Serveur d'exploration sur le chêne en Belgique (avant curation)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
***** Acces problem to record *****\

Identifieur interne : 0000989 ( Pmc/Corpus ); précédent : 0000988; suivant : 0000990 ***** probable Xml problem with record *****

Links to Exploration step


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Relating increasing hantavirus incidences to the changing climate: the mast connection</title>
<author>
<name sortKey="Clement, Jan" sort="Clement, Jan" uniqKey="Clement J" first="Jan" last="Clement">Jan Clement</name>
<affiliation>
<nlm:aff id="I1">Hantavirus Reference Center, Laboratory of Clinical Virology, Department of Microbiology & Immunology, Rega Institute, Minderbroedersstraat 10, B3000 Leuven, Belgium</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Vercauteren, Jurgen" sort="Vercauteren, Jurgen" uniqKey="Vercauteren J" first="Jurgen" last="Vercauteren">Jurgen Vercauteren</name>
<affiliation>
<nlm:aff id="I1">Hantavirus Reference Center, Laboratory of Clinical Virology, Department of Microbiology & Immunology, Rega Institute, Minderbroedersstraat 10, B3000 Leuven, Belgium</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Verstraeten, Willem W" sort="Verstraeten, Willem W" uniqKey="Verstraeten W" first="Willem W" last="Verstraeten">Willem W. Verstraeten</name>
<affiliation>
<nlm:aff id="I2">M3-BIORES, Biosystems Department, Katholieke Universiteit Leuven, W. de Croylaan 34, B3001, Heverlee, Belgium</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ducoffre, Genevieve" sort="Ducoffre, Genevieve" uniqKey="Ducoffre G" first="Geneviève" last="Ducoffre">Geneviève Ducoffre</name>
<affiliation>
<nlm:aff id="I3">Epidemiology, Scientific Institute for Public Health, Juliette Wytsmanstraat 14, B1050, Brussels, Belgium</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Barrios, Jose M" sort="Barrios, Jose M" uniqKey="Barrios J" first="José M" last="Barrios">José M. Barrios</name>
<affiliation>
<nlm:aff id="I2">M3-BIORES, Biosystems Department, Katholieke Universiteit Leuven, W. de Croylaan 34, B3001, Heverlee, Belgium</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Vandamme, Anne Mieke" sort="Vandamme, Anne Mieke" uniqKey="Vandamme A" first="Anne-Mieke" last="Vandamme">Anne-Mieke Vandamme</name>
<affiliation>
<nlm:aff id="I1">Hantavirus Reference Center, Laboratory of Clinical Virology, Department of Microbiology & Immunology, Rega Institute, Minderbroedersstraat 10, B3000 Leuven, Belgium</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Maes, Piet" sort="Maes, Piet" uniqKey="Maes P" first="Piet" last="Maes">Piet Maes</name>
<affiliation>
<nlm:aff id="I1">Hantavirus Reference Center, Laboratory of Clinical Virology, Department of Microbiology & Immunology, Rega Institute, Minderbroedersstraat 10, B3000 Leuven, Belgium</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Van Ranst, Marc" sort="Van Ranst, Marc" uniqKey="Van Ranst M" first="Marc" last="Van Ranst">Marc Van Ranst</name>
<affiliation>
<nlm:aff id="I1">Hantavirus Reference Center, Laboratory of Clinical Virology, Department of Microbiology & Immunology, Rega Institute, Minderbroedersstraat 10, B3000 Leuven, Belgium</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">19149870</idno>
<idno type="pmc">2642778</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2642778</idno>
<idno type="RBID">PMC:2642778</idno>
<idno type="doi">10.1186/1476-072X-8-1</idno>
<date when="2009">2009</date>
<idno type="wicri:Area/Pmc/Corpus">000098</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000098</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Relating increasing hantavirus incidences to the changing climate: the mast connection</title>
<author>
<name sortKey="Clement, Jan" sort="Clement, Jan" uniqKey="Clement J" first="Jan" last="Clement">Jan Clement</name>
<affiliation>
<nlm:aff id="I1">Hantavirus Reference Center, Laboratory of Clinical Virology, Department of Microbiology & Immunology, Rega Institute, Minderbroedersstraat 10, B3000 Leuven, Belgium</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Vercauteren, Jurgen" sort="Vercauteren, Jurgen" uniqKey="Vercauteren J" first="Jurgen" last="Vercauteren">Jurgen Vercauteren</name>
<affiliation>
<nlm:aff id="I1">Hantavirus Reference Center, Laboratory of Clinical Virology, Department of Microbiology & Immunology, Rega Institute, Minderbroedersstraat 10, B3000 Leuven, Belgium</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Verstraeten, Willem W" sort="Verstraeten, Willem W" uniqKey="Verstraeten W" first="Willem W" last="Verstraeten">Willem W. Verstraeten</name>
<affiliation>
<nlm:aff id="I2">M3-BIORES, Biosystems Department, Katholieke Universiteit Leuven, W. de Croylaan 34, B3001, Heverlee, Belgium</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ducoffre, Genevieve" sort="Ducoffre, Genevieve" uniqKey="Ducoffre G" first="Geneviève" last="Ducoffre">Geneviève Ducoffre</name>
<affiliation>
<nlm:aff id="I3">Epidemiology, Scientific Institute for Public Health, Juliette Wytsmanstraat 14, B1050, Brussels, Belgium</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Barrios, Jose M" sort="Barrios, Jose M" uniqKey="Barrios J" first="José M" last="Barrios">José M. Barrios</name>
<affiliation>
<nlm:aff id="I2">M3-BIORES, Biosystems Department, Katholieke Universiteit Leuven, W. de Croylaan 34, B3001, Heverlee, Belgium</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Vandamme, Anne Mieke" sort="Vandamme, Anne Mieke" uniqKey="Vandamme A" first="Anne-Mieke" last="Vandamme">Anne-Mieke Vandamme</name>
<affiliation>
<nlm:aff id="I1">Hantavirus Reference Center, Laboratory of Clinical Virology, Department of Microbiology & Immunology, Rega Institute, Minderbroedersstraat 10, B3000 Leuven, Belgium</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Maes, Piet" sort="Maes, Piet" uniqKey="Maes P" first="Piet" last="Maes">Piet Maes</name>
<affiliation>
<nlm:aff id="I1">Hantavirus Reference Center, Laboratory of Clinical Virology, Department of Microbiology & Immunology, Rega Institute, Minderbroedersstraat 10, B3000 Leuven, Belgium</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Van Ranst, Marc" sort="Van Ranst, Marc" uniqKey="Van Ranst M" first="Marc" last="Van Ranst">Marc Van Ranst</name>
<affiliation>
<nlm:aff id="I1">Hantavirus Reference Center, Laboratory of Clinical Virology, Department of Microbiology & Immunology, Rega Institute, Minderbroedersstraat 10, B3000 Leuven, Belgium</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">International Journal of Health Geographics</title>
<idno type="eISSN">1476-072X</idno>
<imprint>
<date when="2009">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<sec>
<title>Background</title>
<p>Nephropathia epidemica (NE), an emerging rodent-borne viral disease, has become the most important cause of infectious acute renal failure in Belgium, with sharp increases in incidence occurring for more than a decade. Bank voles are the rodent reservoir of the responsible hantavirus and are known to display cyclic population peaks. We tried to relate these peaks to the cyclic NE outbreaks observed since 1993. Our hypothesis was that the ecological causal connection was the staple food source for voles, being seeds of deciduous broad-leaf trees, commonly called "mast". We also examined whether past temperature and precipitation preceding "mast years" were statistically linked to these NE outbreaks.</p>
</sec>
<sec>
<title>Results</title>
<p>Since 1993, each NE peak is immediately preceded by a mast year, resulting in significantly higher NE case numbers during these peaks (Spearman R = -0.82; P = 0.034). NE peaks are significantly related to warmer autumns the year before (R = 0.51; P < 0.001), hotter summers two years before (R = 0.32; P < 0.001), but also to colder (R = -0.25; P < 0.01) and more moist summers (R = 0.39; P < 0.001) three years before. Summer correlations were even more pronounced, when only July was singled out as the most representative summer month.</p>
</sec>
<sec>
<title>Conclusion</title>
<p>NE peaks in year 0 are induced by abundant mast formation in year-1, facilitating bank vole survival during winter, thus putting the local human population at risk from the spring onwards of year 0. This bank vole survival is further promoted by higher autumn temperatures in year-1, whereas mast formation itself is primed by higher summer temperatures in year-2. Both summer and autumn temperatures have been rising to significantly higher levels during recent years, explaining the virtually continuous epidemic state since 2005 of a zoonosis, considered rare until recently. Moreover, in 2007 a NE peak and an abundant mast formation occurred for the first time within the same year, thus forecasting yet another record NE incidence for 2008. We therefore predict that with the anticipated climate changes due to global warming, NE might become a highly endemic disease in Belgium and surrounding countries.</p>
</sec>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Int J Health Geogr</journal-id>
<journal-title>International Journal of Health Geographics</journal-title>
<issn pub-type="epub">1476-072X</issn>
<publisher>
<publisher-name>BioMed Central</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">19149870</article-id>
<article-id pub-id-type="pmc">2642778</article-id>
<article-id pub-id-type="publisher-id">1476-072X-8-1</article-id>
<article-id pub-id-type="doi">10.1186/1476-072X-8-1</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Research</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Relating increasing hantavirus incidences to the changing climate: the mast connection</article-title>
</title-group>
<contrib-group>
<contrib id="A1" corresp="yes" contrib-type="author">
<name>
<surname>Clement</surname>
<given-names>Jan</given-names>
</name>
<xref ref-type="aff" rid="I1">1</xref>
<email>jan.clement@uzleuven.be</email>
</contrib>
<contrib id="A2" contrib-type="author">
<name>
<surname>Vercauteren</surname>
<given-names>Jurgen</given-names>
</name>
<xref ref-type="aff" rid="I1">1</xref>
<email>jurgen.vercauteren@uzleuven.be</email>
</contrib>
<contrib id="A3" contrib-type="author">
<name>
<surname>Verstraeten</surname>
<given-names>Willem W</given-names>
</name>
<xref ref-type="aff" rid="I2">2</xref>
<email>willem.verstraeten@biw.kuleuven.be</email>
</contrib>
<contrib id="A4" contrib-type="author">
<name>
<surname>Ducoffre</surname>
<given-names>Geneviève</given-names>
</name>
<xref ref-type="aff" rid="I3">3</xref>
<email>gducoffre@iph.fgov.be</email>
</contrib>
<contrib id="A5" contrib-type="author">
<name>
<surname>Barrios</surname>
<given-names>José M</given-names>
</name>
<xref ref-type="aff" rid="I2">2</xref>
<email>miguel.barrios@biw.kuleuven.be</email>
</contrib>
<contrib id="A6" contrib-type="author">
<name>
<surname>Vandamme</surname>
<given-names>Anne-Mieke</given-names>
</name>
<xref ref-type="aff" rid="I1">1</xref>
<email>annemie.vandamme@uzleuven.be</email>
</contrib>
<contrib id="A7" contrib-type="author">
<name>
<surname>Maes</surname>
<given-names>Piet</given-names>
</name>
<xref ref-type="aff" rid="I1">1</xref>
<email>pmaes3@uzleuven.be</email>
</contrib>
<contrib id="A8" contrib-type="author">
<name>
<surname>Van Ranst</surname>
<given-names>Marc</given-names>
</name>
<xref ref-type="aff" rid="I1">1</xref>
<email>marc.vanranst@uzleuven.be</email>
</contrib>
</contrib-group>
<aff id="I1">
<label>1</label>
Hantavirus Reference Center, Laboratory of Clinical Virology, Department of Microbiology & Immunology, Rega Institute, Minderbroedersstraat 10, B3000 Leuven, Belgium</aff>
<aff id="I2">
<label>2</label>
M3-BIORES, Biosystems Department, Katholieke Universiteit Leuven, W. de Croylaan 34, B3001, Heverlee, Belgium</aff>
<aff id="I3">
<label>3</label>
Epidemiology, Scientific Institute for Public Health, Juliette Wytsmanstraat 14, B1050, Brussels, Belgium</aff>
<pub-date pub-type="collection">
<year>2009</year>
</pub-date>
<pub-date pub-type="epub">
<day>16</day>
<month>1</month>
<year>2009</year>
</pub-date>
<volume>8</volume>
<fpage>1</fpage>
<lpage>1</lpage>
<ext-link ext-link-type="uri" xlink:href="http://www.ij-healthgeographics.com/content/8/1/1"></ext-link>
<history>
<date date-type="received">
<day>27</day>
<month>8</month>
<year>2008</year>
</date>
<date date-type="accepted">
<day>16</day>
<month>1</month>
<year>2009</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright © 2009 Clement et al; licensee BioMed Central Ltd.</copyright-statement>
<copyright-year>2009</copyright-year>
<copyright-holder>Clement et al; licensee BioMed Central Ltd.</copyright-holder>
<license license-type="open-access" xlink:href="http://creativecommons.org/licenses/by/2.0">
<p>This is an Open Access article distributed under the terms of the Creative Commons Attribution License (
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by/2.0"></ext-link>
), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</p>
<pmc-comment> Clement Jan jan.clement@uzleuven.be Relating increasing hantavirus incidences to the changing climate: the mast connection 2009International Journal of Health Geographics 8(1): 1-. (2009)1476-072X(2009)8:1<1>urn:ISSN:1476-072X</pmc-comment>
</license>
</permissions>
<abstract>
<sec>
<title>Background</title>
<p>Nephropathia epidemica (NE), an emerging rodent-borne viral disease, has become the most important cause of infectious acute renal failure in Belgium, with sharp increases in incidence occurring for more than a decade. Bank voles are the rodent reservoir of the responsible hantavirus and are known to display cyclic population peaks. We tried to relate these peaks to the cyclic NE outbreaks observed since 1993. Our hypothesis was that the ecological causal connection was the staple food source for voles, being seeds of deciduous broad-leaf trees, commonly called "mast". We also examined whether past temperature and precipitation preceding "mast years" were statistically linked to these NE outbreaks.</p>
</sec>
<sec>
<title>Results</title>
<p>Since 1993, each NE peak is immediately preceded by a mast year, resulting in significantly higher NE case numbers during these peaks (Spearman R = -0.82; P = 0.034). NE peaks are significantly related to warmer autumns the year before (R = 0.51; P < 0.001), hotter summers two years before (R = 0.32; P < 0.001), but also to colder (R = -0.25; P < 0.01) and more moist summers (R = 0.39; P < 0.001) three years before. Summer correlations were even more pronounced, when only July was singled out as the most representative summer month.</p>
</sec>
<sec>
<title>Conclusion</title>
<p>NE peaks in year 0 are induced by abundant mast formation in year-1, facilitating bank vole survival during winter, thus putting the local human population at risk from the spring onwards of year 0. This bank vole survival is further promoted by higher autumn temperatures in year-1, whereas mast formation itself is primed by higher summer temperatures in year-2. Both summer and autumn temperatures have been rising to significantly higher levels during recent years, explaining the virtually continuous epidemic state since 2005 of a zoonosis, considered rare until recently. Moreover, in 2007 a NE peak and an abundant mast formation occurred for the first time within the same year, thus forecasting yet another record NE incidence for 2008. We therefore predict that with the anticipated climate changes due to global warming, NE might become a highly endemic disease in Belgium and surrounding countries.</p>
</sec>
</abstract>
</article-meta>
</front>
<body>
<sec>
<title>Background</title>
<p>Hantaviruses are worldwide emerging hemorrhagic fever viruses which are transmitted to humans via aerosolized excreta of chronically infected rodents, the main reservoir in nature. In Europe and Russia, the most important hantavirus is
<italic>Puumala virus </italic>
(PUUV), which is spread by a common wild rodent, the bank vole (
<italic>Myodes glareolus) </italic>
[
<xref ref-type="bibr" rid="B1">1</xref>
-
<xref ref-type="bibr" rid="B3">3</xref>
]. PUUV infection causes nephropathia epidemica (NE), a mild form of hemorrhagic fever with renal syndrome (HFRS), the general denomination of hantavirus disease in the rest of the Old World [
<xref ref-type="bibr" rid="B1">1</xref>
-
<xref ref-type="bibr" rid="B3">3</xref>
]. The preferred habitats of
<italic>Myodes glareolus </italic>
are temperate deciduous broad leaf forests that can be mixed with pine trees. This vole species is also common in boreal forests or taiga. Thus, NE is registered throughout Europe, except in northern Ireland, southern Spain and Portugal, and most of Italy and Greece, where these biotopes and consequently
<italic>Myodes glareolus </italic>
are lacking (Fig.
<xref ref-type="fig" rid="F1">1</xref>
)[
<xref ref-type="bibr" rid="B1">1</xref>
,
<xref ref-type="bibr" rid="B3">3</xref>
]. Hantavirus infections, and mainly NE, are a major problem in western-Russia, where each year morbidity and fatality rates reach far more important levels than in Europe [
<xref ref-type="bibr" rid="B4">4</xref>
]. For instance Bashkortostan, a republic in the European part of Russia with 4.1 million habitants, is one of the most endemic regions in the world for hantavirus infections: in 1997, more than 9,000 people contracted the disease, of which 34 cases were fatal [
<xref ref-type="bibr" rid="B5">5</xref>
].</p>
<fig position="float" id="F1">
<label>Figure 1</label>
<caption>
<p>
<bold>Map of different biotopes and NE distribution in Europe and Western Russia</bold>
. Temperate broad-leaf forests and boreal forests are the preferred habitats of the
<italic>Puumala virus </italic>
rodent reservoir
<italic>Myodes glareolus</italic>
, and hence often concur with NE endemic zones, as indicated. However, some regions such as the U.K. have so far no known NE endemicity, despite having broad-leaf forests as an adequate biotope and a documented presence of
<italic>M. glareolus</italic>
. The vegetation map was derived from Olson, D. M, E. Dinerstein, E.D. Wikramanayake, N.D. Burgess, G.V.N. Powell, E.C. Underwood, J.A. D'amico, I. Itoua, H.E. Strand, J.C. Morrison, C.J. Loucks, T.F. Allnutt, T.H. Ricketts, Y. Kura, J.F. Lamoreux, W.W.Wettengel, P. Hedao, & K.R. Kassem.</p>
</caption>
<graphic xlink:href="1476-072X-8-1-1"></graphic>
</fig>
<p>Studying epidemiological features of an emerging disease is frequently hampered by the lack of sufficient follow-up in years. Belgium has a long-standing interest in NE, with the first serological evidence in Belgium reported in 1983 [
<xref ref-type="bibr" rid="B6">6</xref>
], a National Hantavirus Reference Centre operational since 1985, and since 1990 an official registry by the Scientific Institute of Public Health (IPH), Brussels. A sero-epidemiological study, mainly amongst healthy Belgian blood donors, was started in 1983 through to 1985, with 19,890 sera yielding a 1.35% PUUV seroprevalence, with a net predominance for the forested south of Belgium [
<xref ref-type="bibr" rid="B7">7</xref>
]. Thus, during an exceptionally long 25 year monitoring period (1983–2007), a total of more than 2,200 NE cases were registered, with a 0% fatality rate [
<xref ref-type="bibr" rid="B8">8</xref>
]. After the year 2000 however, there was a marked increase in frequency and magnitude of NE peaks which was impossible to ascribe to heightened medical awareness alone [
<xref ref-type="bibr" rid="B9">9</xref>
].</p>
<p>Global warming has been implicated or supposed to be responsible for an increase of some human and animal infections, in particular vector-borne infections. However, in the temperate regions of western Europe, hard data for an augmentation of such infections and their putative relation to global warming are so far scarce. The objective of our study was to examine the possible link of the observed NE increase in Belgium with (increased) temperature and precipitation. Some mechanisms that might explain important changes in driving forces, such as the local abundance of the rodent reservoir
<italic>Myodes glareolus </italic>
due to masting of the habitat vegetation, and a higher PUUV prevalence in this reservoir are discussed. This association could be highly relevant to other neighbouring countries like France, Germany, The Netherlands, and Luxembourg, where comparably higher NE incidences have recently been observed.</p>
<sec>
<title>Definition and hypothesis: the masting phenomenon</title>
<p>The staple food of bank voles consists of so-called "mast", or seeds of broad-leaf trees, mainly native oaks (
<italic>Quercus robur </italic>
and
<italic>Quercus petraea</italic>
) and common beech (
<italic>Fagus sylvatica</italic>
). A high mast production in autumn means a higher food supply for these rodents, which in turn means a higher survival rate and earlier breeding throughout winter, particularly if this winter is mild [
<xref ref-type="bibr" rid="B10">10</xref>
]. Mast abundance and perhaps also mild winter temperatures constitute important driving forces behind fluctuations in density of bank vole populations, which in temperate western Europe can reach up to 10 times the norm, leading to so-called "mice years", a vernacular term more used that the mammalogically more correct notion of "vole years" [
<xref ref-type="bibr" rid="B3">3</xref>
]. Tree seed production has already been linked to outbreaks of rodent populations in deciduous forests [
<xref ref-type="bibr" rid="B11">11</xref>
,
<xref ref-type="bibr" rid="B12">12</xref>
], but the cyclic character of this mechanism, and particularly its relevance to human pathology, has been less clearly studied. It is known, however, that a "mast year" can immediately precede sizable increases in bank vole populations during the winter of the same year, and in spring of the next (mast + 1) year [
<xref ref-type="bibr" rid="B11">11</xref>
-
<xref ref-type="bibr" rid="B13">13</xref>
]. Increases in bank vole densities have been frequently linked to increases in prevalence of PUUV infection in these voles, via direct or indirect transmission mechanisms [
<xref ref-type="bibr" rid="B14">14</xref>
-
<xref ref-type="bibr" rid="B19">19</xref>
]. Such a situation can result in the excretion of exceptionally high concentrations of infectious PUUV in nature, putting the local human population at risk [
<xref ref-type="bibr" rid="B20">20</xref>
]. Thus, according to our hypothesis, previously already formulated in 2002 and in 2005, peaks of NE in local human populations can ensue in the mast year + 1 [
<xref ref-type="bibr" rid="B21">21</xref>
]. Biomolecular evidence of this close human-rodent infectious relationship was seen in Germany during a major NE epidemic in 2007, by showing a close correlation between PUUV sequences obtained from both NE patients and bank voles from the same regions [
<xref ref-type="bibr" rid="B22">22</xref>
].</p>
</sec>
</sec>
<sec>
<title>Results</title>
<sec>
<title>NE infections and mast years</title>
<p>From 1985 to 2007, a total of 2,048 NE cases were registered, with increasing incidence throughout this 23-year observation period. With the provisional numbers of the first half of 2008 added, this total amounts now to 2,200. With these figures, NE by far exceeds the morbidity of leptospirosis, another mainly rodent-borne, but better known infectious nephropathy (only 77 cases for the period 2001–2007) [
<xref ref-type="bibr" rid="B23">23</xref>
]. Before 1999, only two NE peaks were recorded, both in the densely forested Belgian Ardennes, one in 1993 (174 cases) and one in 1996 (224 cases) (Fig.
<xref ref-type="fig" rid="F2">2</xref>
) [
<xref ref-type="bibr" rid="B24">24</xref>
,
<xref ref-type="bibr" rid="B25">25</xref>
]. The record year 2005 (372 cases) announced a quasi-continuous epidemic state for NE in Belgium. Of the total of 1,678 NE cases recorded in the here studied 12-year period (1996–2007), almost half (828 or 49.34%) have been documented in the last 3 years 2005–2007, equating to 276 cases/year in these recent years versus only 94 cases/year previously (P = 0.0031 two-sided t test with equal variances). This epidemic trend seems to be persisting for the current year 2008, with 152 cases already recorded during the first half year (weeks 1–24), compared to 150 cases during the first half of the previous record year 2005 (Table
<xref ref-type="table" rid="T1">1</xref>
). 4-weekly NE cases, officially recorded by IPH from 1996 to 2007, and their relation to mast years, are given in Table
<xref ref-type="table" rid="T1">1</xref>
.</p>
<table-wrap position="float" id="T1">
<label>Table 1</label>
<caption>
<p>Seasonal distribution of the number of NE cases every 4 weeks in Belgium.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<td align="left">
<bold>Week</bold>
</td>
<td align="center">
<bold>1995</bold>
</td>
<td align="center">
<bold>1996</bold>
</td>
<td align="center">
<bold>1997</bold>
</td>
<td align="center">
<bold>1998</bold>
</td>
<td align="center">
<bold>1999</bold>
</td>
<td align="center">
<bold>2000</bold>
</td>
<td align="center">
<bold>2001</bold>
</td>
<td align="center">
<bold>2002</bold>
</td>
<td align="center">
<bold>2003</bold>
</td>
<td align="center">
<bold>2004</bold>
</td>
<td align="center">
<bold>2005</bold>
</td>
<td align="center">
<bold>2006</bold>
</td>
<td align="center">
<bold>2007</bold>
</td>
<td align="center">
<bold>2008</bold>
</td>
</tr>
</thead>
<tbody>
<tr>
<td align="left">
<bold>1 – 4</bold>
</td>
<td></td>
<td align="center">13</td>
<td align="center">5</td>
<td align="center">2</td>
<td align="center">8</td>
<td align="center">5</td>
<td align="center">4</td>
<td align="center">7</td>
<td align="center">7</td>
<td align="center">5</td>
<td align="center">17</td>
<td align="center">4</td>
<td align="center">16</td>
<td align="center">28</td>
</tr>
<tr>
<td align="left">
<bold>5 – 8</bold>
</td>
<td></td>
<td align="center">17</td>
<td align="center">2</td>
<td align="center">3</td>
<td align="center">6</td>
<td align="center">9</td>
<td align="center">7</td>
<td align="center">4</td>
<td align="center">4</td>
<td align="center">0</td>
<td align="center">22</td>
<td align="center">9</td>
<td align="center">14</td>
<td align="center">28</td>
</tr>
<tr>
<td align="left">
<bold>9 – 12</bold>
</td>
<td></td>
<td align="center">11</td>
<td align="center">3</td>
<td align="center">2</td>
<td align="center">4</td>
<td align="center">7</td>
<td align="center">9</td>
<td align="center">0</td>
<td align="center">9</td>
<td align="center">3</td>
<td align="center">14</td>
<td align="center">16</td>
<td align="center">12</td>
<td align="center">16</td>
</tr>
<tr>
<td align="left">
<bold>13 – 16</bold>
</td>
<td></td>
<td align="center">11</td>
<td align="center">4</td>
<td align="center">1</td>
<td align="center">7</td>
<td align="center">2</td>
<td align="center">10</td>
<td align="center">1</td>
<td align="center">4</td>
<td align="center">2</td>
<td align="center">19</td>
<td align="center">18</td>
<td align="center">27</td>
<td align="center">23</td>
</tr>
<tr>
<td align="left">
<bold>17 – 20</bold>
</td>
<td></td>
<td align="center">15</td>
<td align="center">5</td>
<td align="center">6</td>
<td align="center">14</td>
<td align="center">4</td>
<td align="center">19</td>
<td align="center">3</td>
<td align="center">21</td>
<td align="center">1</td>
<td align="center">33</td>
<td align="center">13</td>
<td align="center">35</td>
<td align="center">20</td>
</tr>
<tr>
<td align="left">
<bold>21 – 24</bold>
</td>
<td></td>
<td align="center">23</td>
<td align="center">1</td>
<td align="center">4</td>
<td align="center">9</td>
<td align="center">2</td>
<td align="center">7</td>
<td align="center">3</td>
<td align="center">9</td>
<td align="center">2</td>
<td align="center">45</td>
<td align="center">18</td>
<td align="center">29</td>
<td align="center">37</td>
</tr>
<tr>
<td align="left">
<bold>25 – 28</bold>
</td>
<td></td>
<td align="center">19</td>
<td align="center">3</td>
<td align="center">5</td>
<td align="center">18</td>
<td align="center">8</td>
<td align="center">15</td>
<td align="center">5</td>
<td align="center">16</td>
<td align="center">5</td>
<td align="center">63</td>
<td align="center">14</td>
<td align="center">21</td>
<td></td>
</tr>
<tr>
<td align="left">
<bold>29 – 32</bold>
</td>
<td></td>
<td align="center">33</td>
<td align="center">3</td>
<td align="center">5</td>
<td align="center">30</td>
<td align="center">3</td>
<td align="center">14</td>
<td align="center">5</td>
<td align="center">11</td>
<td align="center">4</td>
<td align="center">56</td>
<td align="center">18</td>
<td align="center">18</td>
<td></td>
</tr>
<tr>
<td align="left">
<bold>33 – 36</bold>
</td>
<td></td>
<td align="center">23</td>
<td align="center">1</td>
<td align="center">6</td>
<td align="center">18</td>
<td align="center">6</td>
<td align="center">11</td>
<td align="center">4</td>
<td align="center">9</td>
<td align="center">4</td>
<td align="center">37</td>
<td align="center">8</td>
<td align="center">26</td>
<td></td>
</tr>
<tr>
<td align="left">
<bold>37 – 40</bold>
</td>
<td></td>
<td align="center">18</td>
<td align="center">9</td>
<td align="center">5</td>
<td align="center">5</td>
<td align="center">7</td>
<td align="center">1</td>
<td align="center">8</td>
<td align="center">11</td>
<td align="center">3</td>
<td align="center">26</td>
<td align="center">14</td>
<td align="center">26</td>
<td></td>
</tr>
<tr>
<td align="left">
<bold>41 – 44</bold>
</td>
<td></td>
<td align="center">11</td>
<td align="center">9</td>
<td align="center">3</td>
<td align="center">1</td>
<td align="center">5</td>
<td align="center">7</td>
<td align="center">3</td>
<td align="center">10</td>
<td align="center">7</td>
<td align="center">12</td>
<td align="center">9</td>
<td align="center">20</td>
<td></td>
</tr>
<tr>
<td align="left">
<bold>45 – 48</bold>
</td>
<td></td>
<td align="center">21</td>
<td align="center">6</td>
<td align="center">4</td>
<td align="center">2</td>
<td align="center">6</td>
<td align="center">2</td>
<td align="center">5</td>
<td align="center">3</td>
<td align="center">4</td>
<td align="center">17</td>
<td align="center">9</td>
<td align="center">31</td>
<td></td>
</tr>
<tr>
<td align="left">
<bold>49 – 52</bold>
</td>
<td></td>
<td align="center">9</td>
<td align="center">4</td>
<td align="center">3</td>
<td align="center">2</td>
<td align="center">4</td>
<td align="center">4</td>
<td align="center">3</td>
<td align="center">8</td>
<td align="center">6</td>
<td align="center">11</td>
<td align="center">13</td>
<td align="center">23</td>
<td></td>
</tr>
<tr>
<td></td>
<td align="center">*</td>
<td></td>
<td></td>
<td align="center">*</td>
<td></td>
<td align="center">*</td>
<td></td>
<td align="center">*</td>
<td></td>
<td align="center">*</td>
<td></td>
<td></td>
<td align="center">*</td>
<td></td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<p>Mast years are indicated with *. Weeks 1–8 and 49–52 are winter periods. Weeks 9–20 are in spring. Weeks 21–36 are in summer. Weeks 37–48 are in autumn.</p>
</table-wrap-foot>
</table-wrap>
<fig position="float" id="F2">
<label>Figure 2</label>
<caption>
<p>
<bold>Yearly numbers of NE cases in Belgium 1985-half 2008</bold>
. Serologically confirmed acute NE in Belgium, 1985-half 2008. For the current year 2008, marked with asterisk, only data of the first six months were available. Numbers above each column are the cases/year, the number between brackets above the 2008 column is only the half-yearly number. Mast years are indicated with black full arrows.</p>
</caption>
<graphic xlink:href="1476-072X-8-1-2"></graphic>
</fig>
<p>Mast years in Belgium occurred in 1987, 1990, 1992, 1995, 1998, 2000, 2002, 2004 and 2007, as indicated with full arrows in Table
<xref ref-type="table" rid="T1">1</xref>
and Fig.
<xref ref-type="fig" rid="F2">2</xref>
[
<xref ref-type="bibr" rid="B13">13</xref>
]. When these mast years are plotted against the yearly NE numbers on a 24-year time scale, it is striking that from 1993 onwards, all NE peaks were announced by a masting event the previous autumn (Fig
<xref ref-type="fig" rid="F2">2</xref>
). Moreover, numbers of NE in all these peak years are, at least since 1990, significantly higher than in the preceding mast years (Spearman R = -0.82, P = 0.034). During the first NE epidemic (1993), patients gave evidence of local abundance of bank voles after a mild '92-'93 winter, and plentiful acorns and beechnuts, suggesting that a masting event was already underway in 1992 for this earliest recorded hantavirus outbreak in Belgium and in France [
<xref ref-type="bibr" rid="B3">3</xref>
,
<xref ref-type="bibr" rid="B13">13</xref>
,
<xref ref-type="bibr" rid="B24">24</xref>
].</p>
</sec>
<sec>
<title>Climate correlations</title>
<p>Temperature and precipitation profiles for the period 1985–2007 are given in Fig.
<xref ref-type="fig" rid="F3">3</xref>
. To check if the general impression of warmer and perhaps drier seasons is also valid for Belgium, we firstly compared mean daily temperatures in 1985–95 with the subsequent 12 years, i.e. 1996–2007 (Table
<xref ref-type="table" rid="T2">2</xref>
). The year 1996 was chosen as a boundary point since it yielded the first of several other major NE peaks later on, and because 1996 was the starting year of 4-week NE epidemiological data recording, allowing statistical conclusions. We examined separately the two meteorological seasons considered crucial for tree fructification, i.e. spring and summer, versus autumn and winter, considered a crucial period for rodent survival. Finally, July was singled out as the most representative month for summer, since above-average temperatures and excess of sunshine in July one year prior to masting have been shown to stimulate flower bud formation [
<xref ref-type="bibr" rid="B12">12</xref>
].</p>
<table-wrap position="float" id="T2">
<label>Table 2</label>
<caption>
<p>Comparison between climate variables in the current 1996–2007 study period and the previous decade.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<td></td>
<td align="left">
<italic>1985–1995</italic>
</td>
<td align="left">
<bold>
<italic>1996–2007</italic>
</bold>
</td>
<td align="left">
<italic>P-value</italic>
</td>
</tr>
</thead>
<tbody>
<tr>
<td align="left">Average daily temperature in spring</td>
<td align="left">10.3</td>
<td align="left">10.9</td>
<td align="left">0.0048*</td>
</tr>
<tr>
<td align="left">Average daily temperature in summer</td>
<td align="left">17.8</td>
<td align="left">18.4</td>
<td align="left">0.0001*</td>
</tr>
<tr>
<td align="left">Average daily temperature in July</td>
<td align="left">19.0</td>
<td align="left">18.7</td>
<td align="left">0.3033</td>
</tr>
<tr>
<td align="left">Average daily temperature in autumn</td>
<td align="left">11.0</td>
<td align="left">11.7</td>
<td align="left">0.0005*</td>
</tr>
<tr>
<td align="left">Average daily temperature in winter</td>
<td align="left">4.68°C</td>
<td align="left">5.24°C</td>
<td align="left">0.0048*</td>
</tr>
<tr>
<td align="left">
<bold>Annual average daily temperature</bold>
</td>
<td align="left">
<bold>10.7°C</bold>
</td>
<td align="left">
<bold>11.4°C</bold>
</td>
<td align="left">
<bold>0.0000*</bold>
</td>
</tr>
<tr>
<td colspan="4">
<hr></hr>
</td>
</tr>
<tr>
<td align="left">Annual average daily rainfall</td>
<td align="left">2.30 mm</td>
<td align="left">2.37 mm</td>
<td align="left">0.5461</td>
</tr>
<tr>
<td align="left">Average daily rainfall in summer</td>
<td align="left">73.70 mm</td>
<td align="left">81.30 mm</td>
<td align="left">0.4722</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<p>Significance level of α = 0.05. Associations indicated in bold remain significant after sequential Bonferroni correction</p>
</table-wrap-foot>
</table-wrap>
<fig position="float" id="F3">
<label>Figure 3</label>
<caption>
<p>
<bold>Climate Graph Royal Meteorological Institute, Brussels, (Belgium) 1985–2007</bold>
. Monthly variations of mean temperature (red lines, in °C) and mean precipitation (black lines, in mm) of the current 1996–2007 study period, compared to the previous decade 1985–1995.</p>
</caption>
<graphic xlink:href="1476-072X-8-1-3"></graphic>
</fig>
<p>The average temperature in the study period 1996–2007 (11.4°C) was statistically significantly higher than in the previous decade (10.7°C, P < 0.0001). This significant difference was also maintained when separate seasons (spring, summer, autumn or winter) were compared (Table
<xref ref-type="table" rid="T2">2</xref>
). We did not find a significant difference however when only the month of July was examined. In fact, despite some record high July temperatures in recent years, July still appeared slightly colder (18.7°C) in the recent 1996–2007 period, as compared to the previous decade (19.0°C). Average precipitation throughout the year was almost similar (P = 0.546) in the two time periods. Summers precipitation during the last 12 years showed even slightly, but not significantly, higher levels than before. The impression of drier weather, particularly during recent hot summers, stems probably from the fact that rainy days were indeed less numerous [
<xref ref-type="bibr" rid="B26">26</xref>
].</p>
<p>Secondly, potential correlations were examined between the NE numbers as given in Table
<xref ref-type="table" rid="T1">1</xref>
, i.e. registered every 4 weeks from 1996 through 2007, and climate parameters (mean daily temperature and precipitation) in the same period, and additionally the three preceding years, i.e. from 1993 to 2007. Matching was carried out for climatic data of summers three, two, and one year before the NE incidences (Year-3, Year-2, Year-1), springs of Year-1, and the same year (Year 0) as NE occurrence. Autumns and winters one year before NE occurrence were likewise examined (Table
<xref ref-type="table" rid="T3">3</xref>
). The same calculations were performed with only July singled out as the most representative summer month [
<xref ref-type="bibr" rid="B10">10</xref>
], and April as the most representative spring month [
<xref ref-type="bibr" rid="B27">27</xref>
] (Table
<xref ref-type="table" rid="T4">4</xref>
).</p>
<table-wrap position="float" id="T3">
<label>Table 3</label>
<caption>
<p>Univariate correlations between the yearly cases of NE and seasonal climate variables three (Y-3), two (Y-2), one year(s) (Y-1) before, or during the same year (Y 0).</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<td></td>
<td align="left">
<italic>Spearman R</italic>
</td>
<td align="left">
<italic>P</italic>
</td>
</tr>
</thead>
<tbody>
<tr>
<td align="left">
<bold>Summer temperature Y-3</bold>
</td>
<td align="left">
<bold>-0.25</bold>
</td>
<td align="left">
<bold><0.01</bold>
</td>
</tr>
<tr>
<td align="left">
<bold>Summer precipitation Y-3</bold>
</td>
<td align="left">
<bold>0.39</bold>
</td>
<td align="left">
<bold><0.001</bold>
</td>
</tr>
<tr>
<td align="left">
<bold>Summer temperature Y-2</bold>
</td>
<td align="left">
<bold>0.32</bold>
</td>
<td align="left">
<bold><0.001</bold>
</td>
</tr>
<tr>
<td align="left">Summer precipitation Y-2</td>
<td align="left">-0.03</td>
<td align="left">0.73</td>
</tr>
<tr>
<td align="left">Summer temperature Y-1</td>
<td align="left">0.16</td>
<td align="left">0.05</td>
</tr>
<tr>
<td align="left">Summer precipitation Y-1</td>
<td align="left">0.18</td>
<td align="left">0.02</td>
</tr>
<tr>
<td align="left">
<bold>Spring temperature Y-1</bold>
</td>
<td align="left">
<bold>-0.29</bold>
</td>
<td align="left">
<bold><0.001</bold>
</td>
</tr>
<tr>
<td align="left">Spring precipitation Y-1</td>
<td align="left">0.05</td>
<td align="left">0.53</td>
</tr>
<tr>
<td align="left">Spring temperature Y 0</td>
<td align="left">-0.04</td>
<td align="left">0.72</td>
</tr>
<tr>
<td align="left">Spring precipitation Y 0</td>
<td align="left">-0.11</td>
<td align="left">0.31</td>
</tr>
<tr>
<td align="left">Winter temperature Y-1</td>
<td align="left">-0.13</td>
<td align="left">0.11</td>
</tr>
<tr>
<td align="left">Winter precipitation Y-1</td>
<td align="left">-0.19</td>
<td align="left">0.02</td>
</tr>
<tr>
<td align="left">
<bold>Fall temperature Y-1</bold>
</td>
<td align="left">
<bold>0.51</bold>
</td>
<td align="left">
<bold><0.001</bold>
</td>
</tr>
<tr>
<td align="left">Fall precipitation Y-1</td>
<td align="left">-0.14</td>
<td align="left">0.07</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<p>Associations indicated in bold remain significant after sequential Bonferroni correction</p>
</table-wrap-foot>
</table-wrap>
<table-wrap position="float" id="T4">
<label>Table 4</label>
<caption>
<p>Univariate correlations between the yearly cases of NE and climate variables of single months.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<td></td>
<td align="left">
<italic>Spearman R</italic>
</td>
<td align="left">
<italic>P</italic>
</td>
</tr>
</thead>
<tbody>
<tr>
<td align="left">
<bold>July temperature Y-3</bold>
</td>
<td align="left">
<bold>-0.37</bold>
</td>
<td align="left">
<bold><0.001</bold>
</td>
</tr>
<tr>
<td align="left">
<bold>July precipitation Y-3</bold>
</td>
<td align="left">
<bold>0.35</bold>
</td>
<td align="left">
<bold><0.001</bold>
</td>
</tr>
<tr>
<td align="left">
<bold>July temperature Y-2</bold>
</td>
<td align="left">
<bold>0.34</bold>
</td>
<td align="left">
<bold><0.001</bold>
</td>
</tr>
<tr>
<td align="left">July precipitation Y-2</td>
<td align="left">0.20</td>
<td align="left">0.01</td>
</tr>
<tr>
<td align="left">July temperature Y-1</td>
<td align="left">0.21</td>
<td align="left">0.01</td>
</tr>
<tr>
<td align="left">July precipitation Y-1</td>
<td align="left">0.02</td>
<td align="left">0.84</td>
</tr>
<tr>
<td align="left">April temperature Y-1</td>
<td align="left">0.17</td>
<td align="left">0.04</td>
</tr>
<tr>
<td align="left">April precipitation Y-1</td>
<td align="left">-0.09</td>
<td align="left">0.25</td>
</tr>
<tr>
<td align="left">
<bold>April temperature Y 0</bold>
</td>
<td align="left">
<bold>0.27</bold>
</td>
<td align="left">
<bold>0.01</bold>
</td>
</tr>
<tr>
<td align="left">
<bold>April precipitation Y 0</bold>
</td>
<td align="left">
<bold>-0.30</bold>
</td>
<td align="left">
<bold><0.01</bold>
</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<p>Months representative for summer (July) or spring (April), three (Y-3), two (Y-2), one year(s) (Y-1) before, or during the same year (Y 0).</p>
<p>Associations indicated in bold remain significant after sequential Bonferroni correction</p>
</table-wrap-foot>
</table-wrap>
</sec>
</sec>
<sec>
<title>Discussion</title>
<sec>
<title>NE incidences and their relation to mast years</title>
<p>Before 1990, the low to nil annual NE incidence is almost certainly due to low medical awareness for this emerging infection. Starting from 1990, however, there are 3-year NE peaks, and from 1999 even 2-year peaks, which cannot be attributed to fluctuating degrees of awareness or better disease monitoring. The recent epidemic situation in the years 2005–2007 has been confirmed in neighbouring countries, such as Germany, where the average of ~220 cases/year was surpassed with 448 cases in 2005, and even more spectacularly in 2007 with a record number of 1,687 NE cases [
<xref ref-type="bibr" rid="B22">22</xref>
]. Although NE often remains a very localized "place disease", there is no reason to believe that NE mechanics should be fundamentally different in neighbouring countries (Germany, France, The Netherlands and Luxembourg) having the same biotope, i.e. consisting mainly of deciduous broad-leaf forests, the same documented presence of the rodent PUUV reservoir
<italic>M. glareolus</italic>
, and the same recent climate changes. In Nordic countries such as Norway, Sweden and Finland however, these mechanics are different, since boreal forests present little or no broad-leaf mast production, and since NE peaks seem linked rather to a predator-prey cycle [
<xref ref-type="bibr" rid="B15">15</xref>
,
<xref ref-type="bibr" rid="B17">17</xref>
,
<xref ref-type="bibr" rid="B18">18</xref>
]. Although we do not have recent rodent capture data to prove the rodent link, other studies have convincingly showed the direct or delayed relationship between increased local populations of PUUV-infected bank voles and NE peaks in Belgium [
<xref ref-type="bibr" rid="B28">28</xref>
,
<xref ref-type="bibr" rid="B29">29</xref>
] and in Sweden [
<xref ref-type="bibr" rid="B15">15</xref>
,
<xref ref-type="bibr" rid="B30">30</xref>
].</p>
<p>The question is then to identify the driving factors behind these fluctuations of bank vole densities, and why they seem more pronounced during recent years. As hypothesized in our 2002 and 2005 communications, increased broad-leaf tree seed production may give a satisfying answer (Fig.
<xref ref-type="fig" rid="F2">2</xref>
) [
<xref ref-type="bibr" rid="B21">21</xref>
]. The most pronounced NE peak in 2005 (372 cases) was preceded in 2004 by the most pronounced mast production ever recorded in Belgium, particularly for beechnuts [
<xref ref-type="bibr" rid="B13">13</xref>
]. The alternation of mast/non-mast years since 1998 is explained by the fact that a broad-leaf tree is physiologically unable to produce maximal mast in two consecutive years, even under optimal weather conditions. Nevertheless, occurrence of three confirmed mast years within a mere five year period (2000–2004) has never been observed before in Belgium, at least not for beech. Moreover, this record has been confirmed in several neighbouring countries, such as Germany [
<xref ref-type="bibr" rid="B13">13</xref>
].</p>
<p>The apparent absence of heavy masting in 2006, followed by another mast year 2007 is a particular case. Indeed, mast production at the end of the year 2004 had been so massive that beechnuts and acorns were left in profusion and lasting the majority of the next summer and autumn 2005. This way, we propose that the local vole population could have entered the subsequent 2005–2006 winter with an extra "left over" provision of conserved mast. High production of mast was observed in a 14-year-study in the Eastern USA, resulting in stores of acorns lasting throughout winter and well into the following year, instead of depletion by the month of January [
<xref ref-type="bibr" rid="B31">31</xref>
]. Moreover, early winter vole survival was promoted by a very mild autumn 2005, with a warm September (mean 17.1°C, norm 14.6°C), and an exceptionally mild October (mean 14.6°C, norm 10.4°C). The combination of a higher food supply with higher autumn temperatures might be reflected in the very elevated number of NE cases noted at the end of 2005 (total of autumn + December: 66), and the fairly high number in the next year 2006 (Table
<xref ref-type="table" rid="T1">1</xref>
). Indeed, with 163 cases, this number of cases is the fifth highest in 12 years (Fig
<xref ref-type="fig" rid="F2">2</xref>
), but for once was not preceded by a heavy mast year, potentially for the reasons explained above.</p>
</sec>
<sec>
<title>Climate influences on masting and NE incidence</title>
<p>The relationship between mast/NE peaks, and the recently higher frequency of both already suggests the influence of climate factors, particularly higher temperatures, as described by others [
<xref ref-type="bibr" rid="B10">10</xref>
-
<xref ref-type="bibr" rid="B12">12</xref>
,
<xref ref-type="bibr" rid="B27">27</xref>
,
<xref ref-type="bibr" rid="B30">30</xref>
]. A separate discussion of the four seasons is given below, as well as the influence of humidity and human exposure on NE incidence:</p>
<sec>
<title>Spring period</title>
<p>Frost in April of the mast year (Year-1) was reported to reduce seed production [
<xref ref-type="bibr" rid="B27">27</xref>
]. Prolonged frost so late in the year is becoming increasingly rare however, and the record mast formation at the end of 2004 for instance was favoured by an abnormally mild April 2004 (mean 11.6°C). There is no straightforward explanation for the negative and significant correlation found for spring temperatures one year before NE occurrence, although this was not confirmed when April was singled out as a representative spring month (Tables
<xref ref-type="table" rid="T3">3</xref>
and
<xref ref-type="table" rid="T4">4</xref>
). Flower induction of broad-leaf trees was observed to be stimulated by a warm and sunny spring, April in particular [
<xref ref-type="bibr" rid="B27">27</xref>
]. This cannot explain however the significant association found in this study between warmer and drier April months and NE numbers of the same year (Year 0), i.e. the year after mast formation (Table
<xref ref-type="table" rid="T4">4</xref>
).</p>
</sec>
<sec>
<title>Summer period</title>
<p>Significant positive correlations were found between NE numbers and summer temperatures of year-2 (Table
<xref ref-type="table" rid="T3">3</xref>
). Higher temperature of year-2 might stimulate bud formation in broad-leaf trees, acting as prerequisite for heavy masting at year-1, resulting in NE peaks in year 0. It is noticeable that the hottest summer in our 23 year (1985–2007) climate record was the year 2003, with mean temperatures for the three summer months June, July and August consecutively around or above 20°C (Fig.
<xref ref-type="fig" rid="F3">3</xref>
). Thus, the hottest summer (2003) ever recorded in Europe induced the largest mast production (autumn 2004) ever noted in Belgium [
<xref ref-type="bibr" rid="B13">13</xref>
], which in turn resulted in the highest NE peak (2005) observed so far. Furthermore, the latest mast year 2007 was preceded by another very hot summer (2006), with the mean temperature in July (23.0°C) the highest ever noted since the start in 1833 of the Royal Meteorological Institute (RMI) observations in Brussels [
<xref ref-type="bibr" rid="B26">26</xref>
]. (Fig.
<xref ref-type="fig" rid="F3">3</xref>
). In contrast again, mean temperatures in the summer therefore (2005) were normal to rather cool. Noticeably, the second hottest summer month ever, August 1997 (21.2°C), induced the 1998 mast year [
<xref ref-type="bibr" rid="B26">26</xref>
]. Summer precipitation of year-2 or year-1 seemed not to influence NE numbers at year 0. However, there was significant positive correlation with summer precipitation of year-3, and a weakly significant but negative correlation with the summer temperatures of year-3 (Table
<xref ref-type="table" rid="T3">3</xref>
). As observed before [
<xref ref-type="bibr" rid="B10">10</xref>
], cold and moist summers appear to promote abundant masting two years later. Mean temperatures for July, as most representative summer month, showed an even stronger negative (R = -0.37) and highly significant correlation with NE incidences 3 years later, whereas presence or absence of other significant correlations for July were practically identical as for the whole summer studies (Table
<xref ref-type="table" rid="T4">4</xref>
). It is noteworthy that in our comparative climate study July was the only summer month that appeared also slightly (but not significantly) colder than in the previous decade (Table
<xref ref-type="table" rid="T2">2</xref>
).</p>
</sec>
<sec>
<title>Autumn period</title>
<p>The strongest positive correlation between temperatures and NE incidence was found for autumn the year before (Year-1) (R = 0.51; P < 0.001, see Table
<xref ref-type="table" rid="T3">3</xref>
). This can explain the second highest (293 cases) NE peak in 2007, which has the particularity of combining for the first time a NE outbreak and a heavy masting within the same year (Fig.
<xref ref-type="fig" rid="F2">2</xref>
). We suppose there was only a moderate or "normal" mast production end 2006, with however a much higher survival of voles, most probably as a result of an exceptionally mild autumn and (see under) an exceptionally mild winter 2006–2007. Autumn 2006 had a mean temperature of 13.9°C (norm 10.4°C), a record so exceptional that, according to the statistics of RMI Brussels and in the hypothesis of a stable climate, such an event could only take place every 500 years [
<xref ref-type="bibr" rid="B26">26</xref>
]. Whereas October and November 2006 were, respectively, the second and fourth mildest ever, September 2006 was the warmest since the first RMI recordings in 1833 (mean 18.4°C, norm 14.6°C) [
<xref ref-type="bibr" rid="B26">26</xref>
]. In summary, the year 2007 witnessed a NE peak, induced by a record warm autumn (and winter), followed by pronounced masting, induced by a record hot summer, both in the previous year 2006.</p>
<p>Autumn climate factors cannot influence any more autumn mast formation of the same year, but can still greatly influence other food sources and the bank vole population itself. Greater availability of staple food during increased tree seed production in autumn may allow greater bank vole survival not only during the subsequent winter, but also already in the (late) autumn of the mast year itself, particularly if this is accompanied by milder temperatures, as observed during recent years. Under this hypothesis, the human population is already at risk from higher NE incidence during late autumn and early winter of a mast year itself (weeks 37 through 52 on Table
<xref ref-type="table" rid="T1">1</xref>
). We see a confirmation of this hypothesis in the repetitive and increasing NE numbers in autumn and in December as recorded at the end of the mast years 2000, 2002, 2004 and particularly 2007 (Table
<xref ref-type="table" rid="T1">1</xref>
). The only exception is 1998, probably due to the lower numbers recorded throughout the whole year. In contrast to the summer NE peaks considered, until recently, as typical for Western Europe, we are now observing "late autumn peaks" with totals outnumbering the summer totals (Table
<xref ref-type="table" rid="T1">1</xref>
). Conversely, in all other (i.e. non-mast) years of this study, summer NE totals remain traditionally higher than totals of the end of the year. To our knowledge, a cyclic "autumn NE peak rule" for mast years has not been reported so far.</p>
</sec>
<sec>
<title>Winter period</title>
<p>Winter 2006–2007 with a mean temperature of 6.6°C (norm 3.1°C) was the mildest ever noted since 1833 [
<xref ref-type="bibr" rid="B26">26</xref>
]. In another Belgian study, lower winter temperatures appeared strongly linked to higher PUUV prevalence in bank voles, via a hypothetic "virus ecology" mechanism, being longer PUUV survival in the soil due to lower ambient temperatures [
<xref ref-type="bibr" rid="B32">32</xref>
]. Even with this putative mechanism, it is hard to explain the late winter and/or early spring NE peaks, as sometimes observed in our study, particularly in some February months. These peaks, for instance, were noted in February 2005 (22 cases) and 2008 (20 cases) (Table
<xref ref-type="table" rid="T1">1</xref>
). Since these peaks were linked to rather an 'opposite' weather influence, i.e. warmer winters, we suppose that for these and other early year NE peaks, a "rodent host ecology" mechanism was operative, rather than a "virus ecology" mechanism. Moreover, no significant correlations were found between winter temperatures, nor precipitation, and subsequent NE numbers (Table
<xref ref-type="table" rid="T3">3</xref>
). Significantly, harsh winters with mean monthly temperatures below 0°C, as still noted at the beginning of 1985 to 1987, were completely absent in the 1996–2007 study period (Fig.
<xref ref-type="fig" rid="F3">3</xref>
).</p>
</sec>
</sec>
<sec>
<title>The influence of humidity on NE incidence</title>
<p>Soil moisture is another important element in the "virus ecology" hypothesis, promoting local PUUV survival [
<xref ref-type="bibr" rid="B32">32</xref>
]. If in laboratory conditions high humidity has been proven crucial for PUUV survival [
<xref ref-type="bibr" rid="B33">33</xref>
], and if a humid environment might be considered beneficial for PUUV transmission between voles [
<xref ref-type="bibr" rid="B14">14</xref>
,
<xref ref-type="bibr" rid="B17">17</xref>
], it should be questioned however whether this factor has been influential in the recent rise of NE numbers in Belgium. High soil moisture was described as significantly associated with the number of NE cases in a 1994–2005 study period [
<xref ref-type="bibr" rid="B32">32</xref>
]. In our opinion, it seems unlikely that the two major mechanisms reported to be important for "virus ecology", i.e. lower temperatures and high soil moisture, could be evenly efficient in all seasons, causing human infections to the same degree throughout the year. Indeed, no correlations were found in our study between precipitation in all four seasons in years-2, year-1, and year 0 and NE numbers the following year (Table
<xref ref-type="table" rid="T3">3</xref>
). Moreover, since most NE cases occur in summer, no summer of the record last three years 2005–2007 was particularly moist (normal or even below average, Fig
<xref ref-type="fig" rid="F2">2</xref>
), except for August 2006 (202.3 mm, norm 74.4 mm). As shown in Table
<xref ref-type="table" rid="T2">2</xref>
, the mean summer precipitation of the period 1996–2007 was only slightly, but not significantly, higher compared with the 1985–1995 period. With recent seasons (particularly summer) and even whole years not being significantly wetter, but instead being significantly hotter than before, it is improbable that a climate-accentuated role of "virus ecology" could explain the recent epidemic trend of NE.</p>
</sec>
<sec>
<title>The effect of human exposure on NE incidence</title>
<p>Even without taking into account the intervening mast phenomenon, neither "host ecology" nor "virus ecology" can fully explain exactly why summer NE peaks have been noted in each western European series, including ours (Table
<xref ref-type="table" rid="T1">1</xref>
). There are no literature data to convincingly prove that each year the bank vole population reaches its maximum size during summer months, nor that its PUUV prevalence is invariably at its peak in summer, both factors of "host ecology". As for "virus ecology", it is unlikely that PUUV shed in the environment would attain its maximal infectivity during the hot and dry summer, and that this mechanism should work even more efficiently during the higher aestival temperatures of recent years.</p>
<p>The most straightforward explanation is human behaviour itself, with increased outdoor summer activity resulting in a closer contact with voles or their excreta. Human outdoor activity however is more difficult to assess than rodent abundance and PUUV prevalence. In western Europe, only two case-control studies are available so far to evaluate the risk of acquiring NE. Both case-control studies were carried out in the Ardennes after a local NE outbreak in Belgium [
<xref ref-type="bibr" rid="B34">34</xref>
] or in France [
<xref ref-type="bibr" rid="B35">35</xref>
]. Living or working in the forest bore a significant risk, but firewood- cutting and -handling in the forest emerged as the activity with by far the greatest risk in both studies. Bank voles prefer making their burrows under wood piles, probably for protection. The use of wood logs for heating and even for cooking is a local custom much more developed in the Ardennes than elsewhere, and is an example of a local, gender-independent risk behaviour, which is always important to assess, even in isolated cases of NE.</p>
<p>Whereas minor winter NE peaks are explained by a higher number of rodents making contact in human dwellings in search for food and shelter, the opposite (i.e. winter camping) can, exceptionally, also result in winter NE occurrence. In the region of Ulm, South-Germany, an explosive NE outbreak was described among American troops camping in vole-infested terrain near the Danube river for a winter exercise in January 1990 [
<xref ref-type="bibr" rid="B36">36</xref>
]. Other NE or HFRS cases mainly due to camping or rough sleeping have been reported in China [
<xref ref-type="bibr" rid="B37">37</xref>
], Greece [
<xref ref-type="bibr" rid="B38">38</xref>
], West-Germany [
<xref ref-type="bibr" rid="B7">7</xref>
], and in the French Pyrenean mountains [
<xref ref-type="bibr" rid="B39">39</xref>
]. Other authors agree that seasonal NE peaks are better explained by shifts in rodent and/or human behaviour, rather than rodent abundance or PUUV prevalence fluctuations [
<xref ref-type="bibr" rid="B40">40</xref>
].</p>
</sec>
</sec>
<sec>
<title>Conclusion</title>
<p>NE, a zoonosis scarcely known before 1990, has been increasing in incidence in Belgium with a cyclic pattern, to reach statistically higher and even epidemic proportions since 2005. NE is a rodent-borne infection, implying that it is at least partly climate-dependent. As predicted in our 2002–2005 hypothesis, a cyclic increase of broad-leaf tree seed formation, mainly beechnuts and acorns ("mast"), was confirmed as the causal link. Since 1993, each NE peak has been preceded by increased autumnal mast formation the year before, resulting in yearly NE numbers significantly higher than those during the mast years themselves. Mast years however show "late autumn peaks" instead of the classic NE summer peaks. A higher availability of staple food for the rodent reservoir
<italic>Myodes glareolus</italic>
, together with a higher autumn-winter survival of this rodent, explains the higher and cyclic NE occurrence in Belgium and in neighbouring countries, Germany in particular. Both mechanisms, mast formation and winter survival of voles, are temperature-dependent to such a degree that significant correlations appeared to exist, allowing reliable predictions of NE outbreaks based on climate parameters alone. In summary, outbreaks can be predicted by rather cold and moist summers 3 years before, hot summers 2 years before, and a warm autumn 1 year before NE occurrence. The month of July alone appeared an even better predictor than the whole summer as a season.</p>
<p>Finally, recent record high summer and autumn + winter temperatures are apparently further increasing both described mechanisms, with e.g. another very hot 2006 summer forecasting another record NE year in the making for 2008, again via major mast formation in 2007. The fact that the growing combined effect of hotter summer and autumn seasons is matched by a growing epidemic trend of NE in recent years, can be considered as an effect of global warming. To our knowledge, similar effects in other human infections in temperate Europe have rarely if ever been described so far. On the veterinary front however, the year 2006 witnessed in livestock the first outbreak ever recorded in northern Europe of bluetongue virus, with more than 2,000 confirmed cases. This was seen as a probable consequence of the hottest summer/autumn period since records began [
<xref ref-type="bibr" rid="B41">41</xref>
]. Its reappearance with greatly increased severity in May-June 2007 has been attributed in great part to the abnormally mild 2006–2007 winter [
<xref ref-type="bibr" rid="B41">41</xref>
,
<xref ref-type="bibr" rid="B42">42</xref>
].</p>
<p>If confirmed by other studies and in other countries, this predictive power of simple climate variables can be used by health authorities to adjust their prevention policies. Similar alarming forecasts for NE via higher temperatures have recently been made for 2008 in Sweden [
<xref ref-type="bibr" rid="B43">43</xref>
], and in Bashkortostan, Western Russia, where already in the first half of 2008, almost twice as many cases have been recorded as in the whole of 2007 [
<xref ref-type="bibr" rid="B5">5</xref>
]. Finally, changing climate factors might also influence other emerging infections in western Europe, such as Lyme borreliosis which has both a tick- and a rodent-transmission cycle. One of the principal rodent reservoirs for
<italic>Borrelia burgdorferi </italic>
is again
<italic>Myodes glareolus</italic>
, already studied here, along with some other local small rodents and insectivores. They will be the subject of another, partly prospective study.</p>
</sec>
<sec sec-type="methods">
<title>Methods</title>
<sec>
<title>Study subjects and laboratory methods</title>
<p>In the current study, only patients residing in Belgium with symptoms suggestive for NE were serologically examined. These symptoms consist mainly of fever with prostration, thrombocytopenia and varying degrees of acute renal failure [
<xref ref-type="bibr" rid="B8">8</xref>
]. From 1996 on, NE cases were recorded by IPH not only in years, but also in 4-week periods [
<xref ref-type="bibr" rid="B9">9</xref>
]. Individuals suspected of NE were screened using IFA and/or more frequently using ELISA, based on nucleoprotein of PUUV. A recent PUUV infection had to be confirmed by a positive IgM result by ELISA or IFA, together with a positive IgG titer.</p>
</sec>
<sec>
<title>Climate data</title>
<p>Daily data of temperature (in degrees Celsius) and rainfall (in mm) from 1985 to 2007 (Fig
<xref ref-type="fig" rid="F3">3</xref>
.) were obtained from the Royal Meteorological Institute (RMI), situated in the centre of the country in Ukkel (Brussels). This station is considered to be representative for the Belgian territory, despite regional variations. These meteorological data can be matched with countrywide data of NE cases. The RMI data were used to calculate monthly means for statistical comparisons. Seasons were defined meteorologically as "spring" being March, April and May, "summer" as June, July and August, "autumn" as September, October and November, and "winter" as December, January and February. April was singled out as most representative spring month [
<xref ref-type="bibr" rid="B27">27</xref>
], and July as most representative summer month [
<xref ref-type="bibr" rid="B10">10</xref>
].</p>
</sec>
<sec>
<title>Statistical methods</title>
<p>For comparison of climatologic data, the two-sample unequal variance t-test with a confidence interval of 95% was used.</p>
<p>For correlations between epidemiological NE data and temperature and precipitation, simple non-parametric univariate correlation analysis (Spearman) was applied using the free statistical software R (version 2.3.1). Significance on α was set on 0.05. To reduce the family-wise error rate, sequential Bonferroni correction was used.</p>
</sec>
</sec>
<sec>
<title>Competing interests</title>
<p>The authors declare that they have no competing interests.</p>
</sec>
<sec>
<title>Authors' contributions</title>
<p>JC founded the National Hantavirus Reference Centre, gathered and seroconfirmed a majority of the here described NE cases, conceived the idea of the study, and wrote the manuscript. JV performed the statistics on NE-climate correlations. WWV delivered the climatic data, performed the statistics on these, and helped to draft the manuscript. GD delivered the official Belgian NE data from 1990 on, and the 4-week NE numbers from 1996 on. JMB delivered the colour map in Fig.
<xref ref-type="fig" rid="F1">1</xref>
. AV supervised the statistics, and critically revised the manuscript for important intellectual content. PM prepared the figures and the outlay, and helped to draft the manuscript. MVR initiated the design and coordination of the study, and critically revised the manuscript. All authors read and approved the final manuscript.</p>
</sec>
<sec>
<title>Footnote</title>
<p>Presented in part as an invited lecture at the Int. Summer Conference of the Society for Applied Microbiology (SFAM) Pathogens in the Environment and Changing Ecosystems, Nottingham University, UK, 8-11 July, 2002. (SFAM News 2002; 3: 26-39), at the annual meeting of the Belgian Society for Internal Medicine, Brussels, Belgium, December 9-10th, 2005, abstract 42 [
<xref ref-type="bibr" rid="B21">21</xref>
], and at the 7th International Congress on Hantaviruses, Buenos Aires, Argentina, June 13-15th 2007 "Predicting hantavirus outbreaks and Lyme borreliosis peaks in Belgium – and Europe: of mast, mice and men", proceedings, abstract S1-O2, p. 21.</p>
</sec>
</body>
<back>
<ack>
<sec>
<title>Acknowledgements</title>
<p>Data on NE gathered between 1985 and 1997 in the Queen Astrid Military Hospital in Brussels, Belgium, were supported by a grant of the Belgian Ministry of Defence JSM/R&T G96/01. Excellent laboratory assistance in this 13-year period was provided by (in chronologic order): A. Lefevre, P. Mc Kenna, H. Leirs, P. Matthys, J. Neyts, and finally from 1995–1997 on, by P. Heyman.</p>
</sec>
</ack>
<ref-list>
<ref id="B1">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Clement</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Heyman</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Mc Kenna</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Colson</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Avsic-Zupanc</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>The Hantaviruses of Europe : from the bedside to the bench</article-title>
<source>Emerg Infect Dis</source>
<year>1997</year>
<volume>3</volume>
<fpage>205</fpage>
<lpage>211</lpage>
<pub-id pub-id-type="pmid">9204306</pub-id>
</citation>
</ref>
<ref id="B2">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Maes</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Clement</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Gavrilovskaya</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Van Ranst</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Hantaviruses: Immunology, treatment and prevention</article-title>
<source>Viral Immunology</source>
<year>2004</year>
<volume>17</volume>
<fpage>481</fpage>
<lpage>97</lpage>
<pub-id pub-id-type="pmid">15671746</pub-id>
<pub-id pub-id-type="doi">10.1089/vim.2004.17.481</pub-id>
</citation>
</ref>
<ref id="B3">
<citation citation-type="book">
<person-group person-group-type="author">
<name>
<surname>Clement</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Maes</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Van Ranst</surname>
<given-names>M</given-names>
</name>
</person-group>
<person-group person-group-type="editor">
<name>
<surname>Tabor E</surname>
</name>
</person-group>
<article-title>Hantaviruses in the Old and New World</article-title>
<source>Emerging Viruses in Human Populations</source>
<year>2007</year>
<publisher-name>London: Elsevier</publisher-name>
<fpage>161</fpage>
<lpage>177</lpage>
<comment>[Zuckerman AJ, Mushahwar IK (Series Editor): Perspectives in Medical Virology, vol 16]</comment>
</citation>
</ref>
<ref id="B4">
<citation citation-type="book">
<person-group person-group-type="author">
<name>
<surname>Clement</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Mc Kenna</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Groen</surname>
<given-names>G van der</given-names>
</name>
<name>
<surname>Vaheri</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Peters</surname>
<given-names>CJ</given-names>
</name>
</person-group>
<person-group person-group-type="editor">
<name>
<surname>Palmer SR, Soulsby EJL, Simpson DIH</surname>
</name>
</person-group>
<article-title>Hantaviruses</article-title>
<source>Zoonoses Biology, Clinical Practice, and Public Health Control</source>
<year>1998</year>
<publisher-name>Oxford, New-York, Tokyo: Oxford University Press</publisher-name>
<fpage>331</fpage>
<lpage>351</lpage>
</citation>
</ref>
<ref id="B5">
<citation citation-type="other">
<article-title>Hemorrhagic Fever with renal Syndrome -Russia (03): Bashkortostan</article-title>
<source>Promed mail 20080714 2139</source>
</citation>
</ref>
<ref id="B6">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>van Ypersele de Strihou</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Vandenbroucke</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Levy</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Doyen</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Cosyns</surname>
<given-names>JP</given-names>
</name>
<name>
<surname>Groen</surname>
<given-names>G van der</given-names>
</name>
<name>
<surname>Desmyter</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Diagnosis of epidemic and sporadic interstitial nephritis due to Hantaan-like virus in Belgium</article-title>
<source>Lancet</source>
<year>1983</year>
<volume>2</volume>
<fpage>1493</fpage>
<pub-id pub-id-type="doi">10.1016/S0140-6736(83)90833-4</pub-id>
</citation>
</ref>
<ref id="B7">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Clement</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Groen</surname>
<given-names>G van der</given-names>
</name>
</person-group>
<article-title>Acute hantavirus nephropathy in Belgium: preliminary results of a sero-epidemiological study</article-title>
<source>Adv Exp Med Biol</source>
<year>1987</year>
<volume>212</volume>
<fpage>251</fpage>
<lpage>263</lpage>
<pub-id pub-id-type="pmid">2887093</pub-id>
</citation>
</ref>
<ref id="B8">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Clement</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Maes</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Van Ranst</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Acute kidney injury in emerging, non-tropical infections</article-title>
<source>Acta Clin Belg</source>
<year>2007</year>
<volume>62</volume>
<fpage>387</fpage>
<lpage>95</lpage>
<pub-id pub-id-type="pmid">18351183</pub-id>
</citation>
</ref>
<ref id="B9">
<citation citation-type="other">
<person-group person-group-type="author">
<name>
<surname>Ducoffre</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>Surveillance of infectious diseases. IPH annual report 2006</article-title>
<ext-link ext-link-type="uri" xlink:href="http://www.iph.fgov.be/epidemio/epifr/plabfr/plabanfr/06_053f_v.pdf"></ext-link>
</citation>
</ref>
<ref id="B10">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Piovesan</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Adams</surname>
<given-names>JM</given-names>
</name>
</person-group>
<article-title>Masting behaviour in beech: linking reproduction and climatic variation</article-title>
<source>Can J Bot</source>
<year>2001</year>
<volume>79</volume>
<fpage>1039</fpage>
<lpage>1047</lpage>
<pub-id pub-id-type="doi">10.1139/cjb-79-9-1039</pub-id>
</citation>
</ref>
<ref id="B11">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jensen</surname>
<given-names>TS</given-names>
</name>
</person-group>
<article-title>Seed production and outbreaks of noncyclic rodent populations in deciduous forests</article-title>
<source>Oecologia</source>
<year>1982</year>
<volume>52</volume>
<fpage>184</fpage>
<lpage>192</lpage>
<pub-id pub-id-type="doi">10.1007/BF00378391</pub-id>
</citation>
</ref>
<ref id="B12">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pucek</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Jedrzejewski</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Jedrzejewska</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Pucek</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Rodent population dynamics in a primeval deciduous forest (Bialowieża National Park) in relation to weather, seed crop and predation</article-title>
<source>Acta Theriolog</source>
<year>1993</year>
<volume>38</volume>
<fpage>199</fpage>
<lpage>232</lpage>
</citation>
</ref>
<ref id="B13">
<citation citation-type="book">
<person-group person-group-type="author">
<name>
<surname>Sioen</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Roskams</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Verschelde</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>Inventory of forest vitality 2004. Situation of the canopy of trees in the forest vitality assessing network 2005. [Bosvitaliteitsinventaris 2004. Kroontoestand van de bomen in het bosvitaliteitsmeetnet. 2005]</article-title>
<source>IBW Bb R</source>
<year>2005</year>
<volume>006</volume>
<publisher-name>Instituut voor Bosbouw en Wildbeheer, Geraardsbergen</publisher-name>
<fpage>1</fpage>
<lpage>21</lpage>
<comment>[in Dutch]</comment>
</citation>
</ref>
<ref id="B14">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Verhagen</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Leirs</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Tkachenko</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Groen</surname>
<given-names>G van der</given-names>
</name>
</person-group>
<article-title>Ecological and epidemiological data on Hantavirus in bank vole populations in Belgium</article-title>
<source>Arch Virol</source>
<year>1986</year>
<volume>91</volume>
<fpage>193</fpage>
<lpage>205</lpage>
<pub-id pub-id-type="pmid">2877647</pub-id>
<pub-id pub-id-type="doi">10.1007/BF01314280</pub-id>
</citation>
</ref>
<ref id="B15">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Niklasson</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Hornfeldt</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Lundkvist</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Bjorsten</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Leduc</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Temporal dynamics of Puumala virus antibody prevalence in voles and of Nephropathia Epidemica incidence in humans</article-title>
<source>Am J Trop Med Hyg</source>
<year>1995</year>
<volume>53</volume>
<fpage>134</fpage>
<lpage>140</lpage>
<pub-id pub-id-type="pmid">7677213</pub-id>
</citation>
</ref>
<ref id="B16">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sauvage</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Penalba</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Vuillaume</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Boue</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Coudrier</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Pontier</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Artois</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Puumala hantavirus infection in humans and in the reservoir host, Ardennes region, France</article-title>
<source>Emerg Infect Dis</source>
<year>2002</year>
<volume>8</volume>
<fpage>1509</fpage>
<lpage>1511</lpage>
<pub-id pub-id-type="pmid">12498675</pub-id>
</citation>
</ref>
<ref id="B17">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Olsson</surname>
<given-names>GE</given-names>
</name>
<name>
<surname>White</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Ahlm</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Elgh</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Verlemyr</surname>
<given-names>AC</given-names>
</name>
<name>
<surname>Juto</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Palo</surname>
<given-names>RT</given-names>
</name>
</person-group>
<article-title>Demographic factors associated with hantavirus infection in bank voles (Clethrionomys glareolus)</article-title>
<source>Emerg Infect Dis</source>
<year>2002</year>
<volume>8</volume>
<fpage>924</fpage>
<lpage>929</lpage>
<pub-id pub-id-type="pmid">12194768</pub-id>
</citation>
</ref>
<ref id="B18">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Olsson</surname>
<given-names>GE</given-names>
</name>
<name>
<surname>White</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Hjältén</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Ahlm</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>Habitat factors associated with bank voles (Clethrionomys glareolus) and concomitant hantavirus in northern Sweden</article-title>
<source>Vector Borne Zoonotic Dis</source>
<year>2005</year>
<volume>5</volume>
<fpage>315</fpage>
<lpage>323</lpage>
<pub-id pub-id-type="pmid">16417427</pub-id>
<pub-id pub-id-type="doi">10.1089/vbz.2005.5.315</pub-id>
</citation>
</ref>
<ref id="B19">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Augot</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Sauvage</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Boue</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Bouloy</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Artois</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Demerson</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Combes</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Coudrier</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Zeller</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Cliquet</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Pontier</surname>
<given-names>D</given-names>
</name>
</person-group>
<article-title>Spatial and temporal patterning of bank vole demography and the epidemiology of the Puumala hantavirus in northeastern France</article-title>
<source>Epidemiol Infect</source>
<year>2008</year>
<volume>6</volume>
<fpage>1</fpage>
<lpage>6</lpage>
</citation>
</ref>
<ref id="B20">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sauvage</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Langlais</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Pontier</surname>
<given-names>D</given-names>
</name>
</person-group>
<article-title>Predicting the emergence of human hantavirus disease using a combination of viral dynamics and rodent demographic patterns</article-title>
<source>Epidemiol and Infect</source>
<year>2007</year>
<volume>135</volume>
<fpage>46</fpage>
<lpage>56</lpage>
<pub-id pub-id-type="pmid">16753079</pub-id>
<pub-id pub-id-type="doi">10.1017/S0950268806006595</pub-id>
</citation>
</ref>
<ref id="B21">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Clement</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Lagrou</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Maes</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Van Ranst</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Predicting Peaks of human Lyme Borreliosis & Hantavirus Disease in Belgium [abstract]</article-title>
<source>Act Clin Belg</source>
<year>2005</year>
<volume>60</volume>
<fpage>318</fpage>
</citation>
</ref>
<ref id="B22">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hofmann</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Meisel</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Klempa</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Vesenbeckh</surname>
<given-names>SM</given-names>
</name>
<name>
<surname>Beck</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Michel</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Schmidt-Chanasit</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Ulrich</surname>
<given-names>RG</given-names>
</name>
<name>
<surname>Grund</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Enders</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Kruger</surname>
<given-names>DH</given-names>
</name>
</person-group>
<article-title>Hantavirus outbreak, Germany, 2007</article-title>
<source>Emerg Infect Dis</source>
<year>2008</year>
<volume>14</volume>
<fpage>850</fpage>
<lpage>2</lpage>
<pub-id pub-id-type="pmid">18439382</pub-id>
<pub-id pub-id-type="doi">10.3201/eid1405.071533</pub-id>
</citation>
</ref>
<ref id="B23">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ducoffre</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>La leptospirose: une maladie émergente en Belgique?</article-title>
<source>Epi-Scoop</source>
<year>2008</year>
<volume>8</volume>
<fpage>3</fpage>
<lpage>4</lpage>
<ext-link ext-link-type="uri" xlink:href="http://www.iph.fgov.be/epidemio/epifr/plabfr/plabanfr/07_046f_r.pdf"></ext-link>
<comment>[in French]</comment>
</citation>
</ref>
<ref id="B24">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Clement</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Mc Kenna</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Colson</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Damoiseaux</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Penalba</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Halin</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Lombart</surname>
<given-names>D</given-names>
</name>
</person-group>
<article-title>Hantavirus epidemic in Europe</article-title>
<source>Lancet</source>
<year>1994</year>
<volume>343</volume>
<fpage>114</fpage>
<pub-id pub-id-type="pmid">7903742</pub-id>
<pub-id pub-id-type="doi">10.1016/S0140-6736(94)90841-9</pub-id>
</citation>
</ref>
<ref id="B25">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Clement</surname>
<given-names>J</given-names>
</name>
<name>
<surname>van Ranst</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Hantavirus infections in Belgium</article-title>
<source>Verh K Acad Geneeskd Belg</source>
<year>1999</year>
<volume>61</volume>
<fpage>701</fpage>
<lpage>17</lpage>
<comment>discussion 718–9 [in Dutch].</comment>
<pub-id pub-id-type="pmid">10655777</pub-id>
</citation>
</ref>
<ref id="B26">
<citation citation-type="book">
<person-group person-group-type="editor">
<name>
<surname>Malcorps H</surname>
</name>
</person-group>
<article-title>Climatological Year 2006 Survey, RMI</article-title>
<source>[Klimatologisch jaaroverzicht van KMI] RMI, 2007</source>
<year>2006</year>
<comment>ISSN/1377-2406. [in Dutch]</comment>
</citation>
</ref>
<ref id="B27">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hilton</surname>
<given-names>GM</given-names>
</name>
<name>
<surname>Packham</surname>
<given-names>JR</given-names>
</name>
</person-group>
<article-title>A sixteen-year record of regional and temporal variation in the fruiting of beech (Fagus sylvatica L.) in England (1980–1995)</article-title>
<source>Forestry</source>
<year>1997</year>
<volume>70</volume>
<fpage>7</fpage>
<lpage>16</lpage>
<pub-id pub-id-type="doi">10.1093/forestry/70.1.7</pub-id>
</citation>
</ref>
<ref id="B28">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Escutenaire</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Chalon</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Verhagen</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Heyman</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Thomas</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Karelle-Bui</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Avsic-Zupanc</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Lundkvist</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Plyusnin</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Pastoret</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>Spatial and temporal dynamics of Puumala hantavirus infection in red bank vole (
<italic>Clethrionomys glareolus</italic>
) populations in Belgium</article-title>
<source>Vir Res</source>
<year>2000</year>
<volume>67</volume>
<fpage>91</fpage>
<lpage>107</lpage>
<pub-id pub-id-type="doi">10.1016/S0168-1702(00)00136-2</pub-id>
</citation>
</ref>
<ref id="B29">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tersago</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Schreurs</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Linard</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Verhagen</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Van Dongen</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Leirs</surname>
<given-names>H</given-names>
</name>
</person-group>
<article-title>Population, environmental, and community effects on local bank vole (Myodes glareolus) Puumala virus infection in an area with low human incidence</article-title>
<source>Vector Borne Zoonotic Dis</source>
<year>2008</year>
<volume>8</volume>
<fpage>235</fpage>
<lpage>244</lpage>
<pub-id pub-id-type="pmid">18370592</pub-id>
<pub-id pub-id-type="doi">10.1089/vbz.2007.0160</pub-id>
</citation>
</ref>
<ref id="B30">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Olsson</surname>
<given-names>GE</given-names>
</name>
<name>
<surname>Dalerum</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Hörnfeldt</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Elgh</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Palo</surname>
<given-names>TR</given-names>
</name>
<name>
<surname>Juto</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Ahlm</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>Human hantavirus infections, Sweden</article-title>
<source>Emerg Infect Dis</source>
<year>2003</year>
<volume>9</volume>
<fpage>1395</fpage>
<lpage>1401</lpage>
<pub-id pub-id-type="pmid">14718081</pub-id>
</citation>
</ref>
<ref id="B31">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wolff</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Population Fluctuations of Mast-Eating Rodents are correlated with the Production of Acorns</article-title>
<source>J Mammalogy</source>
<year>1996</year>
<volume>77</volume>
<fpage>850</fpage>
<lpage>856</lpage>
<pub-id pub-id-type="doi">10.2307/1382690</pub-id>
</citation>
</ref>
<ref id="B32">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Linard</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Tersago</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Leirs</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Lambin</surname>
<given-names>EF</given-names>
</name>
</person-group>
<article-title>Environmental conditions and Puumala virus transmission in Belgium</article-title>
<source>Int J Health Geogr</source>
<year>2007</year>
<volume>6</volume>
<fpage>55</fpage>
<pub-id pub-id-type="pmid">18078526</pub-id>
<pub-id pub-id-type="doi">10.1186/1476-072X-6-55</pub-id>
</citation>
</ref>
<ref id="B33">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kallio</surname>
<given-names>ER</given-names>
</name>
<name>
<surname>Klingström</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Gustafsson</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Manni</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Vaheri</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Henttonen</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Vapalahti</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Lundkvist</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Prolonged survival of Puumala hantavirus outside the host: evidence for indirect transmission via the environment</article-title>
<source>J Gen Virol</source>
<year>2006</year>
<volume>87</volume>
<fpage>2127</fpage>
<lpage>2134</lpage>
<pub-id pub-id-type="pmid">16847107</pub-id>
<pub-id pub-id-type="doi">10.1099/vir.0.81643-0</pub-id>
</citation>
</ref>
<ref id="B34">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Van Loock</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Thomas</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Clement</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Ghoos</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Colson</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>A case-control study after a hantavirus outbreak in the South of Belgium: who is at risk?</article-title>
<source>Clin Inf Dis</source>
<year>1999</year>
<volume>28</volume>
<fpage>834</fpage>
<lpage>839</lpage>
<pub-id pub-id-type="doi">10.1086/515196</pub-id>
</citation>
</ref>
<ref id="B35">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Crowcroft</surname>
<given-names>NS</given-names>
</name>
<name>
<surname>Infuso</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Ilef</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Le Guenno</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Desenclos</surname>
<given-names>JC</given-names>
</name>
<name>
<surname>Van Loock</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Clement</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Risk factors for human hantavirus infection: Franco-Belgian collaborative case-control study during 1995–6 epidemic</article-title>
<source>Brit Med J</source>
<year>1999</year>
<volume>318</volume>
<fpage>1737</fpage>
<lpage>1738</lpage>
<comment>Erratum in
<italic>Brit Med J </italic>
1999;
<bold>319(7206)</bold>
:379.</comment>
<pub-id pub-id-type="pmid">10381709</pub-id>
</citation>
</ref>
<ref id="B36">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Clement</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Underwood</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Ward</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Pilaski</surname>
<given-names>J</given-names>
</name>
<name>
<surname>LeDuc</surname>
<given-names>JW</given-names>
</name>
</person-group>
<article-title>Hantavirus outbreak during military manoeuvres in Germany</article-title>
<source>Lancet</source>
<year>1996</year>
<volume>347</volume>
<fpage>336</fpage>
<pub-id pub-id-type="pmid">8569401</pub-id>
<pub-id pub-id-type="doi">10.1016/S0140-6736(96)90519-X</pub-id>
</citation>
</ref>
<ref id="B37">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Xu</surname>
<given-names>ZY</given-names>
</name>
<name>
<surname>Guo</surname>
<given-names>CS</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>YL</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>XW</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>K</given-names>
</name>
</person-group>
<article-title>Epidemiological studies of hemorrhagic fever with renal syndrome: analysis of risk factors and mode of transmission</article-title>
<source>J Infect Dis</source>
<year>1985</year>
<volume>152</volume>
<fpage>137</fpage>
<lpage>144</lpage>
<pub-id pub-id-type="pmid">2861242</pub-id>
</citation>
</ref>
<ref id="B38">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Antoniadis</surname>
<given-names>A</given-names>
</name>
<name>
<surname>LeDuc</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Daniel-Alexiou</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Clinical and epidemiological aspects of haemorrhagic fever with renal syndrome (HFRS) in Greece</article-title>
<source>Eur J Epid</source>
<year>1987</year>
<volume>3</volume>
<fpage>295</fpage>
<lpage>301</lpage>
<pub-id pub-id-type="doi">10.1007/BF00149739</pub-id>
</citation>
</ref>
<ref id="B39">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Keyaerts</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Ghijsels</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Lemey</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Maes</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Zachée</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Daelemans</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Vervoort</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Mertens</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Van Ranst</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Clement</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Plasma-exchange-associated IgM-negative hantavirus disease after a camping holiday in Southern France</article-title>
<source>Clin Inf Dis</source>
<year>2004</year>
<volume>38</volume>
<fpage>1350</fpage>
<lpage>1356</lpage>
<pub-id pub-id-type="doi">10.1086/383311</pub-id>
</citation>
</ref>
<ref id="B40">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Davis</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Calvet</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Leirs</surname>
<given-names>H</given-names>
</name>
</person-group>
<article-title>Fluctuating rodent populations and risk to humans from rodent-borne zoonoses</article-title>
<source>Vector Borne Zoonotic Dis</source>
<year>2005</year>
<volume>5</volume>
<fpage>305</fpage>
<lpage>314</lpage>
<pub-id pub-id-type="pmid">16417426</pub-id>
<pub-id pub-id-type="doi">10.1089/vbz.2005.5.305</pub-id>
</citation>
</ref>
<ref id="B41">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gloster</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Mellor</surname>
<given-names>PS</given-names>
</name>
<name>
<surname>Burgin</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Sanders</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Carpenter</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Will bluetongue come on the wind to the United Kingdom in 2007?</article-title>
<source>Vet Rec</source>
<year>2007</year>
<volume>160</volume>
<fpage>422</fpage>
<lpage>426</lpage>
<pub-id pub-id-type="pmid">17400899</pub-id>
</citation>
</ref>
<ref id="B42">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Maan</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Maan</surname>
<given-names>NS</given-names>
</name>
<name>
<surname>Ross-smith</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Batten</surname>
<given-names>CA</given-names>
</name>
<name>
<surname>Shaw</surname>
<given-names>AE</given-names>
</name>
<name>
<surname>Anthony</surname>
<given-names>SJ</given-names>
</name>
<name>
<surname>Samuel</surname>
<given-names>AR</given-names>
</name>
<name>
<surname>Darpel</surname>
<given-names>KE</given-names>
</name>
<name>
<surname>Veronesi</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Oura</surname>
<given-names>CA</given-names>
</name>
<name>
<surname>Singh</surname>
<given-names>KP</given-names>
</name>
<name>
<surname>Nomikou</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Potgieter</surname>
<given-names>AC</given-names>
</name>
<name>
<surname>Attoui</surname>
<given-names>H</given-names>
</name>
<name>
<surname>van Rooij</surname>
<given-names>E</given-names>
</name>
<name>
<surname>van Rijn</surname>
<given-names>P</given-names>
</name>
<name>
<surname>De Clercq</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Vandenbussche</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Zientara</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Bréard</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Sailleau</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Beer</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Hoffman</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Mellor</surname>
<given-names>PS</given-names>
</name>
<name>
<surname>Mertens</surname>
<given-names>PP</given-names>
</name>
</person-group>
<article-title>Sequence analysis of bluetongue virus serotype 8 from the Netherlands 2006 and comparison to other European strains</article-title>
<source>Virology</source>
<year>2008</year>
<volume>377</volume>
<fpage>308</fpage>
<lpage>318</lpage>
<pub-id pub-id-type="pmid">18570969</pub-id>
<pub-id pub-id-type="doi">10.1016/j.virol.2008.04.028</pub-id>
</citation>
</ref>
<ref id="B43">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pettersson</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Boman</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Juto</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Evander</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Ahlm</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>Outbreak of Puumala virus infection, Sweden</article-title>
<source>Emerg Infect Dis</source>
<year>2008</year>
<volume>14</volume>
<fpage>808</fpage>
<lpage>10</lpage>
<pub-id pub-id-type="pmid">18439368</pub-id>
<pub-id pub-id-type="doi">10.3201/eid1405.071124</pub-id>
</citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Bois/explor/CheneBelgiqueV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 0000989 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 0000989 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Bois
   |area=    CheneBelgiqueV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     
   |texte=   
}}

Wicri

This area was generated with Dilib version V0.6.27.
Data generation: Tue Feb 21 23:48:11 2017. Site generation: Wed Mar 6 16:29:49 2024