Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Poly(vinyl alcohol)-heparin biosynthetic microspheres produced by microfluidics and ultraviolet photopolymerisation.

Identifieur interne : 003B31 ( PubMed/Corpus ); précédent : 003B30; suivant : 003B32

Poly(vinyl alcohol)-heparin biosynthetic microspheres produced by microfluidics and ultraviolet photopolymerisation.

Auteurs : Cara Young ; Kester Rozario ; Christophe Serra ; Laura Poole-Warren ; Penny Martens

Source :

RBID : pubmed:24404042

Abstract

Biosynthetic microspheres have the potential to address some of the limitations in cell microencapsulation; however, the generation of biosynthetic hydrogel microspheres has not been investigated or applied to cell encapsulation. Droplet microfluidics has the potential to produce more uniform microspheres under conditions compatible with cell encapsulation. Therefore, the aim of this study was to understand the effect of process parameters on biosynthetic microsphere formation, size, and morphology with a co-flow microfluidic method. Poly(vinyl alcohol) (PVA), a synthetic hydrogel and heparin, a glycosaminoglycan were chosen as the hydrogels for this study. A capillary-based microfluidic droplet generation device was used, and by varying the flow rates of both the polymer and oil phases, the viscosity of the continuous oil phase, and the interfacial surface tension, monodisperse spheres were produced from ∼200 to 800 μm. The size and morphology were unaffected by the addition of heparin. The modulus of spheres was 397 and 335 kPa for PVA and PVA/heparin, respectively, and this was not different from the bulk gel modulus (312 and 365 for PVA and PVA/heparin, respectively). Mammalian cells encapsulated in the spheres had over 90% viability after 24 h in both PVA and PVA/heparin microspheres. After 28 days, viability was still over 90% for PVA-heparin spheres and was significantly higher than in PVA only spheres. The use of biosynthetic hydrogels with microfluidic and UV polymerisation methods offers an improved approach to long-term cell encapsulation.

DOI: 10.1063/1.4816714
PubMed: 24404042

Links to Exploration step

pubmed:24404042

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Poly(vinyl alcohol)-heparin biosynthetic microspheres produced by microfluidics and ultraviolet photopolymerisation.</title>
<author>
<name sortKey="Young, Cara" sort="Young, Cara" uniqKey="Young C" first="Cara" last="Young">Cara Young</name>
<affiliation>
<nlm:affiliation>Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rozario, Kester" sort="Rozario, Kester" uniqKey="Rozario K" first="Kester" last="Rozario">Kester Rozario</name>
<affiliation>
<nlm:affiliation>Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Serra, Christophe" sort="Serra, Christophe" uniqKey="Serra C" first="Christophe" last="Serra">Christophe Serra</name>
<affiliation>
<nlm:affiliation>Laboratoire d'Ingénierie des Polymères pour les Hautes Technologies (LIPHT), Université de Strasbourg (UdS), Ecole de Chimie Polymères et Matériaux (EPCM), Strasbourg, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Poole Warren, Laura" sort="Poole Warren, Laura" uniqKey="Poole Warren L" first="Laura" last="Poole-Warren">Laura Poole-Warren</name>
<affiliation>
<nlm:affiliation>Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Martens, Penny" sort="Martens, Penny" uniqKey="Martens P" first="Penny" last="Martens">Penny Martens</name>
<affiliation>
<nlm:affiliation>Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Australia.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:24404042</idno>
<idno type="pmid">24404042</idno>
<idno type="doi">10.1063/1.4816714</idno>
<idno type="wicri:Area/PubMed/Corpus">003B31</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">003B31</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Poly(vinyl alcohol)-heparin biosynthetic microspheres produced by microfluidics and ultraviolet photopolymerisation.</title>
<author>
<name sortKey="Young, Cara" sort="Young, Cara" uniqKey="Young C" first="Cara" last="Young">Cara Young</name>
<affiliation>
<nlm:affiliation>Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rozario, Kester" sort="Rozario, Kester" uniqKey="Rozario K" first="Kester" last="Rozario">Kester Rozario</name>
<affiliation>
<nlm:affiliation>Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Serra, Christophe" sort="Serra, Christophe" uniqKey="Serra C" first="Christophe" last="Serra">Christophe Serra</name>
<affiliation>
<nlm:affiliation>Laboratoire d'Ingénierie des Polymères pour les Hautes Technologies (LIPHT), Université de Strasbourg (UdS), Ecole de Chimie Polymères et Matériaux (EPCM), Strasbourg, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Poole Warren, Laura" sort="Poole Warren, Laura" uniqKey="Poole Warren L" first="Laura" last="Poole-Warren">Laura Poole-Warren</name>
<affiliation>
<nlm:affiliation>Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Martens, Penny" sort="Martens, Penny" uniqKey="Martens P" first="Penny" last="Martens">Penny Martens</name>
<affiliation>
<nlm:affiliation>Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Australia.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Biomicrofluidics</title>
<idno type="ISSN">1932-1058</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Biosynthetic microspheres have the potential to address some of the limitations in cell microencapsulation; however, the generation of biosynthetic hydrogel microspheres has not been investigated or applied to cell encapsulation. Droplet microfluidics has the potential to produce more uniform microspheres under conditions compatible with cell encapsulation. Therefore, the aim of this study was to understand the effect of process parameters on biosynthetic microsphere formation, size, and morphology with a co-flow microfluidic method. Poly(vinyl alcohol) (PVA), a synthetic hydrogel and heparin, a glycosaminoglycan were chosen as the hydrogels for this study. A capillary-based microfluidic droplet generation device was used, and by varying the flow rates of both the polymer and oil phases, the viscosity of the continuous oil phase, and the interfacial surface tension, monodisperse spheres were produced from ∼200 to 800 μm. The size and morphology were unaffected by the addition of heparin. The modulus of spheres was 397 and 335 kPa for PVA and PVA/heparin, respectively, and this was not different from the bulk gel modulus (312 and 365 for PVA and PVA/heparin, respectively). Mammalian cells encapsulated in the spheres had over 90% viability after 24 h in both PVA and PVA/heparin microspheres. After 28 days, viability was still over 90% for PVA-heparin spheres and was significantly higher than in PVA only spheres. The use of biosynthetic hydrogels with microfluidic and UV polymerisation methods offers an improved approach to long-term cell encapsulation.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">24404042</PMID>
<DateCreated>
<Year>2014</Year>
<Month>01</Month>
<Day>09</Day>
</DateCreated>
<DateCompleted>
<Year>2014</Year>
<Month>01</Month>
<Day>09</Day>
</DateCompleted>
<DateRevised>
<Year>2017</Year>
<Month>02</Month>
<Day>20</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1932-1058</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>7</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2013</Year>
</PubDate>
</JournalIssue>
<Title>Biomicrofluidics</Title>
<ISOAbbreviation>Biomicrofluidics</ISOAbbreviation>
</Journal>
<ArticleTitle>Poly(vinyl alcohol)-heparin biosynthetic microspheres produced by microfluidics and ultraviolet photopolymerisation.</ArticleTitle>
<Pagination>
<MedlinePgn>44109</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1063/1.4816714</ELocationID>
<Abstract>
<AbstractText>Biosynthetic microspheres have the potential to address some of the limitations in cell microencapsulation; however, the generation of biosynthetic hydrogel microspheres has not been investigated or applied to cell encapsulation. Droplet microfluidics has the potential to produce more uniform microspheres under conditions compatible with cell encapsulation. Therefore, the aim of this study was to understand the effect of process parameters on biosynthetic microsphere formation, size, and morphology with a co-flow microfluidic method. Poly(vinyl alcohol) (PVA), a synthetic hydrogel and heparin, a glycosaminoglycan were chosen as the hydrogels for this study. A capillary-based microfluidic droplet generation device was used, and by varying the flow rates of both the polymer and oil phases, the viscosity of the continuous oil phase, and the interfacial surface tension, monodisperse spheres were produced from ∼200 to 800 μm. The size and morphology were unaffected by the addition of heparin. The modulus of spheres was 397 and 335 kPa for PVA and PVA/heparin, respectively, and this was not different from the bulk gel modulus (312 and 365 for PVA and PVA/heparin, respectively). Mammalian cells encapsulated in the spheres had over 90% viability after 24 h in both PVA and PVA/heparin microspheres. After 28 days, viability was still over 90% for PVA-heparin spheres and was significantly higher than in PVA only spheres. The use of biosynthetic hydrogels with microfluidic and UV polymerisation methods offers an improved approach to long-term cell encapsulation.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Young</LastName>
<ForeName>Cara</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rozario</LastName>
<ForeName>Kester</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Serra</LastName>
<ForeName>Christophe</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Laboratoire d'Ingénierie des Polymères pour les Hautes Technologies (LIPHT), Université de Strasbourg (UdS), Ecole de Chimie Polymères et Matériaux (EPCM), Strasbourg, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Poole-Warren</LastName>
<ForeName>Laura</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Martens</LastName>
<ForeName>Penny</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Australia.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>08</Month>
<Day>01</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Biomicrofluidics</MedlineTA>
<NlmUniqueID>101293825</NlmUniqueID>
<ISSNLinking>1932-1058</ISSNLinking>
</MedlineJournalInfo>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Biomicrofluidics. 2007 Jan 25;1(1):14105</RefSource>
<PMID Version="1">19693354</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biotechnol Bioeng. 2012 Jun;109(6):1561-70</RefSource>
<PMID Version="1">22234803</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Control Release. 2006 Aug 10;114(1):1-14</RefSource>
<PMID Version="1">16828914</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Anal Chem. 2003 Jul 15;75(14):3581-6</RefSource>
<PMID Version="1">14570213</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Langmuir. 2007 Jul 3;23(14):7745-50</RefSource>
<PMID Version="1">17530868</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Am Chem Soc. 2012 Mar 14;134(10):4983-9</RefSource>
<PMID Version="1">22356466</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biomed Mater Res. 2001 Dec 5;57(3):374-83</RefSource>
<PMID Version="1">11523032</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Anal Biochem. 2004 Feb 1;325(1):151-7</RefSource>
<PMID Version="1">14715296</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2006 Jul 27;442(7101):412-8</RefSource>
<PMID Version="1">16871209</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biomaterials. 2007 Jan;28(1):66-77</RefSource>
<PMID Version="1">16963119</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biomaterials. 2009 Jan;30(3):344-53</RefSource>
<PMID Version="1">18930540</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Control Release. 2008 Dec 8;132(2):76-83</RefSource>
<PMID Version="1">18789985</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Microencapsul. 2002 Sep-Oct;19(5):571-90</RefSource>
<PMID Version="1">12433301</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biomater Sci Polym Ed. 2000;11(5):439-57</RefSource>
<PMID Version="1">10896041</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biotechnol Bioeng. 2007 Jan 1;96(1):146-55</RefSource>
<PMID Version="1">16894633</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Lab Chip. 2011 Jan 21;11(2):246-52</RefSource>
<PMID Version="1">20967338</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Langmuir. 2005 Nov 8;21(23):10275-9</RefSource>
<PMID Version="1">16262275</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biomaterials. 2008 Dec;29(35):4658-64</RefSource>
<PMID Version="1">18799212</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Diabetes. 1999 Jul;48(7):1381-8</RefSource>
<PMID Version="1">10389842</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Lab Chip. 2008 Feb;8(2):198-220</RefSource>
<PMID Version="1">18231657</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Langmuir. 2004 Nov 9;20(23):9968-77</RefSource>
<PMID Version="1">15518482</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Biotechnol. 2005 Jan;23(1):47-55</RefSource>
<PMID Version="1">15637621</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Am Chem Soc. 2005 Jun 8;127(22):8058-63</RefSource>
<PMID Version="1">15926830</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Adv Mater. 2010 Aug 17;22(31):3484-94</RefSource>
<PMID Version="1">20473984</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Langmuir. 2005 Apr 26;21(9):3738-41</RefSource>
<PMID Version="1">15835930</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biotechniques. 2006 Jan;40(1):85-90</RefSource>
<PMID Version="1">16454045</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Mater Sci Mater Med. 2010 Jul;21(7):2243-51</RefSource>
<PMID Version="1">20411308</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biomed Microdevices. 2007 Dec;9(6):855-62</RefSource>
<PMID Version="1">17578667</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biomaterials. 2006 Jul;27(20):3691-700</RefSource>
<PMID Version="1">16574222</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Phys Rev Lett. 2007 Aug 31;99(9):094502</RefSource>
<PMID Version="1">17931011</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Lab Chip. 2010 Aug 21;10(16):2032-45</RefSource>
<PMID Version="1">20559601</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Transpl Int. 1994 Jul;7(4):264-71</RefSource>
<PMID Version="1">7916926</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<OtherID Source="NLM">PMC3745486</OtherID>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2012</Year>
<Month>12</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>07</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>1</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>1</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>1</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24404042</ArticleId>
<ArticleId IdType="doi">10.1063/1.4816714</ArticleId>
<ArticleId IdType="pii">007304BMF</ArticleId>
<ArticleId IdType="pmc">PMC3745486</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003B31 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 003B31 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:24404042
   |texte=   Poly(vinyl alcohol)-heparin biosynthetic microspheres produced by microfluidics and ultraviolet photopolymerisation.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:24404042" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a AustralieFrV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024