Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Diverging temperature responses of CO2 assimilation and plant development explain the overall effect of temperature on biomass accumulation in wheat leaves and grains.

Identifieur interne : 001306 ( PubMed/Curation ); précédent : 001305; suivant : 001307

Diverging temperature responses of CO2 assimilation and plant development explain the overall effect of temperature on biomass accumulation in wheat leaves and grains.

Auteurs : Nicholas C. Collins [Australie] ; Boris Parent [France]

Source :

RBID : pubmed:28069595

Abstract

There is a growing consensus in the literature that rising temperatures influence the rate of biomass accumulation by shortening the development of plant organs and the whole plant and by altering rates of respiration and photosynthesis. A model describing the net effects of these processes on biomass would be useful, but would need to reconcile reported differences in the effects of night and day temperature on plant productivity. In this study, the working hypothesis was that the temperature responses of CO2 assimilation and plant development rates were divergent, and that their net effects could explain observed differences in biomass accumulation. In wheat (Triticum aestivum) plants, we followed the temperature responses of photosynthesis, respiration and leaf elongation, and confirmed that their responses diverged. We measured the amount of carbon assimilated per "unit of plant development" in each scenario and compared it to the biomass that accumulated in growing leaves and grains. Our results suggested that, up to a temperature optimum, the rate of any developmental process increased with temperature more rapidly than that of CO2 assimilation and that this discrepancy, summarised by the CO2 assimilation rate per unit of plant development, could explain the observed reductions in biomass accumulation in plant organs under high temperatures. The model described the effects of night and day temperature equally well, and offers a simple framework for describing the effects of temperature on plant growth.

DOI: 10.1093/aobpla/plw092
PubMed: 28069595

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:28069595

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Diverging temperature responses of CO2 assimilation and plant development explain the overall effect of temperature on biomass accumulation in wheat leaves and grains.</title>
<author>
<name sortKey="Collins, Nicholas C" sort="Collins, Nicholas C" uniqKey="Collins N" first="Nicholas C" last="Collins">Nicholas C. Collins</name>
<affiliation wicri:level="1">
<nlm:affiliation>Australian Centre for Plant Functional Genomics, University of Adelaide, School of Agriculture Food and Wine, Hartley Grove, Urrbrae, South Australia 5064, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Australian Centre for Plant Functional Genomics, University of Adelaide, School of Agriculture Food and Wine, Hartley Grove, Urrbrae, South Australia 5064</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Parent, Boris" sort="Parent, Boris" uniqKey="Parent B" first="Boris" last="Parent">Boris Parent</name>
<affiliation wicri:level="1">
<nlm:affiliation>Australian Centre for Plant Functional Genomics, University of Adelaide, School of Agriculture Food and Wine, Hartley Grove, Urrbrae, South Australia 5064, Australia boris.parent@supagro.inra.fr.</nlm:affiliation>
<country wicri:rule="url">France</country>
<wicri:regionArea>Australian Centre for Plant Functional Genomics, University of Adelaide, School of Agriculture Food and Wine, Hartley Grove, Urrbrae, South Australia 5064</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28069595</idno>
<idno type="pmid">28069595</idno>
<idno type="doi">10.1093/aobpla/plw092</idno>
<idno type="wicri:Area/PubMed/Corpus">001328</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001328</idno>
<idno type="wicri:Area/PubMed/Curation">001306</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">001306</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Diverging temperature responses of CO2 assimilation and plant development explain the overall effect of temperature on biomass accumulation in wheat leaves and grains.</title>
<author>
<name sortKey="Collins, Nicholas C" sort="Collins, Nicholas C" uniqKey="Collins N" first="Nicholas C" last="Collins">Nicholas C. Collins</name>
<affiliation wicri:level="1">
<nlm:affiliation>Australian Centre for Plant Functional Genomics, University of Adelaide, School of Agriculture Food and Wine, Hartley Grove, Urrbrae, South Australia 5064, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Australian Centre for Plant Functional Genomics, University of Adelaide, School of Agriculture Food and Wine, Hartley Grove, Urrbrae, South Australia 5064</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Parent, Boris" sort="Parent, Boris" uniqKey="Parent B" first="Boris" last="Parent">Boris Parent</name>
<affiliation wicri:level="1">
<nlm:affiliation>Australian Centre for Plant Functional Genomics, University of Adelaide, School of Agriculture Food and Wine, Hartley Grove, Urrbrae, South Australia 5064, Australia boris.parent@supagro.inra.fr.</nlm:affiliation>
<country wicri:rule="url">France</country>
<wicri:regionArea>Australian Centre for Plant Functional Genomics, University of Adelaide, School of Agriculture Food and Wine, Hartley Grove, Urrbrae, South Australia 5064</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">AoB PLANTS</title>
<idno type="ISSN">2041-2851</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">There is a growing consensus in the literature that rising temperatures influence the rate of biomass accumulation by shortening the development of plant organs and the whole plant and by altering rates of respiration and photosynthesis. A model describing the net effects of these processes on biomass would be useful, but would need to reconcile reported differences in the effects of night and day temperature on plant productivity. In this study, the working hypothesis was that the temperature responses of CO2 assimilation and plant development rates were divergent, and that their net effects could explain observed differences in biomass accumulation. In wheat (Triticum aestivum) plants, we followed the temperature responses of photosynthesis, respiration and leaf elongation, and confirmed that their responses diverged. We measured the amount of carbon assimilated per "unit of plant development" in each scenario and compared it to the biomass that accumulated in growing leaves and grains. Our results suggested that, up to a temperature optimum, the rate of any developmental process increased with temperature more rapidly than that of CO2 assimilation and that this discrepancy, summarised by the CO2 assimilation rate per unit of plant development, could explain the observed reductions in biomass accumulation in plant organs under high temperatures. The model described the effects of night and day temperature equally well, and offers a simple framework for describing the effects of temperature on plant growth.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="Publisher" Owner="NLM">
<PMID Version="1">28069595</PMID>
<DateCreated>
<Year>2017</Year>
<Month>01</Month>
<Day>10</Day>
</DateCreated>
<DateRevised>
<Year>2017</Year>
<Month>04</Month>
<Day>25</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">2041-2851</ISSN>
<JournalIssue CitedMedium="Print">
<PubDate>
<Year>2017</Year>
<Month>Jan</Month>
<Day>09</Day>
</PubDate>
</JournalIssue>
<Title>AoB PLANTS</Title>
<ISOAbbreviation>AoB Plants</ISOAbbreviation>
</Journal>
<ArticleTitle>Diverging temperature responses of CO2 assimilation and plant development explain the overall effect of temperature on biomass accumulation in wheat leaves and grains.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">plw092</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1093/aobpla/plw092</ELocationID>
<Abstract>
<AbstractText>There is a growing consensus in the literature that rising temperatures influence the rate of biomass accumulation by shortening the development of plant organs and the whole plant and by altering rates of respiration and photosynthesis. A model describing the net effects of these processes on biomass would be useful, but would need to reconcile reported differences in the effects of night and day temperature on plant productivity. In this study, the working hypothesis was that the temperature responses of CO2 assimilation and plant development rates were divergent, and that their net effects could explain observed differences in biomass accumulation. In wheat (Triticum aestivum) plants, we followed the temperature responses of photosynthesis, respiration and leaf elongation, and confirmed that their responses diverged. We measured the amount of carbon assimilated per "unit of plant development" in each scenario and compared it to the biomass that accumulated in growing leaves and grains. Our results suggested that, up to a temperature optimum, the rate of any developmental process increased with temperature more rapidly than that of CO2 assimilation and that this discrepancy, summarised by the CO2 assimilation rate per unit of plant development, could explain the observed reductions in biomass accumulation in plant organs under high temperatures. The model described the effects of night and day temperature equally well, and offers a simple framework for describing the effects of temperature on plant growth.</AbstractText>
<CopyrightInformation>Published by Oxford University Press on behalf of the Annals of Botany Company.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Collins</LastName>
<ForeName>Nicholas C</ForeName>
<Initials>NC</Initials>
<AffiliationInfo>
<Affiliation>Australian Centre for Plant Functional Genomics, University of Adelaide, School of Agriculture Food and Wine, Hartley Grove, Urrbrae, South Australia 5064, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Parent</LastName>
<ForeName>Boris</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>Australian Centre for Plant Functional Genomics, University of Adelaide, School of Agriculture Food and Wine, Hartley Grove, Urrbrae, South Australia 5064, Australia boris.parent@supagro.inra.fr.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Current address: INRA, UMR759 Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux. Place Viala, F-34060 Montpellier, France boris.parent@supagro.inra.fr.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>boris.parent@supagro.inra.fr; iman.lohraseb@acpfg.com.au; nick.collins@acpfg.com.au boris.parent@supagro.inra.fr.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>01</Month>
<Day>09</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>AoB Plants</MedlineTA>
<NlmUniqueID>101539425</NlmUniqueID>
</MedlineJournalInfo>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Ann Bot. 2005 Mar;95(4):695-701</RefSource>
<PMID Version="1">15655104</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Cell Environ. 2010 Aug 1;33(8):1256-67</RefSource>
<PMID Version="1">20302604</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Physiol. 2012 Dec;160(4):1710-8</RefSource>
<PMID Version="1">23054564</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>New Phytol. 2009;182(3):565-88</RefSource>
<PMID Version="1">19434804</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>New Phytol. 2007;176(2):375-89</RefSource>
<PMID Version="1">17692077</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Bot. 2009;60(7):1899-918</RefSource>
<PMID Version="1">19363203</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Bot. 2011 Jan;62(2):439-52</RefSource>
<PMID Version="1">20952629</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2010 Aug 17;107(33):14562-7</RefSource>
<PMID Version="1">20696908</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Bot. 2010 Jun;61(6):1751-9</RefSource>
<PMID Version="1">20299442</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Cell Environ. 2012 Apr;35(4):702-18</RefSource>
<PMID Version="1">21988660</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Bot. 2014 Nov;65(21):6179-89</RefSource>
<PMID Version="1">24948682</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>New Phytol. 2012 May;194(3):760-74</RefSource>
<PMID Version="1">22390357</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Bot. 2010 May;61(8):2057-69</RefSource>
<PMID Version="1">20194927</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Cell Environ. 2009 Nov;32(11):1561-72</RefSource>
<PMID Version="1">19627567</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Plant Sci. 2003 Jul;8(7):343-51</RefSource>
<PMID Version="1">12878019</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>New Phytol. 2012 Jan;193(1):30-50</RefSource>
<PMID Version="1">22085245</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2004 Jul 6;101(27):9971-5</RefSource>
<PMID Version="1">15226500</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Cell Environ. 2011 Sep;34(9):1563-76</RefSource>
<PMID Version="1">21707647</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>New Phytol. 2010 Jul;187(1):106-18</RefSource>
<PMID Version="1">20456066</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plant Cell Environ. 2007 Sep;30(9):1086-106</RefSource>
<PMID Version="1">17661749</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>New Phytol. 2007;174(2):367-80</RefSource>
<PMID Version="1">17388899</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Biomass</Keyword>
<Keyword MajorTopicYN="N">development</Keyword>
<Keyword MajorTopicYN="N">grain growth</Keyword>
<Keyword MajorTopicYN="N">photosynthesis</Keyword>
<Keyword MajorTopicYN="N">respiration</Keyword>
<Keyword MajorTopicYN="N">specific leaf area</Keyword>
<Keyword MajorTopicYN="N">temperature</Keyword>
<Keyword MajorTopicYN="N">thermal time</Keyword>
<Keyword MajorTopicYN="N">wheat.</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>07</Month>
<Day>07</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2016</Year>
<Month>11</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>12</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>1</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>1</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>1</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>aheadofprint</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28069595</ArticleId>
<ArticleId IdType="pii">plw092</ArticleId>
<ArticleId IdType="doi">10.1093/aobpla/plw092</ArticleId>
<ArticleId IdType="pmc">PMC5391697</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001306 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 001306 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:28069595
   |texte=   Diverging temperature responses of CO2 assimilation and plant development explain the overall effect of temperature on biomass accumulation in wheat leaves and grains.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:28069595" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a AustralieFrV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024