri>
<abstract>
<p>The cell division cycle gene (
<italic>CDC42</italic>
) controlling cellular polarization was studied in members of
<italic>Chaetothyriales</italic>
. Based on ribosomal genes, ancestral members of the order exhibit meristematic growth in view of their colonization of inert surfaces such as rock, whereas in derived members of the order the gene is a putative virulence factor involved in expression of the muriform cell, the invasive phase in human chromoblastomycosis. Specific primers were developed to amplify a portion of the gene of 32 members of the order with known position according to ribosomal phylogeny. Phylogeny of
<italic>CDC42</italic>
proved to be very different. In all members of
<italic>Chaetohyriales</italic>
the protein sequence is highly conserved. In most species, distributed all over the phylogenetic tree, introns and 3
<sup>rd</sup>
codon positions are also invariant. However, a number of species had paralogues with considerable deviation in non-coding exon positions, and synchronous variation in introns, although non-synonomous variation had remained very limited. In some strains both orthologues and paralogues were present. It is concluded that
<italic>CDC42</italic>
does not show any orthologous evolution, and that its paralogues haves the same function but are structurally relaxed. The variation or absence thereof could not be linked to ecological changes, from rock-inhabiting to pathogenic life style. It is concluded that eventual pathogenicity in
<italic>Chaetothyriales</italic>
is not expressed at the DNA level in
<italic>CDC42</italic>
evolution.</p>
</abstract>
<kwd-group>
<kwd>Cell Division Cycle
<italic>CDC42</italic>
</kwd>
<kwd>
<italic>Chaetothyriales</italic>
</kwd>
<kwd>chromoblastomycosis</kwd>
<kwd>muriform cell</kwd>
<kwd>paralogue evolution</kwd>
<kwd>phylogeny</kwd>
<kwd>virulence factors</kwd>
</kwd-group>
</article-meta>
</front>
<body>
<sec>
<title>INTRODUCTION</title>
<p>Human infection by agents of chromoblastomycosis is accompanied by dramatic morphogenetic changes of fungal cells in tissue. The fungi concerned have the ability of morphogenetic switching from polarized filamentous growth to isodiametric expansion, leading to large spherical cells (
<xref ref-type="bibr" rid="ref26">Szaniszlo
<italic>et al.</italic>
1983</xref>
). Subdivision of the cells gives rise to muriform cells (
<xref ref-type="bibr" rid="ref19">Matsumoto
<italic>et al.</italic>
1993</xref>
), the invasive phase of the fungi concerned and triggering hyperphasia characteristic for the disease. Chromoblastomycosis is exclusively known to be caused by members of the ascomycete order
<italic>Chaetothyriales</italic>
(
<xref ref-type="bibr" rid="ref10">Haase
<italic>et al.</italic>
1999</xref>
,
<xref ref-type="bibr" rid="ref1">Badali
<italic>et al.</italic>
2008</xref>
): primarily by
<italic>Cladophialophora</italic>
and
<italic>Fonsecaea</italic>
species and occasionally by species of
<italic>Exophiala, Phialophora</italic>
or
<italic>Rhinocladiella</italic>
. The order comprises a large number of pathogens and opportunists on warm- and cold-blooded vertebrates (
<xref ref-type="bibr" rid="ref13">de Hoog
<italic>et al.</italic>
2000</xref>
), and hence is likely to have ancestral virulence factors.</p>
<p>The order
<italic>Chaetothyriales</italic>
is remarkable in the fungal Kingdom, for two reasons. First, a large number of the infections are observed in individuals without known immune disorder. Of the about 77 species confirmed to belong to the order by sequence data (
<xref ref-type="bibr" rid="ref2">Barr 1990</xref>
,
<xref ref-type="bibr" rid="ref9">Gueidan
<italic>et al.</italic>
2008</xref>
), about 33 have been encountered as etiologic agents of infections in vertebrates (
<xref ref-type="bibr" rid="ref13">de Hoog
<italic>et al.</italic>
2000</xref>
, Zeng
<italic>et al.</italic>
2006,
<xref ref-type="bibr" rid="ref1">Badali
<italic>et al.</italic>
2008</xref>
). This high percentage of species with an infective potential is only matched by the order
<italic>Onygenales</italic>
containing the dermatophytes and classical systemic fungi. Second, the diversity in clinical pictures caused by members of the
<italic>Chaetothyriales</italic>
is bewildering. Species of
<italic>Onygenales</italic>
are very consistent in their pathology, displaying a similar clinical course by members causing cutaneous or systemic infections, whereas those of
<italic>Chaetothyriales</italic>
encompass a wide diversity of diseases, which are nevertheless more or less characteristic within a single species (
<xref ref-type="bibr" rid="ref13">de Hoog
<italic>et al.</italic>
2000</xref>
). This pathogenic potential is particularly observed in the more derived parts of the order, comprising the ascomycete family
<italic>Herpotrichiellaceae</italic>
(
<xref ref-type="bibr" rid="ref28">Untereiner 2000</xref>
). Recently it was established that members of this same group show `dual ecology', i.e., they also possess the uncommon ability to assimilate monoaromatic pollutants (
<xref ref-type="bibr" rid="ref21">Prenafeta-Boldú
<italic>et al.</italic>
2006</xref>
).</p>
<p>A second recurrent trend in the
<italic>Chaetothyriales</italic>
is extremotolerance, i.e. growth on exposed surfaces, having a competitive advantage at high temperature and dryness (Sterflinger
<italic>et al.</italic>
1998,
<xref ref-type="bibr" rid="ref22">Ruibal 2004</xref>
). Phylogenetic trees published by Lutzoni
<italic>et al.</italic>
(
<xref ref-type="bibr" rid="ref18">2001</xref>
) and Gueidan
<italic>et al.</italic>
(
<xref ref-type="bibr" rid="ref9">2008</xref>
) indicate that some deep branches among the pathogenic black yeasts have a shared evolution with rock-inhabiting fungi. A meristematic growth form, morphologically similar to the muriform cells described above, may be expressed under adverse environmental conditions of nutrient depletion, high temperature and dryness. This suggests a functional change in the course of evolution, from an ancestral rock-inhabiting lifestyle to a derived strategy in which ultimately pathogenicity to vertebrate hosts enhances the fitness of species.</p>
<p>Polarized
<italic>vs.</italic>
isodiametric growth in fungi is regulated by the Rho-related GTPase Cdc42p (Cdc = Cell Division Cycle), reviewed by Johnson (
<xref ref-type="bibr" rid="ref16">1999</xref>
). Cdc42p is essential for the reorganization of the actin cytoskeleton during the shift from polarized to isodiametric growth. Upon activation, Cdc42p is recruited to the plasma membrane to initiate actin nucleation. Localization and activity of Cdc42p are mediated by guanine-nucleotide exchange factors (GEFs). In
<italic>S. cerevisiae</italic>
, the only GEF for Cdc42p is Cdc24p, controlled by cell cycle proteins (Cdc28p) and additional proteins (Cla4p and Bemp1;
<xref ref-type="bibr" rid="ref3">Bose
<italic>et al.</italic>
2001</xref>
). The eleven current members of the CDC42 family display between 75 and 100 % amino acid identity and are functionally as well as structurally homologous. In filamentous fungi another member of this family is present, RacAp. This is a well studied GTP-binding protein in mammalian cells and it has been shown that RacAp is required for the formation of lamellipodia in fibroblast cells. Recently, RacAp was found in basidiomycetes (
<xref ref-type="bibr" rid="ref8">Gorfer
<italic>et al.</italic>
2001</xref>
) as well as in ascomycetes (
<xref ref-type="bibr" rid="ref15">Hurtado
<italic>et al.</italic>
2000</xref>
,
<xref ref-type="bibr" rid="ref4">Boyce
<italic>et al.</italic>
2001</xref>
,
<xref ref-type="bibr" rid="ref30">Virag
<italic>et al.</italic>
2007</xref>
), but RacAp orthologus are absent in
<italic>S. cerevisiae</italic>
and have not been reported to be present in
<italic>Chaetothyriales</italic>
. Analysis of transformants overexpressing a dominant active allele of RacAp(
<italic>racAG12V</italic>
) displays unpolarized growth in
<italic>Aspergillus niger</italic>
, resembling the muriform cells, the pathogenic tissue-phase characteristic for chromoblastomycosis (A.F.J. Ram, unpublished data). This form in the agents of chromoblastomycosis, and even the agent of phaeohyphomycosis,
<italic>Exophiala dermatitidis</italic>
, is easily expressed in culture by a low pH of the growth medium and conditions of calcium limitation at more neutral pH (
<xref ref-type="bibr" rid="ref20">Mendoza
<italic>et al.</italic>
1993</xref>
, Karuppayil & Szaniszlo 1993,
<xref ref-type="bibr" rid="ref27">Szaniszlo
<italic>et al.</italic>
1993</xref>
,
<xref ref-type="bibr" rid="ref1">Badali
<italic>et al.</italic>
2008</xref>
). The Cdc42 proteins act as molecular switches by responding to exogenous and/or endogenous signals and relaying those signals to activate downstream components of a biological pathway. Ye & Szaniszlo (
<xref ref-type="bibr" rid="ref32">2000</xref>
) confirmed that Cdc42p plays a unique regulatory role in the morphogenesis of the black yeast
<italic>E.dermatitidis</italic>
during its phenotype transition from yeast to isodiametric cells and muriform cells in vitro.. They also found that the derived Cdc42 protein is highly conserved member of the Cdc42 subfamily. These results suggest that the
<italic>CDC42</italic>
gene products seem to play an important role in the regulation of stress-induced fungal cellular morphogenesis. One of the aspects of this therefore is its implication in human chromoblastomycosis.</p>
<p>When the functional change of Cdc42p, from extremotolerance to pathogenicity, concerns an evolutionary adaptation, we might expect the transition to be reflected at the DNA level. Comparing
<italic>CDC42</italic>
DNA gene sequences with the phylogenetic scaffold based on ribosomal genes as the gold standard, might thus provide additional insights about whether structural and functional changes in the gene concern adaptive changes in ecological strategies. In the present paper, tools are developed for the detection
<italic>of the CDC42 gene</italic>
in
<italic>Chaetothyriales</italic>
in view of a phylogenetic study of the
<italic>CDC42</italic>
gene, in parallel to genes with known phylogenetic content.</p>
</sec>
<sec sec-type="materials|methods">
<title>MATERIAL AND METHODS</title>
<sec>
<title>Strains and culture conditions</title>
<p>The isolates studied are listed in
<xref ref-type="table" rid="tbl1">Table 1</xref>
. A total of 32 members of
<italic>Chaetothyriales</italic>
including basal lineages were obtained from the reference collection of the Centraalbureau voor Schimmelcultures Fungal Biodiversity Centre and grown on Malt Extract Agar (MEA) at 25 °C.</p>
<p>
<table-wrap position="float" id="tbl1">
<label>Table 1.</label>
<caption>
<p>Strains used in this study</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th colspan="1" rowspan="1" align="left" valign="top">
<bold>Name</bold>
</th>
<th colspan="1" rowspan="1" align="left" valign="top">
<bold>CBS no.</bold>
</th>
<th colspan="1" rowspan="1" align="left" valign="top">
<bold>Status</bold>
</th>
<th colspan="1" rowspan="1" align="left" valign="top">
<bold>Ortho-/para-</bold>
</th>
<th colspan="1" rowspan="1" align="left" valign="top">
<bold>Other reference</bold>
</th>
<th colspan="1" rowspan="1" align="left" valign="top">
<bold>Source</bold>
</th>
<th colspan="1" rowspan="1" align="left" valign="top">
<bold>Origin</bold>
</th>
</tr>
</thead>
<tbody>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">
<italic>Exophiala dermatitidis</italic>
</td>
<td colspan="1" rowspan="1" align="left" valign="top">
<ext-link ext-link-type="uri" xlink:href="http://www.studiesinmycology.org/cgi/external_ref?access_num=525.76&link_type=CBS">CBS 525.76</ext-link>
</td>
<td colspan="1" rowspan="1" align="left" valign="top"> T </td>
<td colspan="1" rowspan="1" align="center" valign="top"> +/+ </td>
<td colspan="1" rowspan="1" align="left" valign="top"> ATCC 34100; NIH 8656 </td>
<td colspan="1" rowspan="1" align="left" valign="top"> Human sputum </td>
<td colspan="1" rowspan="1" align="left" valign="top"> Japan </td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top"></td>
<td colspan="1" rowspan="1" align="left" valign="top">
<ext-link ext-link-type="uri" xlink:href="http://www.studiesinmycology.org/cgi/external_ref?access_num=292.49&link_type=CBS">CBS 292.49</ext-link>
</td>
<td colspan="1" rowspan="1" align="left" valign="top"></td>
<td colspan="1" rowspan="1" align="center" valign="top"> +/- </td>
<td colspan="1" rowspan="1" align="left" valign="top"> DH 15696 </td>
<td colspan="1" rowspan="1" align="left" valign="top"> Faeces </td>
<td colspan="1" rowspan="1" align="left" valign="top"> U.S.A. </td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top"></td>
<td colspan="1" rowspan="1" align="left" valign="top">
<ext-link ext-link-type="uri" xlink:href="http://www.studiesinmycology.org/cgi/external_ref?access_num=207.35&link_type=CBS">CBS 207.35</ext-link>
</td>
<td colspan="1" rowspan="1" align="left" valign="top"> T </td>
<td colspan="1" rowspan="1" align="center" valign="top"> +/+ </td>
<td colspan="1" rowspan="1" align="left" valign="top"> ATCC 28869; UAMH 3967 </td>
<td colspan="1" rowspan="1" align="left" valign="top"> Man, facial chromoblastomycosis </td>
<td colspan="1" rowspan="1" align="left" valign="top"> Japan; Osaka University </td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">
<italic>Exophiala heteromorpha</italic>
</td>
<td colspan="1" rowspan="1" align="left" valign="top">
<ext-link ext-link-type="uri" xlink:href="http://www.studiesinmycology.org/cgi/external_ref?access_num=232.33&link_type=CBS">CBS 232.33</ext-link>
</td>
<td colspan="1" rowspan="1" align="left" valign="top"> T </td>
<td colspan="1" rowspan="1" align="center" valign="top"> -/+ </td>
<td colspan="1" rowspan="1" align="left" valign="top"> MUCL 9894; NCMH 17 </td>
<td colspan="1" rowspan="1" align="left" valign="top"> Wood pulp </td>
<td colspan="1" rowspan="1" align="left" valign="top"> Sweden </td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">
<italic>Capronia mansonii</italic>
</td>
<td colspan="1" rowspan="1" align="left" valign="top">
<ext-link ext-link-type="uri" xlink:href="http://www.studiesinmycology.org/cgi/external_ref?access_num=101.67&link_type=CBS">CBS 101.67</ext-link>
</td>
<td colspan="1" rowspan="1" align="left" valign="top"> T </td>
<td colspan="1" rowspan="1" align="center" valign="top"> +/- </td>
<td colspan="1" rowspan="1" align="left" valign="top"> ATCC 18659; IMI 134456 </td>
<td colspan="1" rowspan="1" align="left" valign="top">
<italic>Populus tremula</italic>
</td>
<td colspan="1" rowspan="1" align="left" valign="top"> Sweden </td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">
<italic>Capronia munkii</italic>
</td>
<td colspan="1" rowspan="1" align="left" valign="top">
<ext-link ext-link-type="uri" xlink:href="http://www.studiesinmycology.org/cgi/external_ref?access_num=615.96&link_type=CBS">CBS 615.96</ext-link>
</td>
<td colspan="1" rowspan="1" align="left" valign="top"> T </td>
<td colspan="1" rowspan="1" align="center" valign="top"> +/- </td>
<td colspan="1" rowspan="1" align="left" valign="top"> DH 16078 </td>
<td colspan="1" rowspan="1" align="left" valign="top">
<italic>Populus tremuloides</italic>
, wood </td>
<td colspan="1" rowspan="1" align="left" valign="top"> Canada, Alberta; south of Hinton </td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">
<italic>Capronia epimyces</italic>
</td>
<td colspan="1" rowspan="1" align="left" valign="top">
<ext-link ext-link-type="uri" xlink:href="http://www.studiesinmycology.org/cgi/external_ref?access_num=606.96&link_type=CBS">CBS 606.96</ext-link>
</td>
<td colspan="1" rowspan="1" align="left" valign="top"></td>
<td colspan="1" rowspan="1" align="center" valign="top"> +/+ </td>
<td colspan="1" rowspan="1" align="left" valign="top"> DH 16065 </td>
<td colspan="1" rowspan="1" align="left" valign="top">
<italic>Nectria</italic>
, fruit bodies, on
<italic>Pinus</italic>
wood </td>
<td colspan="1" rowspan="1" align="left" valign="top"> Canada; Ontario </td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">
<italic>Rhinocladiella mackenziei</italic>
</td>
<td colspan="1" rowspan="1" align="left" valign="top">
<ext-link ext-link-type="uri" xlink:href="http://www.studiesinmycology.org/cgi/external_ref?access_num=650.93&link_type=CBS">CBS 650.93</ext-link>
</td>
<td colspan="1" rowspan="1" align="left" valign="top"> T </td>
<td colspan="1" rowspan="1" align="center" valign="top"> +/- </td>
<td colspan="1" rowspan="1" align="left" valign="top"> MUCL 40057 </td>
<td colspan="1" rowspan="1" align="left" valign="top"> Human, cerebral phaeohyphomycosis </td>
<td colspan="1" rowspan="1" align="left" valign="top"> Saudi Arabia </td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">
<italic>Capronia acutiseta</italic>
</td>
<td colspan="1" rowspan="1" align="left" valign="top">
<ext-link ext-link-type="uri" xlink:href="http://www.studiesinmycology.org/cgi/external_ref?access_num=618.96&link_type=CBS">CBS 618.96</ext-link>
</td>
<td colspan="1" rowspan="1" align="left" valign="top"> T </td>
<td colspan="1" rowspan="1" align="center" valign="top"> -/+ </td>
<td colspan="1" rowspan="1" align="left" valign="top"> ATCC 56428;ATCC 76482 </td>
<td colspan="1" rowspan="1" align="left" valign="top">
<italic>Dacrydium cupressinum</italic>
, wood </td>
<td colspan="1" rowspan="1" align="left" valign="top"> New Zealand; Saltwater State, Westland County </td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">
<italic>Capronia parasitica</italic>
</td>
<td colspan="1" rowspan="1" align="left" valign="top">
<ext-link ext-link-type="uri" xlink:href="http://www.studiesinmycology.org/cgi/external_ref?access_num=123.88&link_type=CBS">CBS 123.88</ext-link>
</td>
<td colspan="1" rowspan="1" align="left" valign="top"></td>
<td colspan="1" rowspan="1" align="center" valign="top"> +/- </td>
<td colspan="1" rowspan="1" align="left" valign="top"> DH 15347 </td>
<td colspan="1" rowspan="1" align="left" valign="top">
<italic>Hypoxylon cohaerens</italic>
var.
<italic>microsporum</italic>
, on
<italic>Quercus</italic>
sp. </td>
<td colspan="1" rowspan="1" align="left" valign="top"> France; Bois de Lourdes </td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">
<italic>Rhinocladiella anceps</italic>
</td>
<td colspan="1" rowspan="1" align="left" valign="top">
<ext-link ext-link-type="uri" xlink:href="http://www.studiesinmycology.org/cgi/external_ref?access_num=181.65&link_type=CBS">CBS 181.65</ext-link>
</td>
<td colspan="1" rowspan="1" align="left" valign="top"> NT </td>
<td colspan="1" rowspan="1" align="center" valign="top"> +/- </td>
<td colspan="1" rowspan="1" align="left" valign="top"> ATCC 18655; IMI 134453; MUCL 8233 </td>
<td colspan="1" rowspan="1" align="left" valign="top"> Soil under
<italic>Thuja plicata</italic>
</td>
<td colspan="1" rowspan="1" align="left" valign="top"> Canada, Ontario; Campbellville </td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">
<italic>Capronia villosa</italic>
</td>
<td colspan="1" rowspan="1" align="left" valign="top">
<ext-link ext-link-type="uri" xlink:href="http://www.studiesinmycology.org/cgi/external_ref?access_num=616.96&link_type=CBS">CBS 616.96</ext-link>
</td>
<td colspan="1" rowspan="1" align="left" valign="top"></td>
<td colspan="1" rowspan="1" align="center" valign="top"> +/- </td>
<td colspan="1" rowspan="1" align="left" valign="top"> ATCC 56206 </td>
<td colspan="1" rowspan="1" align="left" valign="top"> Decorticated wood </td>
<td colspan="1" rowspan="1" align="left" valign="top"> New Zealand </td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">
<italic>Fonsecaea monophora</italic>
</td>
<td colspan="1" rowspan="1" align="left" valign="top">
<ext-link ext-link-type="uri" xlink:href="http://www.studiesinmycology.org/cgi/external_ref?access_num=269.37&link_type=CBS">CBS 269.37</ext-link>
</td>
<td colspan="1" rowspan="1" align="left" valign="top"></td>
<td colspan="1" rowspan="1" align="center" valign="top"> +/- </td>
<td colspan="1" rowspan="1" align="left" valign="top"> DH 12659 </td>
<td colspan="1" rowspan="1" align="left" valign="top"> Human, chromoblastomycosis </td>
<td colspan="1" rowspan="1" align="left" valign="top"> South America </td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">
<italic>Phialophora verrucosa</italic>
</td>
<td colspan="1" rowspan="1" align="left" valign="top">
<ext-link ext-link-type="uri" xlink:href="http://www.studiesinmycology.org/cgi/external_ref?access_num=286.47&link_type=CBS">CBS 286.47</ext-link>
</td>
<td colspan="1" rowspan="1" align="left" valign="top"></td>
<td colspan="1" rowspan="1" align="center" valign="top"> -/+ </td>
<td colspan="1" rowspan="1" align="left" valign="top"> ATCC 9541; MUCL 9768 </td>
<td colspan="1" rowspan="1" align="left" valign="top"> Mycetoma hand, human </td>
<td colspan="1" rowspan="1" align="left" valign="top"> Brazil </td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">
<italic>Phialophora americana</italic>
</td>
<td colspan="1" rowspan="1" align="left" valign="top">
<ext-link ext-link-type="uri" xlink:href="http://www.studiesinmycology.org/cgi/external_ref?access_num=840.69&link_type=CBS">CBS 840.69</ext-link>
</td>
<td colspan="1" rowspan="1" align="left" valign="top"></td>
<td colspan="1" rowspan="1" align="center" valign="top"> -/+ </td>
<td colspan="1" rowspan="1" align="left" valign="top"> MUCL 15537 </td>
<td colspan="1" rowspan="1" align="left" valign="top"> Decaying timber </td>
<td colspan="1" rowspan="1" align="left" valign="top"> Finland; Helsinki </td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">
<italic>Cladophialophora carrionii</italic>
</td>
<td colspan="1" rowspan="1" align="left" valign="top">
<ext-link ext-link-type="uri" xlink:href="http://www.studiesinmycology.org/cgi/external_ref?access_num=260.83&link_type=CBS">CBS 260.83</ext-link>
</td>
<td colspan="1" rowspan="1" align="left" valign="top"></td>
<td colspan="1" rowspan="1" align="center" valign="top"> -/+ </td>
<td colspan="1" rowspan="1" align="left" valign="top"> ATCC 44535 </td>
<td colspan="1" rowspan="1" align="left" valign="top"> Human, chromoblastomycosis </td>
<td colspan="1" rowspan="1" align="left" valign="top"> Venezuela, Falcon State, Uganda </td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">
<italic>Cladophialophora boppii</italic>
</td>
<td colspan="1" rowspan="1" align="left" valign="top">
<ext-link ext-link-type="uri" xlink:href="http://www.studiesinmycology.org/cgi/external_ref?access_num=126.86&link_type=CBS">CBS 126.86</ext-link>
</td>
<td colspan="1" rowspan="1" align="left" valign="top"> T </td>
<td colspan="1" rowspan="1" align="center" valign="top"> +/+ </td>
<td colspan="1" rowspan="1" align="left" valign="top"> DH 15357 </td>
<td colspan="1" rowspan="1" align="left" valign="top"> Human, skin lesion, on limb </td>
<td colspan="1" rowspan="1" align="left" valign="top"> Brazil </td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">
<italic>Exophiala castellanii</italic>
</td>
<td colspan="1" rowspan="1" align="left" valign="top">
<ext-link ext-link-type="uri" xlink:href="http://www.studiesinmycology.org/cgi/external_ref?access_num=158.58&link_type=CBS">CBS 158.58</ext-link>
</td>
<td colspan="1" rowspan="1" align="left" valign="top"> NT </td>
<td colspan="1" rowspan="1" align="center" valign="top"> +/- </td>
<td colspan="1" rowspan="1" align="left" valign="top"> ATCC 18657; IFM 4702; MUCL 10097 </td>
<td colspan="1" rowspan="1" align="left" valign="top"> Human </td>
<td colspan="1" rowspan="1" align="left" valign="top"> Sri Lanka </td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">
<italic>Exophiala nigra</italic>
</td>
<td colspan="1" rowspan="1" align="left" valign="top">
<ext-link ext-link-type="uri" xlink:href="http://www.studiesinmycology.org/cgi/external_ref?access_num=546.82&link_type=CBS">CBS 546.82</ext-link>
</td>
<td colspan="1" rowspan="1" align="left" valign="top"></td>
<td colspan="1" rowspan="1" align="center" valign="top"> +/- </td>
<td colspan="1" rowspan="1" align="left" valign="top"> DH 15993 </td>
<td colspan="1" rowspan="1" align="left" valign="top"> Soil under ice </td>
<td colspan="1" rowspan="1" align="left" valign="top"> Russia </td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">
<italic>Exophiala bergeri</italic>
</td>
<td colspan="1" rowspan="1" align="left" valign="top">
<ext-link ext-link-type="uri" xlink:href="http://www.studiesinmycology.org/cgi/external_ref?access_num=353.52&link_type=CBS">CBS 353.52</ext-link>
</td>
<td colspan="1" rowspan="1" align="left" valign="top"> T </td>
<td colspan="1" rowspan="1" align="center" valign="top"> +/- </td>
<td colspan="1" rowspan="1" align="left" valign="top"> DH 15792 </td>
<td colspan="1" rowspan="1" align="left" valign="top"> Human, chromoblastomycosis </td>
<td colspan="1" rowspan="1" align="left" valign="top"> Canada </td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">
<italic>Exophiala spinifera</italic>
</td>
<td colspan="1" rowspan="1" align="left" valign="top">
<ext-link ext-link-type="uri" xlink:href="http://www.studiesinmycology.org/cgi/external_ref?access_num=899.68&link_type=CBS">CBS 899.68</ext-link>
</td>
<td colspan="1" rowspan="1" align="left" valign="top"> T </td>
<td colspan="1" rowspan="1" align="center" valign="top"> +/- </td>
<td colspan="1" rowspan="1" align="left" valign="top"> ATCC 18218; IHM 1767; NCMH 152 </td>
<td colspan="1" rowspan="1" align="left" valign="top"> Human, nasal granuloma </td>
<td colspan="1" rowspan="1" align="left" valign="top"> U.S.A. </td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">
<italic>Exophiala jeanselmei</italic>
</td>
<td colspan="1" rowspan="1" align="left" valign="top">
<ext-link ext-link-type="uri" xlink:href="http://www.studiesinmycology.org/cgi/external_ref?access_num=507.90&link_type=CBS">CBS 507.90</ext-link>
</td>
<td colspan="1" rowspan="1" align="left" valign="top"> T </td>
<td colspan="1" rowspan="1" align="center" valign="top"> +/- </td>
<td colspan="1" rowspan="1" align="left" valign="top"> ATCC 34123;
<ext-link ext-link-type="uri" xlink:href="http://www.studiesinmycology.org/cgi/external_ref?access_num=664.76&link_type=CBS">CBS 664.76</ext-link>
; IHM 283; NCMH 123 </td>
<td colspan="1" rowspan="1" align="left" valign="top"> Human </td>
<td colspan="1" rowspan="1" align="left" valign="top"> Uruguay </td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">
<italic>Exophiala oligosperma</italic>
</td>
<td colspan="1" rowspan="1" align="left" valign="top">
<ext-link ext-link-type="uri" xlink:href="http://www.studiesinmycology.org/cgi/external_ref?access_num=725.88&link_type=CBS">CBS 725.88</ext-link>
</td>
<td colspan="1" rowspan="1" align="left" valign="top"> T </td>
<td colspan="1" rowspan="1" align="center" valign="top"> +/- </td>
<td colspan="1" rowspan="1" align="left" valign="top"> DH 16212 </td>
<td colspan="1" rowspan="1" align="left" valign="top"> Human, tumour of sphenoidal cavity </td>
<td colspan="1" rowspan="1" align="left" valign="top"> Germany; Würzburg </td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">
<italic>Phialophora europaea</italic>
</td>
<td colspan="1" rowspan="1" align="left" valign="top">
<ext-link ext-link-type="uri" xlink:href="http://www.studiesinmycology.org/cgi/external_ref?access_num=129.96&link_type=CBS">CBS 129.96</ext-link>
</td>
<td colspan="1" rowspan="1" align="left" valign="top"> T </td>
<td colspan="1" rowspan="1" align="center" valign="top"> -/+ </td>
<td colspan="1" rowspan="1" align="left" valign="top"> DH 10389 </td>
<td colspan="1" rowspan="1" align="left" valign="top"> Human, chromoblastomycosis of toe </td>
<td colspan="1" rowspan="1" align="left" valign="top"> Germany; Giessen </td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">
<italic>Fonsecaea pedrosoi</italic>
</td>
<td colspan="1" rowspan="1" align="left" valign="top">
<ext-link ext-link-type="uri" xlink:href="http://www.studiesinmycology.org/cgi/external_ref?access_num=271.37&link_type=CBS">CBS 271.37</ext-link>
</td>
<td colspan="1" rowspan="1" align="left" valign="top"> NT </td>
<td colspan="1" rowspan="1" align="center" valign="top"> +/- </td>
<td colspan="1" rowspan="1" align="left" valign="top"> ATCC 18658;IMI 134458 </td>
<td colspan="1" rowspan="1" align="left" valign="top"> Human, chromoblastomycosis </td>
<td colspan="1" rowspan="1" align="left" valign="top"> Argentina </td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">
<italic>Coniosporium perforans</italic>
</td>
<td colspan="1" rowspan="1" align="left" valign="top">
<ext-link ext-link-type="uri" xlink:href="http://www.studiesinmycology.org/cgi/external_ref?access_num=885.95&link_type=CBS">CBS 885.95</ext-link>
</td>
<td colspan="1" rowspan="1" align="left" valign="top"> T </td>
<td colspan="1" rowspan="1" align="center" valign="top"> +/- </td>
<td colspan="1" rowspan="1" align="left" valign="top"> DH 16308 </td>
<td colspan="1" rowspan="1" align="left" valign="top"> Marble </td>
<td colspan="1" rowspan="1" align="left" valign="top"> Greece </td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">
<italic>Phaeoannellomyces elegans</italic>
</td>
<td colspan="1" rowspan="1" align="left" valign="top">
<ext-link ext-link-type="uri" xlink:href="http://www.studiesinmycology.org/cgi/external_ref?access_num=122.95&link_type=CBS">CBS 122.95</ext-link>
</td>
<td colspan="1" rowspan="1" align="left" valign="top"></td>
<td colspan="1" rowspan="1" align="center" valign="top"> +/- </td>
<td colspan="1" rowspan="1" align="left" valign="top"> DH 15343; NCMH 1286 </td>
<td colspan="1" rowspan="1" align="left" valign="top"> Human, skin infection of toe nail </td>
<td colspan="1" rowspan="1" align="left" valign="top"> Canada; Toronto </td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">
<italic>Exophiala pisciphila</italic>
</td>
<td colspan="1" rowspan="1" align="left" valign="top">
<ext-link ext-link-type="uri" xlink:href="http://www.studiesinmycology.org/cgi/external_ref?access_num=661.76&link_type=CBS">CBS 661.76</ext-link>
</td>
<td colspan="1" rowspan="1" align="left" valign="top"></td>
<td colspan="1" rowspan="1" align="center" valign="top"> +/- </td>
<td colspan="1" rowspan="1" align="left" valign="top"> DH 16145 </td>
<td colspan="1" rowspan="1" align="left" valign="top">
<italic>Heterodera schachtii</italic>
egg from cyst, recovered from soil </td>
<td colspan="1" rowspan="1" align="left" valign="top"> Germany; Elsdorf </td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">
<italic>Phialophora reptans</italic>
</td>
<td colspan="1" rowspan="1" align="left" valign="top">
<ext-link ext-link-type="uri" xlink:href="http://www.studiesinmycology.org/cgi/external_ref?access_num=113.85&link_type=CBS">CBS113.85</ext-link>
</td>
<td colspan="1" rowspan="1" align="left" valign="top"> T </td>
<td colspan="1" rowspan="1" align="center" valign="top"> +/- </td>
<td colspan="1" rowspan="1" align="left" valign="top"> DH 5543 </td>
<td colspan="1" rowspan="1" align="left" valign="top"> Food </td>
<td colspan="1" rowspan="1" align="left" valign="top"> Sweden </td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">
<italic>Exophiala mesophila</italic>
</td>
<td colspan="1" rowspan="1" align="left" valign="top">
<ext-link ext-link-type="uri" xlink:href="http://www.studiesinmycology.org/cgi/external_ref?access_num=402.95&link_type=CBS">CBS 402.95</ext-link>
</td>
<td colspan="1" rowspan="1" align="left" valign="top"> T </td>
<td colspan="1" rowspan="1" align="center" valign="top"> +/- </td>
<td colspan="1" rowspan="1" align="left" valign="top"> DH 15838 </td>
<td colspan="1" rowspan="1" align="left" valign="top"> Silicone, shower cabinet, </td>
<td colspan="1" rowspan="1" align="left" valign="top"> Germany, Hamburg </td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">
<italic>Cladophialophora modesta</italic>
</td>
<td colspan="1" rowspan="1" align="left" valign="top">
<ext-link ext-link-type="uri" xlink:href="http://www.studiesinmycology.org/cgi/external_ref?access_num=985.96&link_type=CBS">CBS 985.96</ext-link>
</td>
<td colspan="1" rowspan="1" align="left" valign="top"> T </td>
<td colspan="1" rowspan="1" align="center" valign="top"> +/- </td>
<td colspan="1" rowspan="1" align="left" valign="top"> NCMH 108; UAMH 4004 </td>
<td colspan="1" rowspan="1" align="left" valign="top"> Human, brain </td>
<td colspan="1" rowspan="1" align="left" valign="top"> U.S.A.; Chapel Hill </td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">
<italic>Exophiala salmonis</italic>
</td>
<td colspan="1" rowspan="1" align="left" valign="top">
<ext-link ext-link-type="uri" xlink:href="http://www.studiesinmycology.org/cgi/external_ref?access_num=157.67&link_type=CBS">CBS 157.67</ext-link>
</td>
<td colspan="1" rowspan="1" align="left" valign="top">T </td>
<td colspan="1" rowspan="1" align="center" valign="top">+/- </td>
<td colspan="1" rowspan="1" align="left" valign="top"></td>
<td colspan="1" rowspan="1" align="left" valign="top">Brain, Salmo clakii </td>
<td colspan="1" rowspan="1" align="left" valign="top">Canada; Galgary </td>
</tr>
</tbody>
</table>
</table-wrap>
</p>
</sec>
<sec>
<title>DNA extraction</title>
<p>Approximately 1 cm
<sup>2</sup>
mycelium of 30-d-old cultures was transferred to a 2 mL Eppendorf tube containing 300 μL TES-buffer (Tris 1.2 % w/v, Na-EDTA 0.38% w/v, SDS 2 % w/v, pH 8.0) and about 80 mg of a silica mixture (Silica gel H, Merck 7736, Darmstadt, Germany / Kieselguhr Celite 545, Machery, Düren, Germany, 2 : 1, w/w). Cells were disrupted mechanically in a tight-fitting sterile pestle for approximately 1 min. Subsequently 200 μL TES-buffer was added, the mixture was vortexed, 10 μL proteinase K was added and incubated for 10 min at 65 °C. After addition of 140 μL of 5 M NaCl and 1/10 vol CTAB 10 % (cetyltrimethylammoniumbromide) solution, the material was incubated for 30 min at 65 °C. Subsequently 700 μL SEVAG (24 : 1, chloroform: isoamylalcohol) was added to the solution and shortly mixed by shaking, incubated for 30 min on ice water and centrifuged for 10 min at 1125 × g. The supernatant was transferred to a new tube with 225 μL 5 M NH
<sub>4</sub>
-acetate, incubated on ice water for 30 min. and centrifuged again for 10 min at 1125 × g. The supernatant was transferred to another Eppendorf tube with 0.55 vol isopropanol mixed carefully by flipping and spin for 5 min at 1125 × g. Subsequently, the pellet was washed with ice cold 70 % ethanol. After drying at room temperature it was re-suspended in 48.5 μL TE buffer (Tris 0.12 % w/v, a-EDTA 0.04 % w/v) plus 1.5 μL RNAse 20 U/mL and incubated for 15–30 min at 37 °C. DNAs were purified with GFX PCR DNA and Gel Band Purification Kit (Amersham Biosciences) as recommended by the manufacturer.</p>
</sec>
<sec>
<title>
<italic>CDC42</italic>
primer design</title>
<p>Primers specific for
<italic>CDC42</italic>
amplifications were selected using a complete alignment of the amino acid sequences of species listed in
<xref ref-type="table" rid="tbl2">Table 2</xref>
. Two highly conserved areas were detected for
<italic>CDC42</italic>
that were absent from the Rac and Rho gene families. Degenerated forward (
<italic>CDC42</italic>
-F1,
<italic>CDC42</italic>
-F2) and reverse (
<italic>CDC42</italic>
-R1,
<italic>CDC42</italic>
-R2) primers were designed matching the target regions. In addition, primers (
<xref ref-type="table" rid="tbl4">Table 4</xref>
) were synthesized in the same positions but that were specific for the published sequence of
<italic>Exophiala dermatitidis</italic>
,
<ext-link ext-link-type="uri" xlink:href="http://www.studiesinmycology.org/cgi/external_ref?access_num=525.76&link_type=CBS">CBS 525.76</ext-link>
(NIH 8656 = AF162788) as control (
<xref ref-type="bibr" rid="ref32">Ye & Szaniszlo 2000</xref>
). The resulting specific primers
<italic>CDC42</italic>
-F1s,
<italic>CDC42</italic>
-F2s,
<italic>CDC42</italic>
-R1s and
<italic>CDC42</italic>
-R2s (
<xref ref-type="table" rid="tbl4">Table 4</xref>
) were subsequently tested with the aim to establish amplification conditions. Different combinations of specific primers were then tested for the 32 strains listed in
<xref ref-type="table" rid="tbl1">Table 1</xref>
.</p>
<p>
<table-wrap position="float" id="tbl2">
<label>Table 2.</label>
<caption>
<p>
<italic>CDC42</italic>
reference sequences taken from GenBank.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th colspan="1" rowspan="1" align="left" valign="top">
<bold>Species</bold>
</th>
<th colspan="1" rowspan="1" align="left" valign="top">
<bold>Gene</bold>
</th>
<th colspan="1" rowspan="1" align="left" valign="top">
<bold>GenBank no. protein</bold>
</th>
<th colspan="1" rowspan="1" align="left" valign="top">
<bold>GenBank no. DNA</bold>
</th>
</tr>
</thead>
<tbody>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">
<italic>Exophiala dermatitidis</italic>
</td>
<td colspan="1" rowspan="1" align="left" valign="top">
<italic>CDC42</italic>
</td>
<td colspan="1" rowspan="1" align="left" valign="top"> AAD46909 </td>
<td colspan="1" rowspan="1" align="center" valign="top"> AF162788 </td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">
<italic>Emericella nidulans</italic>
</td>
<td colspan="1" rowspan="1" align="left" valign="top">
<italic>CDC42</italic>
</td>
<td colspan="1" rowspan="1" align="left" valign="top"> AAF24514 </td>
<td colspan="1" rowspan="1" align="center" valign="top"> AF217199 </td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">
<italic>Penicillium marneffei</italic>
</td>
<td colspan="1" rowspan="1" align="left" valign="top">
<italic>CDC42</italic>
</td>
<td colspan="1" rowspan="1" align="left" valign="top"> AAK56917 </td>
<td colspan="1" rowspan="1" align="center" valign="top"> AF330694 </td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top"></td>
<td colspan="1" rowspan="1" align="left" valign="top">
<italic>RAC</italic>
</td>
<td colspan="1" rowspan="1" align="left" valign="top"> AAN77094 </td>
<td colspan="1" rowspan="1" align="center" valign="top"></td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">
<italic>Aspergillus niger</italic>
</td>
<td colspan="1" rowspan="1" align="left" valign="top">
<italic>RAC</italic>
</td>
<td colspan="1" rowspan="1" align="left" valign="top"> AAT09022 </td>
<td colspan="1" rowspan="1" align="center" valign="top"></td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">
<italic>Aspergillus nidulans</italic>
</td>
<td colspan="1" rowspan="1" align="left" valign="top">
<italic>RHO</italic>
</td>
<td colspan="1" rowspan="1" align="left" valign="top">XP-663344 </td>
<td colspan="1" rowspan="1" align="center" valign="top"></td>
</tr>
</tbody>
</table>
</table-wrap>
</p>
<p>
<table-wrap position="float" id="tbl4">
<label>Table 4.</label>
<caption>
<p>Degenerate and specific primers designed in this study.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th colspan="2" rowspan="1" align="left" valign="top">
<bold>Degenerate primer:</bold>
</th>
<th colspan="1" rowspan="1" align="left" valign="top"></th>
<th colspan="1" rowspan="1" align="left" valign="top"></th>
</tr>
<tr>
<th colspan="2" rowspan="1" align="left" valign="top">Gene: </th>
<th colspan="1" rowspan="1" align="left" valign="top">Amino acid sequence: </th>
<th colspan="1" rowspan="1" align="left" valign="top">Nucleotide sequence: </th>
</tr>
</thead>
<tbody>
<tr>
<td colspan="2" rowspan="1" align="left" valign="top">
<italic>CDC42</italic>
-F1: </td>
<td colspan="1" rowspan="1" align="left" valign="top"></td>
<td colspan="1" rowspan="1" align="left" valign="top"> M V V A T I </td>
<td colspan="1" rowspan="1" align="left" valign="top"> 5′-ATG GTI GTI GCI ACI ATH </td>
</tr>
<tr>
<td colspan="2" rowspan="1" align="left" valign="top">
<italic>CDC42</italic>
-F2: </td>
<td colspan="1" rowspan="1" align="left" valign="top"></td>
<td colspan="1" rowspan="1" align="left" valign="top"> I G D E PYT </td>
<td colspan="1" rowspan="1" align="left" valign="top"> 5′-ATH GGI GAY GAR CCI TAY AC </td>
</tr>
<tr>
<td colspan="2" rowspan="1" align="left" valign="top">
<italic>CDC42</italic>
-R1: </td>
<td colspan="1" rowspan="1" align="left" valign="top"></td>
<td colspan="1" rowspan="1" align="left" valign="top"> R M A K EL G </td>
<td colspan="1" rowspan="1" align="left" valign="top"> 5′-CCI ARY ICY TTI GCC ATI CK </td>
</tr>
<tr>
<td colspan="2" rowspan="1" align="left" valign="top">
<italic>CDC42</italic>
-R2: </td>
<td colspan="1" rowspan="1" align="left" valign="top"></td>
<td colspan="1" rowspan="1" align="left" valign="top"> Y K L K D VF </td>
<td colspan="1" rowspan="1" align="left" valign="top"> 5′-RAA IAC RTC YTT IAR YTT RTA </td>
</tr>
<tr>
<td colspan="2" rowspan="1" align="left" valign="top">
<bold>Specific primers for
<italic>CDC42</italic>
orthologue:</bold>
</td>
<td colspan="1" rowspan="1" align="left" valign="top"></td>
<td colspan="1" rowspan="1" align="left" valign="top"></td>
<td colspan="1" rowspan="1" align="left" valign="top"></td>
</tr>
</tbody>
<tbody>
<tr>
<td colspan="2" rowspan="1" align="left" valign="top">
<italic>CDC42</italic>
-F1s: 5′-ATG GTT GTC GCA ACG ATC </td>
<td colspan="1" rowspan="1" align="left" valign="top"></td>
<td colspan="1" rowspan="1" align="left" valign="top"></td>
<td colspan="1" rowspan="1" align="left" valign="top"></td>
</tr>
<tr>
<td colspan="2" rowspan="1" align="left" valign="top">
<italic>CDC42</italic>
- F2s: 5′-GGA TTA CGA CCG GCT TCG </td>
<td colspan="1" rowspan="1" align="left" valign="top"></td>
<td colspan="1" rowspan="1" align="left" valign="top"></td>
<td colspan="1" rowspan="1" align="left" valign="top"></td>
</tr>
<tr>
<td colspan="2" rowspan="1" align="left" valign="top">
<italic>CDC42</italic>
-R1s: 5′-CCA ACT CCT TGG CCA TTC </td>
<td colspan="1" rowspan="1" align="left" valign="top"></td>
<td colspan="1" rowspan="1" align="left" valign="top"></td>
<td colspan="1" rowspan="1" align="left" valign="top"></td>
</tr>
<tr>
<td colspan="2" rowspan="1" align="left" valign="top">
<italic>CDC42</italic>
-R2s: 5′-AAA GAC GTC TTT GAG TTT GTA </td>
<td colspan="1" rowspan="1" align="left" valign="top"></td>
<td colspan="1" rowspan="1" align="left" valign="top"></td>
<td colspan="1" rowspan="1" align="left" valign="top"></td>
</tr>
<tr>
<td colspan="2" rowspan="1" align="left" valign="top">Primer combination </td>
<td colspan="1" rowspan="1" align="left" valign="top"></td>
<td colspan="1" rowspan="1" align="left" valign="top"></td>
<td colspan="1" rowspan="1" align="left" valign="top"></td>
</tr>
</tbody>
<tbody>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">
<italic>CDC42</italic>
F1s--R2s 698 bp </td>
<td colspan="1" rowspan="1" align="left" valign="top">
<italic>CDC42</italic>
F1s--R1s 639 bp </td>
<td colspan="1" rowspan="1" align="left" valign="top">
<italic>CDC42</italic>
F2s--R2s 372 bp </td>
<td colspan="1" rowspan="1" align="left" valign="top">
<italic>CDC42</italic>
F2s--R1s 315 bp </td>
<td colspan="1" rowspan="1" align="left" valign="top"></td>
</tr>
<tr>
<td colspan="2" rowspan="1" align="left" valign="top">
<bold>Six specific backward primers for
<italic>CDC42</italic>
paralogue:</bold>
</td>
<td colspan="1" rowspan="1" align="left" valign="top"></td>
<td colspan="1" rowspan="1" align="left" valign="top"></td>
<td colspan="1" rowspan="1" align="left" valign="top"></td>
</tr>
</tbody>
<tbody>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">
<italic>CDC42</italic>
-F1s: </td>
<td colspan="1" rowspan="1" align="left" valign="top"></td>
<td colspan="1" rowspan="1" align="left" valign="top"></td>
<td colspan="1" rowspan="1" align="left" valign="top"> 5′-ATG GTT GTC GCA ACG ATC </td>
<td colspan="1" rowspan="1" align="left" valign="top"></td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">
<italic>CDC42</italic>
- R1d: </td>
<td colspan="1" rowspan="1" align="left" valign="top"></td>
<td colspan="1" rowspan="1" align="left" valign="top"></td>
<td colspan="1" rowspan="1" align="left" valign="top"> 5′-GGA CTT GTG GGT CGT CA </td>
<td colspan="1" rowspan="1" align="left" valign="top"></td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">
<italic>CDC42</italic>
-R2d: </td>
<td colspan="1" rowspan="1" align="left" valign="top"></td>
<td colspan="1" rowspan="1" align="left" valign="top"></td>
<td colspan="1" rowspan="1" align="left" valign="top"> 5′-TCA GCG ACG GAT GGG T </td>
<td colspan="1" rowspan="1" align="left" valign="top"></td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">
<italic>CDC42</italic>
-R3d (
<ext-link ext-link-type="uri" xlink:href="http://www.studiesinmycology.org/cgi/external_ref?access_num=232.33&link_type=CBS">CBS 232.33</ext-link>
): </td>
<td colspan="1" rowspan="1" align="left" valign="top"></td>
<td colspan="1" rowspan="1" align="left" valign="top"></td>
<td colspan="1" rowspan="1" align="left" valign="top"> 5′-GTT CCA ACA ATC AGA CA </td>
<td colspan="1" rowspan="1" align="left" valign="top"></td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">
<italic>CDC42</italic>
-R4d (
<ext-link ext-link-type="uri" xlink:href="http://www.studiesinmycology.org/cgi/external_ref?access_num=606.96&link_type=CBS">CBS 606.96</ext-link>
): </td>
<td colspan="1" rowspan="1" align="left" valign="top"></td>
<td colspan="1" rowspan="1" align="left" valign="top"></td>
<td colspan="1" rowspan="1" align="left" valign="top"> 5′-TCC CAA CAA TCA GAC AT </td>
<td colspan="1" rowspan="1" align="left" valign="top"></td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">
<italic>CDC42</italic>
-R5d (
<ext-link ext-link-type="uri" xlink:href="http://www.studiesinmycology.org/cgi/external_ref?access_num=616.96&link_type=CBS">CBS 616.96</ext-link>
): </td>
<td colspan="1" rowspan="1" align="left" valign="top"></td>
<td colspan="1" rowspan="1" align="left" valign="top"></td>
<td colspan="1" rowspan="1" align="left" valign="top"> 5′-CTT GCG GGT AGT CAC GAA </td>
<td colspan="1" rowspan="1" align="left" valign="top"></td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top">
<italic>CDC42</italic>
-R6d (
<ext-link ext-link-type="uri" xlink:href="http://www.studiesinmycology.org/cgi/external_ref?access_num=618.96&link_type=CBS">CBS 618.96</ext-link>
): </td>
<td colspan="1" rowspan="1" align="left" valign="top"></td>
<td colspan="1" rowspan="1" align="left" valign="top"></td>
<td colspan="1" rowspan="1" align="left" valign="top">5′-AAC AAT CAA ACA AGG CAC T </td>
<td colspan="1" rowspan="1" align="left" valign="top"></td>
</tr>
</tbody>
</table>
</table-wrap>
</p>
</sec>
<sec>
<title>Amplification of
<italic>CDC42</italic>
orthologue</title>
<p>Approximately 100 ng of genomic DNA was used as a template in semi-nested PCR with primer pair
<italic>CDC42</italic>
-F1s-R2s and followed by a second PCR using the amplicon of the first PCR with primer
<italic>CDC42</italic>
-F1s-R1s. Both PCR were performed in 25 μL PCR-mix consisting of GoTaq green master mix 7 μL (Promega, Leiden), MQ 13 μL, DMSO 1 μL, primers 1 μL each, DNA 2 μL, using a Biosystems 2720 thermal cycler with an initial cycle of 1 min at 98 °C, subsequently 30 cycles of 30 s at 98 °C, 30 s at 54 °C, and 1 min at 72 °C, and a final extension of 7 min at 72 °C.</p>
</sec>
<sec>
<title>Specific primers for
<italic>CDC42</italic>
paralogue</title>
<p>Backward primers were designed (
<xref ref-type="table" rid="tbl4">Table 4</xref>
) specific for each deviating motif using
<italic>CDC42</italic>
-F1s as forward primer. With both PCR amplifications, approximately 100 ng of genomic DNA was used as a template in first PCR with the forward primer combined with the backward primer in six separate reactions, and nested with the same primer pair. PCR was performed in a 25 μL PCR-mix consisting of GoTaq green master mix 7 μL (Promega, Leiden), MQ 13 μL, DMSO 1 μL, primers 1 μL each, DNA 2 μL using a Biosystems 2720 thermal cycler with an initial cycle of 1 min at 98 °C. Program was as follows: 30 cycles of 30 s at 98 °C, 30 s at 54 °C and 1 min at 72 °C, and a final extension of 7 min at 72 °C. The sond PCRs used amplicons from the first PCR and a touch-down program with an initial cycle of 1 min at 95 °C, subsequently 10 cycles of 30 s at 95 °C, 30 s at 62 °C/-1°C/cycle and 1 min at 72 °C, followed by 20 cycles of 30 s at 95 °C, 30 s at 52 °C, and 1 min at 72 °C, and a final extension of 7 min at 72 °C in sond PCR.</p>
</sec>
<sec>
<title>Cloning of the
<italic>CDC42</italic>
paralogue</title>
<p>
<italic>CDC42</italic>
paralogues were cloned using a cloning kit (pGEM-T vector; Promega, Madison, WI, U.S.A.), according to the manufacturer's instructions. We picked up one white colony to do direct PCR with primer M13 fw [5′-GTA AAA CGA CGG CCA GT-3′], M13 rv [5′-GGA AAC AGC TAT GAC CAT G-3]. PCR was performed in a 25 μL PCR-mix consisting of PCR buffer 10x 2.5 μL, MQ 15 μL, dNTP mix (1 mM) 2.5 μL,
<italic>Taq</italic>
polymerase (1 U/μL) 1 μL, primers 1 μL each and one white colony. amplifications were with a Biosystems 2720 thermal cycler using an initial cycle of 3 min at 94 °C, 28 subsequent cycles of 1 min at 93 °C, 1 min at 52 °C, and 2 min at 72 °C, and a final extension of 3 min at 72 °C. The resulting
<italic>CDC42</italic>
paralogue sequences were compared to the previously obtained orthologous
<italic>CDC42</italic>
gene sequences using B
<sc>io</sc>
N
<sc>umerics</sc>
software v. 4.61 (Applied Maths, Kortrijk, Belgium)</p>
</sec>
<sec>
<title>SSU and LSU amplification and sequencing</title>
<p>Primers (
<ext-link ext-link-type="uri" xlink:href="http://www.biology.duke.edu/fungi/mycolab/primers.htm">http://www.biology.duke.edu/fungi/mycolab/primers.htm</ext-link>
) shown in
<xref ref-type="table" rid="tbl3">Table 3</xref>
were used to amplify part of the nuclear rDNA operon spanning the 3' end of the 18S r RNA gene (SSU), then first internal transcribed spacer (ITS1), the 5.8S rRNA gene, the second ITS region and 5' end of the 28S rRNA gene (LSU). The PCR conditions followed the methods of Crous
<italic>et al.</italic>
(2006b). PCR amplifications were performed as follows: 95 °C for 1 min, followed by 30 cycles consisting of 95 °C for 10 s, 50 °C for 5 s and 60 °C for 4 min. Reaction products were then purified with Sephadex G-50 fine (GE Healthcare Bio-Sciences AB, Uppsala, Sweden) and sequencing was done on an ABI 3730XL automatic sequencer (Applied Biosystems, Foster City, CA, U.S.A.). Sequence data were adjusted using the SeqMan of Lasergene software (DNAStar Inc., Madison, Wisconsin, U.S.A.).</p>
<p>
<table-wrap position="float" id="tbl3">
<label>Table 3.</label>
<caption>
<p>Primer sequences for PCR amplification and sequencing of LSU and SSU.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th colspan="1" rowspan="1" align="left" valign="top">
<bold>Gene</bold>
</th>
<th colspan="1" rowspan="1" align="center" valign="top">
<bold>PCR primers</bold>
</th>
<th colspan="1" rowspan="1" align="center" valign="top">
<bold>Sequencing primers</bold>
</th>
<th colspan="1" rowspan="1" align="left" valign="top">
<bold>References</bold>
</th>
</tr>
</thead>
<tbody>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top"> LSU rDNA </td>
<td colspan="1" rowspan="1" align="left" valign="top"> LRORa, LR7b </td>
<td colspan="1" rowspan="1" align="left" valign="top"> LRoR LR3R, LR5, LR7b </td>
<td colspan="1" rowspan="1" align="left" valign="top"> a Rehner & Samuels (1994) </td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top"></td>
<td colspan="1" rowspan="1" align="left" valign="top"></td>
<td colspan="1" rowspan="1" align="left" valign="top"></td>
<td colspan="1" rowspan="1" align="left" valign="top"> b Vilgalys & Hester (
<xref ref-type="bibr" rid="ref29">1990</xref>
) </td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top"> SSU rDNA </td>
<td colspan="1" rowspan="1" align="left" valign="top"> NS1a, NS24b </td>
<td colspan="1" rowspan="1" align="left" valign="top"> BF83, Oli1, Oli9, BF951, BF963, BF1438, Oli3, BF1419 c </td>
<td colspan="1" rowspan="1" align="left" valign="top"> c White
<italic>et al.</italic>
(
<xref ref-type="bibr" rid="ref31">1990</xref>
) </td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top"></td>
<td colspan="1" rowspan="1" align="left" valign="top"></td>
<td colspan="1" rowspan="1" align="left" valign="top"></td>
<td colspan="1" rowspan="1" align="left" valign="top"> b Gargas & Taylor (
<xref ref-type="bibr" rid="ref7">1992</xref>
) </td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="left" valign="top"></td>
<td colspan="1" rowspan="1" align="left" valign="top"></td>
<td colspan="1" rowspan="1" align="left" valign="top"></td>
<td colspan="1" rowspan="1" align="left" valign="top">c de Hoog
<italic>et al.</italic>
(
<xref ref-type="bibr" rid="ref12">2005</xref>
) </td>
</tr>
</tbody>
</table>
</table-wrap>
</p>
</sec>
<sec>
<title>Alignment and phylogenetic reconstruction</title>
<p>Phylogenetic analyses were carried out on data with a taxon sampling representative of the order
<italic>Chaetothyriales</italic>
and including the three genes nucLSU, nucSSU and
<italic>CDC42</italic>
. This dataset was used in order to assess the phylogenetic evolution of
<italic>CDC42</italic>
gene on diverse species within
<italic>Chaetothyriales</italic>
. SSU, LSU and
<italic>CDC42</italic>
data sets were analyzed separately. Alignments were adjusted manually. Ambiguous regions were excluded from the alignments. Concatenated sequences of LSU and SSU were submitted to the Cipres Portal v.1.14 (
<ext-link ext-link-type="uri" xlink:href="http://www.phylo.org/portal/Home.do">http://www.phylo.org/portal/Home.do</ext-link>
) using the RAxML web server. Maximum likelihood searches for the best-scoring tree were made after the bootstrap estimate proportion of invariable sites automatically determined the number of bootstrapping runs: if checked, RAxML will automatically determine the point at which enough bootstrapping replicates have been produced (
<xref ref-type="bibr" rid="ref24">Stamatakis
<italic>et al.</italic>
2008</xref>
).
<italic>CDC42</italic>
data were analyzed in the same way. Bootstrap values equal to or greater than 80 % were considered significant (
<xref ref-type="bibr" rid="ref11">Hillis & Bull 1993</xref>
).</p>
</sec>
</sec>
<sec>
<title>RESULTS</title>
<sec>
<title>Evaluation of designed primers for
<italic>CDC42</italic>
</title>
<p>The degenerate primers designed proved to be insufficiently specific to amplify the
<italic>CDC42</italic>
gene. Four oligonucleotide primer sets, i.e.
<italic>CDC42</italic>
-F1s-R2s,
<italic>CDC42</italic>
-F1s-R1s,
<italic>CDC42</italic>
-F2s-R2s and
<italic>CDC42</italic>
-F2s-R1s were synthesized and tested for amplification with genomic DNA from 32 selected strains in the CBS reference collection representing the order
<italic>Chaetothyriales</italic>
. Primer pairs
<italic>CDC42</italic>
-F2s-R2s and
<italic>CDC42</italic>
-F2s-R1s provided poor results and were excluded from the analysis. Primer sets
<italic>CDC42</italic>
-F1s-R2s yielded a PCR product of 690 bp, whereas primer pair
<italic>CDC42</italic>
-F1s-R1s produced an amplicon of 630 bp in length, spanning two introns. The primer sets were found to be largely specific for their target groups. Semi Nested PCRs were successfully employed, with the first PCR giving only very weak bands but clear bands being visible with second PCR. With the second amplification the ratio of concentration of inhibitors
<italic>vs.</italic>
template DNA allowed amplification of the product. In general it was difficult to amplify the desired
<italic>CDC42</italic>
gene fragments from strains of
<italic>Chaetothyriales,</italic>
because of the following: (1) PCRs had frequently to be repeated using the first amplicon, because the product from the first PCR was mostly not visible on the gel; (2) Successful PCRs were only obtained with GoTaq and DMSO, not with BioTaq; (3) Although the PCR programs were optimized for amplification of
<italic>Chaetothyriales</italic>
, some strains had to be done with touch-down programs in order to avoid generation of unspecific bands; (4) Frequent heavy backgrounds in electropherograms suggested contaminated PCR products. BLAST searches in GenBank showed that the sequences determined in this study deviated maximally 7 % from the published
<italic>CDC42</italic>
sequence of
<ext-link ext-link-type="uri" xlink:href="http://www.studiesinmycology.org/cgi/external_ref?access_num=525.76&link_type=CBS">CBS 525.76</ext-link>
,
<italic>E. dermatitidis</italic>
(AF162788) (
<xref ref-type="bibr" rid="ref32">Ye & Szaniszlo 2000</xref>
).</p>
</sec>
<sec>
<title>Phylogenetic analysis</title>
<p>A phylogenetic tree was constructed for 32 members of
<italic>Chaetothyriales</italic>
using concatenated SSU and LSU ribosomal genes, with
<italic>Conisporium perforans</italic>
as an outgroup. This species was shown previously to be basal to the
<italic>Herpotrichiellaceae</italic>
by Badali
<italic>et al.</italic>
(
<xref ref-type="bibr" rid="ref1">2008</xref>
). Four of the five clades recognized previously (e.g.,
<xref ref-type="bibr" rid="ref10">Haase
<italic>et al.</italic>
1999</xref>
) were separated with high bootstrap support (
<xref rid="fig2" ref-type="fig">Fig. 2</xref>
):
<italic>Exophiala dermatitidis</italic>
clade (1),
<italic>Fonsecaea pedrosoi</italic>
clade (2) and
<italic>Exophiala spinifera</italic>
clade (3), while Haase's clade 5 is now known to represent the ancestral group (lineage 2) close to
<italic>Ceramothyrium</italic>
(
<xref ref-type="bibr" rid="ref1">Badali
<italic>et al.</italic>
2008</xref>
) and members of this clade 4 were not included in the present analysis.</p>
<p>DNA sequences of the partial of
<italic>CDC42</italic>
were strictly identical for 25 strains (
<xref rid="fig1" ref-type="fig">Fig 1</xref>
). In these strains also the intron and the 3
<sup>rd</sup>
codon positions of the exons were identical. The strains were distributed randomly over the ribosomal tree (
<xref rid="fig2" ref-type="fig">Fig. 2</xref>
). No difference was detected between
<italic>Coniosporium perforans</italic>
<ext-link ext-link-type="uri" xlink:href="http://www.studiesinmycology.org/cgi/external_ref?access_num=885.96&link_type=CBS">CBS 885.96</ext-link>
, selected as the ribosomal outgroup, and the most derived groups containing e.g.
<italic>Exophiala oligosperma</italic>
<ext-link ext-link-type="uri" xlink:href="http://www.studiesinmycology.org/cgi/external_ref?access_num=725.88&link_type=CBS">CBS 725.88</ext-link>
. In a number of strains significant deviations were found (
<xref rid="fig1" ref-type="fig">Fig. 1</xref>
), which were limited to the third codon positions and to the introns (
<xref ref-type="table" rid="tbl5">Table 5</xref>
). The strains clustered in four ribosomal clades (1, 2, 3, 5;
<xref rid="fig2" ref-type="fig">Fig. 2</xref>
). Nearest neighbours in the
<italic>CDC42</italic>
trees were found to belong to the same ribosomal clades.</p>
<p>
<table-wrap position="float" id="tbl5">
<label>Table 5.</label>
<caption>
<p>Number of mutations in 89 codons of partial
<italic>CDC42</italic>
coding region of ten strains which had paralogues. Amino acid changes from orthologue are listed</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th colspan="1" rowspan="1" align="left" valign="top">
<bold>Accession No.</bold>
</th>
<th colspan="1" rowspan="1" align="left" valign="top">
<bold>Species name</bold>
</th>
<th colspan="1" rowspan="1" align="left" valign="top">
<bold>Total codon</bold>
</th>
<th colspan="1" rowspan="1" align="left" valign="top">
<bold>1
<sup>st</sup>
base</bold>
</th>
<th colspan="1" rowspan="1" align="left" valign="top">
<bold>2
<sup>nd</sup>
base</bold>
</th>
<th colspan="1" rowspan="1" align="left" valign="top">
<bold>3
<sup>rd</sup>
base</bold>
</th>
<th colspan="1" rowspan="1" align="left" valign="top">
<bold>Amino acid change</bold>
</th>
</tr>
</thead>
<tbody>
<tr>
<td colspan="1" rowspan="1" align="center" valign="top">
<ext-link ext-link-type="uri" xlink:href="http://www.studiesinmycology.org/cgi/external_ref?access_num=618.96&link_type=CBS">CBS 618.96</ext-link>
</td>
<td colspan="1" rowspan="1" align="left" valign="top">
<italic>Capronia acutiseta</italic>
</td>
<td colspan="1" rowspan="1" align="center" valign="top"> 89 </td>
<td colspan="1" rowspan="1" align="center" valign="top"> 2 </td>
<td colspan="1" rowspan="1" align="center" valign="top"> 1 </td>
<td colspan="1" rowspan="1" align="left" valign="top"> 38 </td>
<td colspan="1" rowspan="1" align="left" valign="top"> CAA → TCA/Q → S </td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="center" valign="top">
<ext-link ext-link-type="uri" xlink:href="http://www.studiesinmycology.org/cgi/external_ref?access_num=232.33&link_type=CBS">CBS 232.33</ext-link>
</td>
<td colspan="1" rowspan="1" align="left" valign="top">
<italic>Exophiala heteromorpha</italic>
</td>
<td colspan="1" rowspan="1" align="center" valign="top"> 89 </td>
<td colspan="1" rowspan="1" align="center" valign="top"> 1 </td>
<td colspan="1" rowspan="1" align="center" valign="top"> - </td>
<td colspan="1" rowspan="1" align="left" valign="top"> 33 </td>
<td colspan="1" rowspan="1" align="left" valign="top"> - </td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="center" valign="top">
<ext-link ext-link-type="uri" xlink:href="http://www.studiesinmycology.org/cgi/external_ref?access_num=260.83&link_type=CBS">CBS 260.83</ext-link>
</td>
<td colspan="1" rowspan="1" align="left" valign="top">
<italic>Cladophialophora carrionii</italic>
</td>
<td colspan="1" rowspan="1" align="center" valign="top"> 89 </td>
<td colspan="1" rowspan="1" align="center" valign="top"> 2 </td>
<td colspan="1" rowspan="1" align="center" valign="top"> 1 </td>
<td colspan="1" rowspan="1" align="left" valign="top"> 39 </td>
<td colspan="1" rowspan="1" align="left" valign="top"> CAA → TCG/Q → S </td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="center" valign="top">
<ext-link ext-link-type="uri" xlink:href="http://www.studiesinmycology.org/cgi/external_ref?access_num=126.86&link_type=CBS">CBS 126.86</ext-link>
</td>
<td colspan="1" rowspan="1" align="left" valign="top">
<italic>Cladophialophora boppii</italic>
</td>
<td colspan="1" rowspan="1" align="center" valign="top"> 89 </td>
<td colspan="1" rowspan="1" align="center" valign="top"> 2 </td>
<td colspan="1" rowspan="1" align="center" valign="top"> 1 </td>
<td colspan="1" rowspan="1" align="left" valign="top"> 39 </td>
<td colspan="1" rowspan="1" align="left" valign="top"> CAA → TCG/Q → S </td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="center" valign="top">
<ext-link ext-link-type="uri" xlink:href="http://www.studiesinmycology.org/cgi/external_ref?access_num=286.47&link_type=CBS">CBS 286.47</ext-link>
</td>
<td colspan="1" rowspan="1" align="left" valign="top">
<italic>Phialophora verrucosa</italic>
</td>
<td colspan="1" rowspan="1" align="center" valign="top"> 89 </td>
<td colspan="1" rowspan="1" align="center" valign="top"> 3 </td>
<td colspan="1" rowspan="1" align="center" valign="top"> 1 </td>
<td colspan="1" rowspan="1" align="left" valign="top"> 46 </td>
<td colspan="1" rowspan="1" align="left" valign="top"> CAA → TCC/Q → S </td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="center" valign="top">
<ext-link ext-link-type="uri" xlink:href="http://www.studiesinmycology.org/cgi/external_ref?access_num=606.96&link_type=CBS">CBS 606.96</ext-link>
</td>
<td colspan="1" rowspan="1" align="left" valign="top">
<italic>Capronia epimyces</italic>
</td>
<td colspan="1" rowspan="1" align="center" valign="top"> 89 </td>
<td colspan="1" rowspan="1" align="center" valign="top"> - </td>
<td colspan="1" rowspan="1" align="center" valign="top"> - </td>
<td colspan="1" rowspan="1" align="left" valign="top"> 35 </td>
<td colspan="1" rowspan="1" align="left" valign="top"> - </td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="center" valign="top">
<ext-link ext-link-type="uri" xlink:href="http://www.studiesinmycology.org/cgi/external_ref?access_num=207.35&link_type=CBS">CBS 207.35</ext-link>
</td>
<td colspan="1" rowspan="1" align="left" valign="top">
<italic>Exophiala dermatitidis</italic>
</td>
<td colspan="1" rowspan="1" align="center" valign="top"> 89 </td>
<td colspan="1" rowspan="1" align="center" valign="top"> 2 </td>
<td colspan="1" rowspan="1" align="center" valign="top"> - </td>
<td colspan="1" rowspan="1" align="left" valign="top"> 33 </td>
<td colspan="1" rowspan="1" align="left" valign="top"> - </td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="center" valign="top">
<ext-link ext-link-type="uri" xlink:href="http://www.studiesinmycology.org/cgi/external_ref?access_num=525.76&link_type=CBS">CBS 525.76</ext-link>
</td>
<td colspan="1" rowspan="1" align="left" valign="top">
<italic>Exophiala dermatitidis</italic>
</td>
<td colspan="1" rowspan="1" align="center" valign="top"> 89 </td>
<td colspan="1" rowspan="1" align="center" valign="top"> 1 </td>
<td colspan="1" rowspan="1" align="center" valign="top"> - </td>
<td colspan="1" rowspan="1" align="left" valign="top"> 23 </td>
<td colspan="1" rowspan="1" align="left" valign="top"> - </td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="center" valign="top">
<ext-link ext-link-type="uri" xlink:href="http://www.studiesinmycology.org/cgi/external_ref?access_num=616.96&link_type=CBS">CBS 616.96</ext-link>
</td>
<td colspan="1" rowspan="1" align="left" valign="top">
<italic>Capronia villosa</italic>
</td>
<td colspan="1" rowspan="1" align="center" valign="top"> 89 </td>
<td colspan="1" rowspan="1" align="center" valign="top"> 2 </td>
<td colspan="1" rowspan="1" align="center" valign="top"> 1 </td>
<td colspan="1" rowspan="1" align="left" valign="top"> 5 </td>
<td colspan="1" rowspan="1" align="left" valign="top"> GAC → TAC/D → Y </td>
</tr>
<tr>
<td colspan="1" rowspan="1" align="center" valign="top">
<ext-link ext-link-type="uri" xlink:href="http://www.studiesinmycology.org/cgi/external_ref?access_num=615.96&link_type=CBS">CBS 615.96</ext-link>
</td>
<td colspan="1" rowspan="1" align="left" valign="top">
<italic>Capronia munkii</italic>
</td>
<td colspan="1" rowspan="1" align="center" valign="top">89 </td>
<td colspan="1" rowspan="1" align="center" valign="top">- </td>
<td colspan="1" rowspan="1" align="center" valign="top">- </td>
<td colspan="1" rowspan="1" align="left" valign="top">5 </td>
<td colspan="1" rowspan="1" align="left" valign="top">- </td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn>
<p>Q glutamin; S serin; D asparaginic acid; Y tyrosin</p>
</fn>
</table-wrap-foot>
</table-wrap>
</p>
<p>In order to verify the different motifs obtained, specific primers were developed for each sequence type of 32 strains. Amplification of the invariant type was relatively straightforward: the same sequence was obtained consistently. However, specific amplifications of deviating types were mostly unsuccessful. Strains
<ext-link ext-link-type="uri" xlink:href="http://www.studiesinmycology.org/cgi/external_ref?access_num=232.33&link_type=CBS">CBS 232.33</ext-link>
and
<ext-link ext-link-type="uri" xlink:href="http://www.studiesinmycology.org/cgi/external_ref?access_num=618.96&link_type=CBS">CBS 618.96</ext-link>
consistently provided a deviating sequence. Two strains of
<italic>Exophiala dermatitidis</italic>
(
<ext-link ext-link-type="uri" xlink:href="http://www.studiesinmycology.org/cgi/external_ref?access_num=525.76&link_type=CBS">CBS 525.76</ext-link>
and
<ext-link ext-link-type="uri" xlink:href="http://www.studiesinmycology.org/cgi/external_ref?access_num=207.37&link_type=CBS">CBS 207.37</ext-link>
),
<italic>Capronia epimyces</italic>
(
<ext-link ext-link-type="uri" xlink:href="http://www.studiesinmycology.org/cgi/external_ref?access_num=606.96&link_type=CBS">CBS 606.96</ext-link>
) and
<italic>Cladophialophora boppii</italic>
(
<ext-link ext-link-type="uri" xlink:href="http://www.studiesinmycology.org/cgi/external_ref?access_num=126.86&link_type=CBS">CBS 126.86</ext-link>
) revealed two deviating sequences, one identical to the core sequence of 25 strains, another clearly deviating in intron and 3
<sup>rd</sup>
codon sequences. Cloning results proved that the deviating genotypes were common in many strains. In some strains the invariant type could not be amplified (
<xref ref-type="table" rid="tbl1">Table 1</xref>
)</p>
<p>
<fig position="float" id="fig1">
<label>Fig. 1.</label>
<caption>
<p>Initial tree constructed for 32 members of
<italic>Chaetothyriales</italic>
based on partial
<italic>CDC42</italic>
sequences.</p>
</caption>
<graphic xlink:href="121fig1"></graphic>
</fig>
</p>
<p>
<fig position="float" id="fig2">
<label>Fig. 2.</label>
<caption>
<p>Tree constructed for 32 members of
<italic>Chaetothyriales</italic>
obtained from a ML analysis of two combined loci (SSU and LSU) using RAxML. Bootstrap support values were estimated based on 500 replicates and are shown above the branches (thick branch for values ≥ 90 %). The tree was rooted using
<italic>Coniosporium perforans</italic>
,
<ext-link ext-link-type="uri" xlink:href="http://www.studiesinmycology.org/cgi/external_ref?access_num=885.95&link_type=CBS">CBS 885.95</ext-link>
.</p>
</caption>
<graphic xlink:href="121fig2"></graphic>
</fig>
</p>
</sec>
</sec>
<sec>
<title>DISCUSSION</title>
<p>CDC42 is an essential GTPase that is ubiquitously expressed in eukaryotes, where it participates in the regulation of the cytoskeleton and a wide range of cellular processes, including cytokinesis, gene expression, cell cycle progression, apoptosis, and tumorogenesis. It transduces signals to the actin cytoskeleton to initiate and maintain polarized growth and to promote mitogen-activated protein morphogenesis. In filamentous fungi the
<italic>CDC42</italic>
gene product is involved in the transition of hyphae to isodiametrically growing cells. This transition becomes apparent in the formation of meristematic cells under conditions of environmental stress, such as with growth on rock, but also concerns muriform cells, the invasive form in human chromoblastomycosis.</p>
<p>In the evolution of
<italic>Chaetothyriales</italic>
, we witness a functional change from a rock-inhabiting life style prevalent in
<italic>Coniosporium</italic>
and relatives (
<xref rid="fig2" ref-type="fig">Fig. 2</xref>
; Sterflinger
<italic>et al.</italic>
1998) to an increased ability to infect humans and other vertebrates, e.g. in cases of chromoblastomycosis. Both life styles are characterized by isodiametric growth at least during part of the life cycle. Thus a major ecological and functional transition has taken place, the same characteristics of isodiametric expansion becoming applied in an entirely different setting. Exposure on rock is an ancestral condition in
<italic>Coniosporium</italic>
(
<xref ref-type="bibr" rid="ref18">Lutzoni
<italic>et al.</italic>
2001</xref>
,
<xref ref-type="bibr" rid="ref9">Gueidan
<italic>et al.</italic>
2008</xref>
), while the pathogenic role in agents of chromoblastomycosis in
<italic>Cladophialophora, Fonsecaea</italic>
and
<italic>Phialophora</italic>
is a derived condition (
<xref ref-type="bibr" rid="ref1">Badali
<italic>et al.</italic>
2008</xref>
). In recent publications the ribosomal tree based on SSU and LSU exhibits a basal lineage that has become individualized more clearly and referred to as the separate family
<italic>Chaetothyriaceae</italic>
within the
<italic>Chaetothyriales</italic>
(
<xref ref-type="bibr" rid="ref1">Badali
<italic>et al.</italic>
2008</xref>
). It contains primarily species from rock, but also those occasionally colonizing human skin or causing mild cutaneous infections (Li
<italic>et al.</italic>
2008). The majority of species reported from human chromoblastomycosis (
<italic>Phialophora verrucosa</italic>
and
<italic>Cladophialophora carrionii</italic>
) are united in a separate clade which can be attributed to the family
<italic>Herpotrichiellaceae</italic>
(
<xref ref-type="bibr" rid="ref28">Untereiner 2000</xref>
). An eventual directional evolution of CDC should reflect both ecologies including rock-inhabiting and pathogenic life styles.</p>
<p>
<fig position="float" id="fig3">
<label>Fig. 3.</label>
<caption>
<p>Tree constructed for 10 strains based on the partial exon of the
<italic>CDC42</italic>
paralogue.</p>
</caption>
<graphic xlink:href="121fig3"></graphic>
</fig>
</p>
<p>Our research was initiated with the development of primer sets to detect
<italic>CDC42</italic>
in
<italic>Chaetothyriales.</italic>
We constructed four primer sets from protein coding regions in which the PCR product would span at least one intron. Four degenerate primer sets were tested for their ability to amplify
<italic>CDC42</italic>
in members of
<italic>Chaetothyriales.</italic>
Specific primer sets were subsequently synthesized. Only two sets worked well such that they amplified PCR products matching the published
<italic>CDC42</italic>
sequence of
<ext-link ext-link-type="uri" xlink:href="http://www.studiesinmycology.org/cgi/external_ref?access_num=525.76&link_type=CBS">CBS 525.76</ext-link>
,
<italic>Exophiala dermatitidis</italic>
(AF162788) and that were clearly different from genes that encode functionally related proteins such as Rac and Rho. Further amplification in related species was done with these primer sets (
<italic>CDC42</italic>
-F1s-R2s and
<italic>CDC42</italic>
-F1s-R1s).</p>
<p>The majority of the strains, irrespective of their phylogenetic position based on rDNA, were invariable in
<italic>CDC42</italic>
. Part of the strains, however, showed considerable deviation in non-coding positions and introns (
<xref ref-type="table" rid="tbl5">Table 5</xref>
). Since the relationship with the ribosomal tree of the combined dataset was not directly obvious, we were uncertain whether the deviating sequences were homologous with
<italic>CDC42</italic>
, despite consistent highest scores in GenBank. For most
<italic>CDC42</italic>
amplifications, PCRs were difficult and had to be repeated several times due to frequent heavy background in the electropherogram suggesting contaminated PCR products. In order to verify the different motifs obtained, we developed specific primers for each sequence type. PCR efficiency and sequencing was particularly difficult in the deviating sequences, even when specific backward primers were used. Amplification of the invariant type was relatively straightforward: the same sequence was obtained consistently, with
<ext-link ext-link-type="uri" xlink:href="http://www.studiesinmycology.org/cgi/external_ref?access_num=618.96&link_type=CBS">CBS 618.96</ext-link>
,
<ext-link ext-link-type="uri" xlink:href="http://www.studiesinmycology.org/cgi/external_ref?access_num=232.33&link_type=CBS">CBS 232.33</ext-link>
as the only exceptions (
<xref ref-type="table" rid="tbl1">Table 1</xref>
). However, specific amplifications of deviating haplotypes were mostly unsuccessful. In two strains the deviating sequence was obtained in addition to the invariant type. This strongly suggests that the deviating type was a paralogue resulting from gene duplication. When the fragments were cloned, ortho- and paralogues were obtained repeatedly, the orthologue remaining absent from
<ext-link ext-link-type="uri" xlink:href="http://www.studiesinmycology.org/cgi/external_ref?access_num=232.33&link_type=CBS">CBS 232.33</ext-link>
.</p>
<p>
<fig position="float" id="fig4">
<label>Fig. 4.</label>
<caption>
<p>Tree constructed for 9 strains based on the sequenced intron of the
<italic>CDC42</italic>
paralogue.</p>
</caption>
<graphic xlink:href="121fig4"></graphic>
</fig>
</p>
<p>The
<italic>CDC42</italic>
orthologue evolution shows an unexpected topology. The analyzed exons showed very limited non-synonymous change throughout the entire phylogenetic history of
<italic>Chaetothyriales</italic>
, even between such remote species as
<italic>Coniosporium perforans</italic>
and
<italic>Exophiala dermatitidis</italic>
. A very strong constraint is observed on the gene, the exon having remained identical and the protein structure having remained unchanged. Remarkably, also intron and 3
<sup>rd</sup>
codon sequences had remained identical (
<xref rid="fig1" ref-type="fig">Fig. 1</xref>
). The gene was subject of strong functional and structural constraints.</p>
<p>In main traits the evolution of the
<italic>CDC42</italic>
paralogue was comparable to that of the scaffold of the multilocus phylogeny of the
<italic>Chaetothyriales</italic>
(
<xref ref-type="bibr" rid="ref1">Badali
<italic>et al.</italic>
2008</xref>
). SSU, LSU and
<italic>CDC42</italic>
were analysed using the same set of strains (Figs
<xref rid="fig1" ref-type="fig">1</xref>
,
<xref rid="fig2" ref-type="fig">2</xref>
,
<xref rid="fig3" ref-type="fig">3</xref>
,
<xref rid="fig4" ref-type="fig">4</xref>
). SSU and LSU gene evolution is likely to reflect the phylogenetic history of
<italic>Chaetothyriales</italic>
. The paralogue showed considerable evolution in intron and 3
<sup>rd</sup>
codon positions, the tertiary structure being relaxed, allowing considerable mutation. The translated protein sequence, however, showed only limited non-synonymous change (
<xref ref-type="table" rid="tbl5">Table 5</xref>
Figs
<xref rid="fig3" ref-type="fig">3</xref>
,
<xref rid="fig4" ref-type="fig">4</xref>
). Non-synonymous change is observed in
<italic>Phialophora</italic>
and
<italic>Cladophialophora</italic>
agents of chromoblastomycosis, but not in
<italic>Fonsecaea</italic>
even though all three cause the same disease. Hence these mutations cannot be linked to selection of an adapted genotype.</p>
<p>We hypothesise that both types are expressed with identical proteins, with gene duplication as an ancient event, and that subsequent structural evolution has taken place in the paralogue without loss of function. In the majority of the species investigated only one of the types was detected, suggesting that ortho- or paralogues may be lost. When non-synonymous
<italic>vs.</italic>
synonymous nucleotide divergence is high between species, functional divergence is assumed to be high, due to positive selection and/or relaxed selective constraint (e.g.
<xref ref-type="bibr" rid="ref6">Friedman & Hughes 2004</xref>
). When this ratio is low, the functional properties of the gene products involved are thought to be conserved, because selective constraint is high and there is little or no positive selection (e.g.
<xref ref-type="bibr" rid="ref23">Sehgal & Lovette 2003</xref>
). In
<italic>CDC42</italic>
, both ortho- and paralogues show a very low ratio, indicating high functional and structural selective constraint.</p>
<p>In summary, we hypothesise that members of
<italic>Chaetothyriales</italic>
may have two duplicate
<italic>CDC42</italic>
genes, producing exactly the same protein, but having a conserved
<italic>versus</italic>
relaxed tertiary structure, which involves 3
<sup>rd</sup>
codon positions as well as introns. The evolution that takes place in the paralogue follows the main traits of evolution seen in ribosomal genes, but the genes are considerably more variable and difficult to align. The possibility is not excluded that in the course of evolution one of the duplicate genes – either ortho- or paralogue – was lost in individual species. In that case
<italic>CDC42</italic>
would be a poor phylogenetic marker, as trees will consist of non-homologous genes. From the fact that both orthogue and paralogue have a considerable constraint at the protein level, it can be concluded that any eventual change of function of
<italic>CDC42</italic>
in the course of evolution of
<italic>Chaetothyriales</italic>
(using
<italic>CDC42</italic>
for rock-inhabiting or pathogenic life styles, respectively) is not reflected at the DNA level. The limited number of non-synonymous changes in the paralogue do not coincide with evolution in species causing chromoblastomycosis, and thus do not suggest any positive selection of a functional change from rock-inhabiting life styles to pathogenicity. Any role of
<italic>CDC42</italic>
as a virulence factor has thus not been proven.</p>
</sec>
</body>
<back>
<ack>
<p>We are indebted to K. Voigt, P.J. Szaniszlo and G. Walther for useful comments on the manuscript.</p>
</ack>
<ref-list>
<ref id="ref1">
<citation citation-type="journal">Badali H, Gueidan C, Najafzadeh MJ, Bonifaz A, Gerrits van den Ende AHG, Hoog GS de (
<year>2008</year>
). Biodiversity of the genus Cladophialophora.
<source>Studies in Mycology</source>
<volume>61</volume>
:
<fpage>175</fpage>
–191.</citation>
</ref>
<ref id="ref2">
<citation citation-type="journal">Barr ME (
<year>1990</year>
). Prodromus to nonlichenized, pyrenomycetous members of class Hymenoascomycetes.
<source>Mycotaxon</source>
<volume>39</volume>
:
<fpage>43</fpage>
–184.</citation>
</ref>
<ref id="ref3">
<citation citation-type="journal">Bose I, Irazoqui J, Moskow JJ, Bardes ESG, Zyla TR, Lew DJ (
<year>2001</year>
). Assembly of scaffold-mediated complexes containing Cdc42p, the exchange factor Cdc24p, and the effector Cla4p required for cell cycle regulated phosphorylation of Cdc24p.
<source>Journal Biological Chemistry</source>
<volume>276</volume>
:
<fpage>7176</fpage>
–7186.</citation>
</ref>
<ref id="ref4">
<citation citation-type="journal">Boyce KJ, Hynes MJ, Andrianopoulos A (
<year>2001</year>
). The CDC42 homolog of the dimorphic fungus
<italic>Penicillium marneffei</italic>
is required for correct cell polarization during growth but not development.
<source>Journal of Bacteriology</source>
<volume>183</volume>
:
<fpage>3447</fpage>
–3457.
<pub-id pub-id-type="pmid">11344153</pub-id>
</citation>
</ref>
<ref id="N0x1cddbd0N0x36e8f40">
<citation citation-type="journal">Crous P, Slippers B, Wingfield MJ, Rheeder J, Marasas WFO, Philips AJL, Alves A, Burgess T, Barber P, Groenewald JZ (
<year>2006</year>
). Phylogenetic lineages in the Botryosphaeriaceae.
<source>Studies in Mycology</source>
<volume>55</volume>
:
<fpage>235</fpage>
–253.
<pub-id pub-id-type="pmid">18490983</pub-id>
</citation>
</ref>
<ref id="ref6">
<citation citation-type="journal">Friedman R & Hughes AL (
<year>2004</year>
). Two patterns of genome organization in mammals: the chromosomal distribution of duplicate genes in human and mouse.
<source>Molecular Biology and Evolution</source>
<volume>21</volume>
:
<fpage>1008</fpage>
–1013.
<pub-id pub-id-type="pmid">14963098</pub-id>
</citation>
</ref>
<ref id="ref7">
<citation citation-type="journal">Gargas A, Taylor JW (
<year>1992</year>
). Polymerase chain reaction (PCR) primers for amplifying and sequencing 18s rDNA from lichenised fungi.
<source>Mycologia</source>
<volume>84</volume>
:
<fpage>589</fpage>
–592.</citation>
</ref>
<ref id="ref8">
<citation citation-type="journal">Gorfer M, Tarkka MT, Hanif M, Pardo AG, Laitiainen E, Raudaskoski M (
<year>2001</year>
). Characterization of small GTPases Cdc42 and Rac and the relationship between Cdc42 and actin cytoskeleton in vegetative and ectomycorrhizal hyphae of Suillus bovinus.
<source>Molecular Plant Microbe Interactions</source>
<volume>14</volume>
:
<fpage>135</fpage>
–144.
<pub-id pub-id-type="pmid">11204776</pub-id>
</citation>
</ref>
<ref id="ref9">
<citation citation-type="journal">Gueidan C, Ruibal Villaseñor C, Hoog GS de, Gorbushina AA, Untereiner WA, Lutzoni F (
<year>2008</year>
). An extremotolerant rock-inhabiting ancestor for mutualistic and pathogen-rich fungal lineages.
<source>Studies in Mycology</source>
<volume>61</volume>
:
<fpage>111</fpage>
-119.</citation>
</ref>
<ref id="ref10">
<citation citation-type="journal">Haase G, Sonntag L, Melzer-Krick B, Hoog GS de (
<year>1999</year>
). Phylogenetic inference by SSU-gene analysis of members of the
<italic>Herpotrichiellaceae</italic>
with special reference to human pathogenic species.
<source>Studies in Mycology</source>
<volume>43</volume>
<fpage>80</fpage>
–97.</citation>
</ref>
<ref id="ref11">
<citation citation-type="journal">Hillis DM, Bull JJ (
<year>1993</year>
). An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis.
<source>Systematic Biology</source>
<volume>42</volume>
:
<fpage>182</fpage>
–192.</citation>
</ref>
<ref id="ref12">
<citation citation-type="journal">Hoog GS de, Göttlich E, Platas G, Genilloud O, Leotta G, Brummelen J van (
<year>2005</year>
). Evolution, taxonomy and ecology of the genus
<italic>Thelebolus</italic>
in Antarctica.
<source>Studies in Mycology</source>
<volume>51</volume>
:
<fpage>33</fpage>
–76.</citation>
</ref>
<ref id="ref13">
<citation citation-type="other">Hoog GS de, Guarro J, Gené J, Figueras MJ (
<year>2000</year>
).
<source>Atlas of Clinical Fungi</source>
, 2nd ed. Centraalbureau voor Schimmelcultures, Utrecht, The Netherlands and Universitat Rovira i Virgili, Reus, Spain.</citation>
</ref>
<ref id="N0x1cddbd0N0x36f04a8">
<citation citation-type="journal">Hughes AL, Friedman R (
<year>2004</year>
). Recent mammalian gene duplications:robust search for functionally divergent gene pairs.
<source>Journal of Molecular Evolution</source>
<volume>59</volume>
:
<fpage>114</fpage>
–120.
<pub-id pub-id-type="pmid">15383914</pub-id>
</citation>
</ref>
<ref id="ref15">
<citation citation-type="journal">Hurtado CAR, Beckerich JM, Gaillardin C, Rachubinski RA (
<year>2000</year>
). A Rac homolog is required for induction of hyphal growth in the dimorphic yeast Yarrowia lipolytica.
<source>Journal of Bacteriology</source>
<volume>182</volume>
:
<fpage>2376</fpage>
–2386.
<pub-id pub-id-type="pmid">10762235</pub-id>
</citation>
</ref>
<ref id="ref16">
<citation citation-type="journal">Johnson DI (
<year>1999</year>
).
<italic>Cdc42</italic>
: An essential
<italic>Rho</italic>
-type GTPase controlling eukaryotic cell polarity.
<source>Microbiology and Molecular Biology Reviews</source>
<volume>63</volume>
:
<fpage>54</fpage>
–105.
<pub-id pub-id-type="pmid">10066831</pub-id>
</citation>
</ref>
<ref id="N0x1cddbd0N0x36f0b68">
<citation citation-type="journal">Karuppayil SM, Szaniszlo PJ (
<year>1997</year>
). Importance of calcium to the regulation of polymorphism in Wangiella dermatitidis.
<source>Journal of Medical and Veterinary Mycology</source>
<volume>35</volume>
:
<fpage>379</fpage>
–388.
<pub-id pub-id-type="pmid">9467104</pub-id>
</citation>
</ref>
<ref id="ref18">
<citation citation-type="journal">Lutzoni F, Pagel M, Reeb V (
<year>2001</year>
). Major fungal lineages are derived from lichen symbiotic ancestors.
<source>Nature</source>
<volume>411</volume>
:
<fpage>937</fpage>
–940.
<pub-id pub-id-type="pmid">11418855</pub-id>
</citation>
</ref>
<ref id="ref19">
<citation citation-type="journal">Matsumoto T, Matsuda T, McGinnis MR, Ajello L (
<year>1993</year>
). Clinical and mycological spectra of
<italic>Wangiella dermatitidis</italic>
infections.
<source>Mycoses</source>
<volume>36</volume>
:
<fpage>145</fpage>
–155.
<pub-id pub-id-type="pmid">8264710</pub-id>
</citation>
</ref>
<ref id="ref20">
<citation citation-type="journal">Mendoza L, Karuppayil SM, Szaniszlo PJ (
<year>1993</year>
). Calcium regulates
<italic>in vitro</italic>
dimorphism in chromoblastomycotic fungi.
<source>Mycoses</source>
<volume>36</volume>
:
<fpage>157</fpage>
–164.
<pub-id pub-id-type="pmid">8264711</pub-id>
</citation>
</ref>
<ref id="ref21">
<citation citation-type="journal">Prenafeta-Boldú FX, Summerbell RC, Hoog GS de (
<year>2006</year>
). Fungi growing on aromatic hydrocarbons: biotechnology's unexpected encounter with biohazard.
<source>FEMS Microbiological Reviews</source>
<volume>30</volume>
:
<fpage>109</fpage>
–130.</citation>
</ref>
<ref id="ref22">
<citation citation-type="other">Ruibal C (
<year>2004</year>
).
<source>Isolation and characterization of melanized, slow-growing fungi from semiarid rock surfaces of central Spain and Mallorca.</source>
Ph.D. dissertation, Universidad Autónoma de Madrid.</citation>
</ref>
<ref id="ref23">
<citation citation-type="journal">Sehgal RN, Lovette IJ (
<year>2003</year>
). Molecular evolution of three avian neurotrophin genes: implications for proregion functional constraints.
<source>Journal of Molecular Evolution</source>
<volume>57</volume>
:
<fpage>335</fpage>
–342.
<pub-id pub-id-type="pmid">14629043</pub-id>
</citation>
</ref>
<ref id="ref24">
<citation citation-type="journal">Stamatakis A, Hoover P, Rougemont J (
<year>2008</year>
). A rapid bootstrap algorithm for the RAxML web-servers.
<source>Systematic Biology</source>
<volume>75</volume>
:
<fpage>758</fpage>
–771.</citation>
</ref>
<ref id="N0x1cddbd0N0x36f1b28">
<citation citation-type="journal">Sterflinger K (
<year>1998</year>
). Temperature and NaCl-tolerance of rock-inhabiting meristematic fungi.
<source>Antonie van Leeuwenhoek</source>
<volume>74</volume>
:
<fpage>271</fpage>
–281.
<pub-id pub-id-type="pmid">10081587</pub-id>
</citation>
</ref>
<ref id="ref26">
<citation citation-type="other">Szaniszlo PJ, Geis PA, Jacobs CW, Cooper CR Jr, Harris JL (
<year>1983</year>
). Cell wall changes associated with yeast to multi-cellular form conversion in
<italic>Wangiella dermatitidis</italic>
In: D. Schlessinger (ed.)
<source>Microbiology 83.</source>
American Society for Microbiology, Washington, D.C.
<fpage>239</fpage>
–244.</citation>
</ref>
<ref id="ref27">
<citation citation-type="journal">Szaniszlo PJ, Karuppayil SM, Mendoza L, Rennard RJ (
<year>1993</year>
). Cell cycle regulation of polymorphism in Wangiella dermatitidis.
<source>Archives of Medical Research</source>
<volume>24</volume>
:
<fpage>251</fpage>
–261.
<pub-id pub-id-type="pmid">8298274</pub-id>
</citation>
</ref>
<ref id="ref28">
<citation citation-type="journal">Untereiner WA (
<year>2000</year>
).
<italic>Capronia</italic>
and its anamorphs: exploring the value of morphological and molecular characters in the systematics of the Herpotrichiellaceae.
<source>Studies in Mycology</source>
<volume>45</volume>
:
<fpage>141</fpage>
–149</citation>
</ref>
<ref id="ref29">
<citation citation-type="journal">Vilgalys R, Hester M (
<year>1990</year>
). Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several
<italic>Cryptococcus</italic>
species.
<source>Journal of Bacteriology</source>
<volume>172</volume>
:
<fpage>4238</fpage>
–4246.
<pub-id pub-id-type="pmid">2376561</pub-id>
</citation>
</ref>
<ref id="ref30">
<citation citation-type="journal">Virag A, Lee MP, Si H, Harris SD (
<year>2007</year>
). Regulation of hyphal morphogenesis by
<italic>CDC42</italic>
and
<italic>RAC1</italic>
homologues in Aspergillus nidulans.
<source>Molecular Microbiology</source>
<volume>66</volume>
:
<fpage>1579</fpage>
–1596.
<pub-id pub-id-type="pmid">18005099</pub-id>
</citation>
</ref>
<ref id="ref31">
<citation citation-type="other">White TJ, Bruns T, Lee S, Taylor J (
<year>1990</year>
). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In:
<source>PCR Protocols: a guide to methods and applications</source>
(Innis MA, Gelfand DH, Sninsky JJ, White TJ, eds). Academic Press, San Diego, California:
<fpage>315</fpage>
–322.</citation>
</ref>
<ref id="ref32">
<citation citation-type="journal">Ye X, Szaniszlo PJ (
<year>2000</year>
). Expression of a constitutively active
<italic>CDC42</italic>
homologue promotes development of sclerotic bodies but represses hyphal growth in the zoopathogenic fungus Wangiella (Exophiala) dermatitidis.
<source>Journal of Bacteriology</source>
<volume>182</volume>
:
<fpage>4941</fpage>
–4950.
<pub-id pub-id-type="pmid">10940039</pub-id>
</citation>
</ref>
<ref id="N0x1cddbd0N0x36f8bd0">
<citation citation-type="journal">Zeng JS, Sutton DA, Fothergill AW, Rinaldi MG, Harrak MJ, Hoog GS de (
<year>2007</year>
). Spectrum of clinically relevant
<italic>Exophiala</italic>
species in the U.S.A.
<source>Journal of Clinical Microbiology</source>
<volume>45</volume>
:
<fpage>3713</fpage>
–3720.
<pub-id pub-id-type="pmid">17596364</pub-id>
</citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Bois/explor/CheneBelgiqueV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000099  | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000099  | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Bois
   |area=    CheneBelgiqueV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     
   |texte=   
}}

Wicri

This area was generated with Dilib version V0.6.27.
Data generation: Tue Feb 21 23:48:11 2017. Site generation: Wed Mar 6 16:29:49 2024