Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Benchmarking and validation of a Geant4-SHADOW Monte Carlo simulation for dose calculations in microbeam radiation therapy.

Identifieur interne : 003807 ( PubMed/Corpus ); précédent : 003806; suivant : 003808

Benchmarking and validation of a Geant4-SHADOW Monte Carlo simulation for dose calculations in microbeam radiation therapy.

Auteurs : Iwan Cornelius ; Susanna Guatelli ; Pauline Fournier ; Jeffrey C. Crosbie ; Manuel Sanchez Del Rio ; Elke Br Uer-Krisch ; Anatoly Rosenfeld ; Michael Lerch

Source :

RBID : pubmed:24763641

Abstract

Microbeam radiation therapy (MRT) is a synchrotron-based radiotherapy modality that uses high-intensity beams of spatially fractionated radiation to treat tumours. The rapid evolution of MRT towards clinical trials demands accurate treatment planning systems (TPS), as well as independent tools for the verification of TPS calculated dose distributions in order to ensure patient safety and treatment efficacy. Monte Carlo computer simulation represents the most accurate method of dose calculation in patient geometries and is best suited for the purpose of TPS verification. A Monte Carlo model of the ID17 biomedical beamline at the European Synchrotron Radiation Facility has been developed, including recent modifications, using the Geant4 Monte Carlo toolkit interfaced with the SHADOW X-ray optics and ray-tracing libraries. The code was benchmarked by simulating dose profiles in water-equivalent phantoms subject to irradiation by broad-beam (without spatial fractionation) and microbeam (with spatial fractionation) fields, and comparing against those calculated with a previous model of the beamline developed using the PENELOPE code. Validation against additional experimental dose profiles in water-equivalent phantoms subject to broad-beam irradiation was also performed. Good agreement between codes was observed, with the exception of out-of-field doses and toward the field edge for larger field sizes. Microbeam results showed good agreement between both codes and experimental results within uncertainties. Results of the experimental validation showed agreement for different beamline configurations. The asymmetry in the out-of-field dose profiles due to polarization effects was also investigated, yielding important information for the treatment planning process in MRT. This work represents an important step in the development of a Monte Carlo-based independent verification tool for treatment planning in MRT.

DOI: 10.1107/S1600577514004640
PubMed: 24763641

Links to Exploration step

pubmed:24763641

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Benchmarking and validation of a Geant4-SHADOW Monte Carlo simulation for dose calculations in microbeam radiation therapy.</title>
<author>
<name sortKey="Cornelius, Iwan" sort="Cornelius, Iwan" uniqKey="Cornelius I" first="Iwan" last="Cornelius">Iwan Cornelius</name>
<affiliation>
<nlm:affiliation>Centre for Medical Radiation Physics, University of Wollongong, New South Wales 2522, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Guatelli, Susanna" sort="Guatelli, Susanna" uniqKey="Guatelli S" first="Susanna" last="Guatelli">Susanna Guatelli</name>
<affiliation>
<nlm:affiliation>Centre for Medical Radiation Physics, University of Wollongong, New South Wales 2522, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Fournier, Pauline" sort="Fournier, Pauline" uniqKey="Fournier P" first="Pauline" last="Fournier">Pauline Fournier</name>
<affiliation>
<nlm:affiliation>Centre for Medical Radiation Physics, University of Wollongong, New South Wales 2522, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Crosbie, Jeffrey C" sort="Crosbie, Jeffrey C" uniqKey="Crosbie J" first="Jeffrey C" last="Crosbie">Jeffrey C. Crosbie</name>
<affiliation>
<nlm:affiliation>Department of Obstetrics and Gynaecology, The University of Melbourne, Parkville, Victoria 3152, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sanchez Del Rio, Manuel" sort="Sanchez Del Rio, Manuel" uniqKey="Sanchez Del Rio M" first="Manuel" last="Sanchez Del Rio">Manuel Sanchez Del Rio</name>
<affiliation>
<nlm:affiliation>European Synchrotron Radiation Facility, Grenoble, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Br Uer Krisch, Elke" sort="Br Uer Krisch, Elke" uniqKey="Br Uer Krisch E" first="Elke" last="Br Uer-Krisch">Elke Br Uer-Krisch</name>
<affiliation>
<nlm:affiliation>European Synchrotron Radiation Facility, Grenoble, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rosenfeld, Anatoly" sort="Rosenfeld, Anatoly" uniqKey="Rosenfeld A" first="Anatoly" last="Rosenfeld">Anatoly Rosenfeld</name>
<affiliation>
<nlm:affiliation>Centre for Medical Radiation Physics, University of Wollongong, New South Wales 2522, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lerch, Michael" sort="Lerch, Michael" uniqKey="Lerch M" first="Michael" last="Lerch">Michael Lerch</name>
<affiliation>
<nlm:affiliation>Centre for Medical Radiation Physics, University of Wollongong, New South Wales 2522, Australia.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24763641</idno>
<idno type="pmid">24763641</idno>
<idno type="doi">10.1107/S1600577514004640</idno>
<idno type="wicri:Area/PubMed/Corpus">003807</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">003807</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Benchmarking and validation of a Geant4-SHADOW Monte Carlo simulation for dose calculations in microbeam radiation therapy.</title>
<author>
<name sortKey="Cornelius, Iwan" sort="Cornelius, Iwan" uniqKey="Cornelius I" first="Iwan" last="Cornelius">Iwan Cornelius</name>
<affiliation>
<nlm:affiliation>Centre for Medical Radiation Physics, University of Wollongong, New South Wales 2522, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Guatelli, Susanna" sort="Guatelli, Susanna" uniqKey="Guatelli S" first="Susanna" last="Guatelli">Susanna Guatelli</name>
<affiliation>
<nlm:affiliation>Centre for Medical Radiation Physics, University of Wollongong, New South Wales 2522, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Fournier, Pauline" sort="Fournier, Pauline" uniqKey="Fournier P" first="Pauline" last="Fournier">Pauline Fournier</name>
<affiliation>
<nlm:affiliation>Centre for Medical Radiation Physics, University of Wollongong, New South Wales 2522, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Crosbie, Jeffrey C" sort="Crosbie, Jeffrey C" uniqKey="Crosbie J" first="Jeffrey C" last="Crosbie">Jeffrey C. Crosbie</name>
<affiliation>
<nlm:affiliation>Department of Obstetrics and Gynaecology, The University of Melbourne, Parkville, Victoria 3152, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sanchez Del Rio, Manuel" sort="Sanchez Del Rio, Manuel" uniqKey="Sanchez Del Rio M" first="Manuel" last="Sanchez Del Rio">Manuel Sanchez Del Rio</name>
<affiliation>
<nlm:affiliation>European Synchrotron Radiation Facility, Grenoble, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Br Uer Krisch, Elke" sort="Br Uer Krisch, Elke" uniqKey="Br Uer Krisch E" first="Elke" last="Br Uer-Krisch">Elke Br Uer-Krisch</name>
<affiliation>
<nlm:affiliation>European Synchrotron Radiation Facility, Grenoble, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rosenfeld, Anatoly" sort="Rosenfeld, Anatoly" uniqKey="Rosenfeld A" first="Anatoly" last="Rosenfeld">Anatoly Rosenfeld</name>
<affiliation>
<nlm:affiliation>Centre for Medical Radiation Physics, University of Wollongong, New South Wales 2522, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lerch, Michael" sort="Lerch, Michael" uniqKey="Lerch M" first="Michael" last="Lerch">Michael Lerch</name>
<affiliation>
<nlm:affiliation>Centre for Medical Radiation Physics, University of Wollongong, New South Wales 2522, Australia.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of synchrotron radiation</title>
<idno type="eISSN">1600-5775</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Microbeam radiation therapy (MRT) is a synchrotron-based radiotherapy modality that uses high-intensity beams of spatially fractionated radiation to treat tumours. The rapid evolution of MRT towards clinical trials demands accurate treatment planning systems (TPS), as well as independent tools for the verification of TPS calculated dose distributions in order to ensure patient safety and treatment efficacy. Monte Carlo computer simulation represents the most accurate method of dose calculation in patient geometries and is best suited for the purpose of TPS verification. A Monte Carlo model of the ID17 biomedical beamline at the European Synchrotron Radiation Facility has been developed, including recent modifications, using the Geant4 Monte Carlo toolkit interfaced with the SHADOW X-ray optics and ray-tracing libraries. The code was benchmarked by simulating dose profiles in water-equivalent phantoms subject to irradiation by broad-beam (without spatial fractionation) and microbeam (with spatial fractionation) fields, and comparing against those calculated with a previous model of the beamline developed using the PENELOPE code. Validation against additional experimental dose profiles in water-equivalent phantoms subject to broad-beam irradiation was also performed. Good agreement between codes was observed, with the exception of out-of-field doses and toward the field edge for larger field sizes. Microbeam results showed good agreement between both codes and experimental results within uncertainties. Results of the experimental validation showed agreement for different beamline configurations. The asymmetry in the out-of-field dose profiles due to polarization effects was also investigated, yielding important information for the treatment planning process in MRT. This work represents an important step in the development of a Monte Carlo-based independent verification tool for treatment planning in MRT.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">24763641</PMID>
<DateCreated>
<Year>2014</Year>
<Month>04</Month>
<Day>25</Day>
</DateCreated>
<DateCompleted>
<Year>2015</Year>
<Month>03</Month>
<Day>30</Day>
</DateCompleted>
<DateRevised>
<Year>2014</Year>
<Month>04</Month>
<Day>25</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1600-5775</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>21</Volume>
<Issue>Pt 3</Issue>
<PubDate>
<Year>2014</Year>
<Month>May</Month>
</PubDate>
</JournalIssue>
<Title>Journal of synchrotron radiation</Title>
<ISOAbbreviation>J Synchrotron Radiat</ISOAbbreviation>
</Journal>
<ArticleTitle>Benchmarking and validation of a Geant4-SHADOW Monte Carlo simulation for dose calculations in microbeam radiation therapy.</ArticleTitle>
<Pagination>
<MedlinePgn>518-28</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1107/S1600577514004640</ELocationID>
<Abstract>
<AbstractText>Microbeam radiation therapy (MRT) is a synchrotron-based radiotherapy modality that uses high-intensity beams of spatially fractionated radiation to treat tumours. The rapid evolution of MRT towards clinical trials demands accurate treatment planning systems (TPS), as well as independent tools for the verification of TPS calculated dose distributions in order to ensure patient safety and treatment efficacy. Monte Carlo computer simulation represents the most accurate method of dose calculation in patient geometries and is best suited for the purpose of TPS verification. A Monte Carlo model of the ID17 biomedical beamline at the European Synchrotron Radiation Facility has been developed, including recent modifications, using the Geant4 Monte Carlo toolkit interfaced with the SHADOW X-ray optics and ray-tracing libraries. The code was benchmarked by simulating dose profiles in water-equivalent phantoms subject to irradiation by broad-beam (without spatial fractionation) and microbeam (with spatial fractionation) fields, and comparing against those calculated with a previous model of the beamline developed using the PENELOPE code. Validation against additional experimental dose profiles in water-equivalent phantoms subject to broad-beam irradiation was also performed. Good agreement between codes was observed, with the exception of out-of-field doses and toward the field edge for larger field sizes. Microbeam results showed good agreement between both codes and experimental results within uncertainties. Results of the experimental validation showed agreement for different beamline configurations. The asymmetry in the out-of-field dose profiles due to polarization effects was also investigated, yielding important information for the treatment planning process in MRT. This work represents an important step in the development of a Monte Carlo-based independent verification tool for treatment planning in MRT.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Cornelius</LastName>
<ForeName>Iwan</ForeName>
<Initials>I</Initials>
<AffiliationInfo>
<Affiliation>Centre for Medical Radiation Physics, University of Wollongong, New South Wales 2522, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Guatelli</LastName>
<ForeName>Susanna</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Centre for Medical Radiation Physics, University of Wollongong, New South Wales 2522, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Fournier</LastName>
<ForeName>Pauline</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>Centre for Medical Radiation Physics, University of Wollongong, New South Wales 2522, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Crosbie</LastName>
<ForeName>Jeffrey C</ForeName>
<Initials>JC</Initials>
<AffiliationInfo>
<Affiliation>Department of Obstetrics and Gynaecology, The University of Melbourne, Parkville, Victoria 3152, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sanchez Del Rio</LastName>
<ForeName>Manuel</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>European Synchrotron Radiation Facility, Grenoble, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bräuer-Krisch</LastName>
<ForeName>Elke</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>European Synchrotron Radiation Facility, Grenoble, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rosenfeld</LastName>
<ForeName>Anatoly</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Centre for Medical Radiation Physics, University of Wollongong, New South Wales 2522, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lerch</LastName>
<ForeName>Michael</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Centre for Medical Radiation Physics, University of Wollongong, New South Wales 2522, Australia.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>04</Month>
<Day>03</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Synchrotron Radiat</MedlineTA>
<NlmUniqueID>9888878</NlmUniqueID>
<ISSNLinking>0909-0495</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Monte Carlo</Keyword>
<Keyword MajorTopicYN="N">dosimetry</Keyword>
<Keyword MajorTopicYN="N">microbeam radiation therapy</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>10</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>02</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>4</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>4</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>4</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24763641</ArticleId>
<ArticleId IdType="pii">S1600577514004640</ArticleId>
<ArticleId IdType="doi">10.1107/S1600577514004640</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003807 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 003807 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:24763641
   |texte=   Benchmarking and validation of a Geant4-SHADOW Monte Carlo simulation for dose calculations in microbeam radiation therapy.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:24763641" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a AustralieFrV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024