Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Efficient brain lesion segmentation using multi-modality tissue-based feature selection and support vector machines.

Identifieur interne : 003B30 ( PubMed/Corpus ); précédent : 003B29; suivant : 003B31

Efficient brain lesion segmentation using multi-modality tissue-based feature selection and support vector machines.

Auteurs : Jean-Baptiste Fiot ; Laurent D. Cohen ; Parnesh Raniga ; Jurgen Fripp

Source :

RBID : pubmed:23303595

English descriptors

Abstract

Support vector machines (SVM) are machine learning techniques that have been used for segmentation and classification of medical images, including segmentation of white matter hyper-intensities (WMH). Current approaches using SVM for WMH segmentation extract features from the brain and classify these followed by complex post-processing steps to remove false positives. The method presented in this paper combines advanced pre-processing, tissue-based feature selection and SVM classification to obtain efficient and accurate WMH segmentation. Features from 125 patients, generated from up to four MR modalities [T1-w, T2-w, proton-density and fluid attenuated inversion recovery(FLAIR)], differing neighbourhood sizes and the use of multi-scale features were compared. We found that although using all four modalities gave the best overall classification (average Dice scores of 0.54  ±  0.12, 0.72  ±  0.06 and 0.82  ±  0.06 respectively for small, moderate and severe lesion loads); this was not significantly different (p = 0.50) from using just T1-w and FLAIR sequences (Dice scores of 0.52  ±  0.13, 0.71  ±  0.08 and 0.81  ±  0.07). Furthermore, there was a negligible difference between using 5 × 5 × 5 and 3 × 3 × 3 features (p = 0.93). Finally, we show that careful consideration of features and pre-processing techniques not only saves storage space and computation time but also leads to more efficient classification, which outperforms the one based on all features with post-processing.

DOI: 10.1002/cnm.2537
PubMed: 23303595

Links to Exploration step

pubmed:23303595

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Efficient brain lesion segmentation using multi-modality tissue-based feature selection and support vector machines.</title>
<author>
<name sortKey="Fiot, Jean Baptiste" sort="Fiot, Jean Baptiste" uniqKey="Fiot J" first="Jean-Baptiste" last="Fiot">Jean-Baptiste Fiot</name>
<affiliation>
<nlm:affiliation>CEREMADE, UMR 7534 CNRS Université Paris Dauphine, France; CSIRO Preventative Health National Research Flagship ICTC, The Australian e-Health Research Centre - BioMedIA, Royal Brisbane and Women's Hospital, Herston, Qld, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Cohen, Laurent D" sort="Cohen, Laurent D" uniqKey="Cohen L" first="Laurent D" last="Cohen">Laurent D. Cohen</name>
</author>
<author>
<name sortKey="Raniga, Parnesh" sort="Raniga, Parnesh" uniqKey="Raniga P" first="Parnesh" last="Raniga">Parnesh Raniga</name>
</author>
<author>
<name sortKey="Fripp, Jurgen" sort="Fripp, Jurgen" uniqKey="Fripp J" first="Jurgen" last="Fripp">Jurgen Fripp</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23303595</idno>
<idno type="pmid">23303595</idno>
<idno type="doi">10.1002/cnm.2537</idno>
<idno type="wicri:Area/PubMed/Corpus">003B30</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">003B30</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Efficient brain lesion segmentation using multi-modality tissue-based feature selection and support vector machines.</title>
<author>
<name sortKey="Fiot, Jean Baptiste" sort="Fiot, Jean Baptiste" uniqKey="Fiot J" first="Jean-Baptiste" last="Fiot">Jean-Baptiste Fiot</name>
<affiliation>
<nlm:affiliation>CEREMADE, UMR 7534 CNRS Université Paris Dauphine, France; CSIRO Preventative Health National Research Flagship ICTC, The Australian e-Health Research Centre - BioMedIA, Royal Brisbane and Women's Hospital, Herston, Qld, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Cohen, Laurent D" sort="Cohen, Laurent D" uniqKey="Cohen L" first="Laurent D" last="Cohen">Laurent D. Cohen</name>
</author>
<author>
<name sortKey="Raniga, Parnesh" sort="Raniga, Parnesh" uniqKey="Raniga P" first="Parnesh" last="Raniga">Parnesh Raniga</name>
</author>
<author>
<name sortKey="Fripp, Jurgen" sort="Fripp, Jurgen" uniqKey="Fripp J" first="Jurgen" last="Fripp">Jurgen Fripp</name>
</author>
</analytic>
<series>
<title level="j">International journal for numerical methods in biomedical engineering</title>
<idno type="eISSN">2040-7947</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Brain (anatomy & histology)</term>
<term>Brain (pathology)</term>
<term>Brain Neoplasms (pathology)</term>
<term>Humans</term>
<term>Image Processing, Computer-Assisted (methods)</term>
<term>Magnetic Resonance Imaging</term>
<term>Neuroimaging (methods)</term>
<term>Reproducibility of Results</term>
<term>Support Vector Machine</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomy & histology" xml:lang="en">
<term>Brain</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Image Processing, Computer-Assisted</term>
<term>Neuroimaging</term>
</keywords>
<keywords scheme="MESH" qualifier="pathology" xml:lang="en">
<term>Brain</term>
<term>Brain Neoplasms</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Humans</term>
<term>Magnetic Resonance Imaging</term>
<term>Reproducibility of Results</term>
<term>Support Vector Machine</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Support vector machines (SVM) are machine learning techniques that have been used for segmentation and classification of medical images, including segmentation of white matter hyper-intensities (WMH). Current approaches using SVM for WMH segmentation extract features from the brain and classify these followed by complex post-processing steps to remove false positives. The method presented in this paper combines advanced pre-processing, tissue-based feature selection and SVM classification to obtain efficient and accurate WMH segmentation. Features from 125 patients, generated from up to four MR modalities [T1-w, T2-w, proton-density and fluid attenuated inversion recovery(FLAIR)], differing neighbourhood sizes and the use of multi-scale features were compared. We found that although using all four modalities gave the best overall classification (average Dice scores of 0.54  ±  0.12, 0.72  ±  0.06 and 0.82  ±  0.06 respectively for small, moderate and severe lesion loads); this was not significantly different (p = 0.50) from using just T1-w and FLAIR sequences (Dice scores of 0.52  ±  0.13, 0.71  ±  0.08 and 0.81  ±  0.07). Furthermore, there was a negligible difference between using 5 × 5 × 5 and 3 × 3 × 3 features (p = 0.93). Finally, we show that careful consideration of features and pre-processing techniques not only saves storage space and computation time but also leads to more efficient classification, which outperforms the one based on all features with post-processing.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23303595</PMID>
<DateCreated>
<Year>2013</Year>
<Month>09</Month>
<Day>09</Day>
</DateCreated>
<DateCompleted>
<Year>2014</Year>
<Month>03</Month>
<Day>04</Day>
</DateCompleted>
<DateRevised>
<Year>2016</Year>
<Month>05</Month>
<Day>11</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">2040-7947</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>29</Volume>
<Issue>9</Issue>
<PubDate>
<Year>2013</Year>
<Month>Sep</Month>
</PubDate>
</JournalIssue>
<Title>International journal for numerical methods in biomedical engineering</Title>
<ISOAbbreviation>Int J Numer Method Biomed Eng</ISOAbbreviation>
</Journal>
<ArticleTitle>Efficient brain lesion segmentation using multi-modality tissue-based feature selection and support vector machines.</ArticleTitle>
<Pagination>
<MedlinePgn>905-15</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1002/cnm.2537</ELocationID>
<Abstract>
<AbstractText>Support vector machines (SVM) are machine learning techniques that have been used for segmentation and classification of medical images, including segmentation of white matter hyper-intensities (WMH). Current approaches using SVM for WMH segmentation extract features from the brain and classify these followed by complex post-processing steps to remove false positives. The method presented in this paper combines advanced pre-processing, tissue-based feature selection and SVM classification to obtain efficient and accurate WMH segmentation. Features from 125 patients, generated from up to four MR modalities [T1-w, T2-w, proton-density and fluid attenuated inversion recovery(FLAIR)], differing neighbourhood sizes and the use of multi-scale features were compared. We found that although using all four modalities gave the best overall classification (average Dice scores of 0.54  ±  0.12, 0.72  ±  0.06 and 0.82  ±  0.06 respectively for small, moderate and severe lesion loads); this was not significantly different (p = 0.50) from using just T1-w and FLAIR sequences (Dice scores of 0.52  ±  0.13, 0.71  ±  0.08 and 0.81  ±  0.07). Furthermore, there was a negligible difference between using 5 × 5 × 5 and 3 × 3 × 3 features (p = 0.93). Finally, we show that careful consideration of features and pre-processing techniques not only saves storage space and computation time but also leads to more efficient classification, which outperforms the one based on all features with post-processing.</AbstractText>
<CopyrightInformation>Copyright © 2013 John Wiley & Sons, Ltd.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Fiot</LastName>
<ForeName>Jean-Baptiste</ForeName>
<Initials>JB</Initials>
<AffiliationInfo>
<Affiliation>CEREMADE, UMR 7534 CNRS Université Paris Dauphine, France; CSIRO Preventative Health National Research Flagship ICTC, The Australian e-Health Research Centre - BioMedIA, Royal Brisbane and Women's Hospital, Herston, Qld, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cohen</LastName>
<ForeName>Laurent D</ForeName>
<Initials>LD</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Raniga</LastName>
<ForeName>Parnesh</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Fripp</LastName>
<ForeName>Jurgen</ForeName>
<Initials>J</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>01</Month>
<Day>10</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Int J Numer Method Biomed Eng</MedlineTA>
<NlmUniqueID>101530293</NlmUniqueID>
<ISSNLinking>2040-7939</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001921" MajorTopicYN="N">Brain</DescriptorName>
<QualifierName UI="Q000033" MajorTopicYN="N">anatomy & histology</QualifierName>
<QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001932" MajorTopicYN="N">Brain Neoplasms</DescriptorName>
<QualifierName UI="Q000473" MajorTopicYN="Y">pathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007091" MajorTopicYN="N">Image Processing, Computer-Assisted</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008279" MajorTopicYN="N">Magnetic Resonance Imaging</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059906" MajorTopicYN="N">Neuroimaging</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015203" MajorTopicYN="N">Reproducibility of Results</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060388" MajorTopicYN="Y">Support Vector Machine</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">brain lesion</Keyword>
<Keyword MajorTopicYN="N">classification</Keyword>
<Keyword MajorTopicYN="N">image processing</Keyword>
<Keyword MajorTopicYN="N">segmentation</Keyword>
<Keyword MajorTopicYN="N">support vector machines</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2012</Year>
<Month>09</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2012</Year>
<Month>11</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2012</Year>
<Month>11</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>1</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>1</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>3</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23303595</ArticleId>
<ArticleId IdType="doi">10.1002/cnm.2537</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003B30 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 003B30 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:23303595
   |texte=   Efficient brain lesion segmentation using multi-modality tissue-based feature selection and support vector machines.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:23303595" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a AustralieFrV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024