Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Effects of Increasing Neuromuscular Electrical Stimulation Current Intensity on Cortical Sensorimotor Network Activation: A Time Domain fNIRS Study.

Identifieur interne : 002B93 ( PubMed/Corpus ); précédent : 002B92; suivant : 002B94

Effects of Increasing Neuromuscular Electrical Stimulation Current Intensity on Cortical Sensorimotor Network Activation: A Time Domain fNIRS Study.

Auteurs : Makii Muthalib ; Rebecca Re ; Lucia Zucchelli ; Stephane Perrey ; Davide Contini ; Matteo Caffini ; Lorenzo Spinelli ; Graham Kerr ; Valentina Quaresima ; Marco Ferrari ; Alessandro Torricelli

Source :

RBID : pubmed:26158464

English descriptors

Abstract

Neuroimaging studies have shown neuromuscular electrical stimulation (NMES)-evoked movements activate regions of the cortical sensorimotor network, including the primary sensorimotor cortex (SMC), premotor cortex (PMC), supplementary motor area (SMA), and secondary somatosensory area (S2), as well as regions of the prefrontal cortex (PFC) known to be involved in pain processing. The aim of this study, on nine healthy subjects, was to compare the cortical network activation profile and pain ratings during NMES of the right forearm wrist extensor muscles at increasing current intensities up to and slightly over the individual maximal tolerated intensity (MTI), and with reference to voluntary (VOL) wrist extension movements. By exploiting the capability of the multi-channel time domain functional near-infrared spectroscopy technique to relate depth information to the photon time-of-flight, the cortical and superficial oxygenated (O2Hb) and deoxygenated (HHb) hemoglobin concentrations were estimated. The O2Hb and HHb maps obtained using the General Linear Model (NIRS-SPM) analysis method, showed that the VOL and NMES-evoked movements significantly increased activation (i.e., increase in O2Hb and corresponding decrease in HHb) in the cortical layer of the contralateral sensorimotor network (SMC, PMC/SMA, and S2). However, the level and area of contralateral sensorimotor network (including PFC) activation was significantly greater for NMES than VOL. Furthermore, there was greater bilateral sensorimotor network activation with the high NMES current intensities which corresponded with increased pain ratings. In conclusion, our findings suggest that greater bilateral sensorimotor network activation profile with high NMES current intensities could be in part attributable to increased attentional/pain processing and to increased bilateral sensorimotor integration in these cortical regions.

DOI: 10.1371/journal.pone.0131951
PubMed: 26158464

Links to Exploration step

pubmed:26158464

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Effects of Increasing Neuromuscular Electrical Stimulation Current Intensity on Cortical Sensorimotor Network Activation: A Time Domain fNIRS Study.</title>
<author>
<name sortKey="Muthalib, Makii" sort="Muthalib, Makii" uniqKey="Muthalib M" first="Makii" last="Muthalib">Makii Muthalib</name>
<affiliation>
<nlm:affiliation>Movement To Health (M2H), EuroMov, University of Montpellier, Montpellier, France; Movement Neuroscience, IHBI, Queensland University of Technology, Brisbane, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Re, Rebecca" sort="Re, Rebecca" uniqKey="Re R" first="Rebecca" last="Re">Rebecca Re</name>
<affiliation>
<nlm:affiliation>Dipartimento di Fisica, Politecnico di Milano, Milan, Italy.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zucchelli, Lucia" sort="Zucchelli, Lucia" uniqKey="Zucchelli L" first="Lucia" last="Zucchelli">Lucia Zucchelli</name>
<affiliation>
<nlm:affiliation>Dipartimento di Fisica, Politecnico di Milano, Milan, Italy.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Perrey, Stephane" sort="Perrey, Stephane" uniqKey="Perrey S" first="Stephane" last="Perrey">Stephane Perrey</name>
<affiliation>
<nlm:affiliation>Movement To Health (M2H), EuroMov, University of Montpellier, Montpellier, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Contini, Davide" sort="Contini, Davide" uniqKey="Contini D" first="Davide" last="Contini">Davide Contini</name>
<affiliation>
<nlm:affiliation>Dipartimento di Fisica, Politecnico di Milano, Milan, Italy.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Caffini, Matteo" sort="Caffini, Matteo" uniqKey="Caffini M" first="Matteo" last="Caffini">Matteo Caffini</name>
<affiliation>
<nlm:affiliation>Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Spinelli, Lorenzo" sort="Spinelli, Lorenzo" uniqKey="Spinelli L" first="Lorenzo" last="Spinelli">Lorenzo Spinelli</name>
<affiliation>
<nlm:affiliation>Istituto di Fotonica e Nanotecnologie, CNR, Politecnico di Milano, Milan, Italy.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kerr, Graham" sort="Kerr, Graham" uniqKey="Kerr G" first="Graham" last="Kerr">Graham Kerr</name>
<affiliation>
<nlm:affiliation>Movement Neuroscience, IHBI, Queensland University of Technology, Brisbane, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Quaresima, Valentina" sort="Quaresima, Valentina" uniqKey="Quaresima V" first="Valentina" last="Quaresima">Valentina Quaresima</name>
<affiliation>
<nlm:affiliation>Dipartimento di Medicina Clinica, Sanità Pubblica, Scienze della Vita e dell'Ambiente, Università degli Studi dell'Aquila, L'Aquila, Italy.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ferrari, Marco" sort="Ferrari, Marco" uniqKey="Ferrari M" first="Marco" last="Ferrari">Marco Ferrari</name>
<affiliation>
<nlm:affiliation>Dipartimento di Medicina Clinica, Sanità Pubblica, Scienze della Vita e dell'Ambiente, Università degli Studi dell'Aquila, L'Aquila, Italy.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Torricelli, Alessandro" sort="Torricelli, Alessandro" uniqKey="Torricelli A" first="Alessandro" last="Torricelli">Alessandro Torricelli</name>
<affiliation>
<nlm:affiliation>Dipartimento di Fisica, Politecnico di Milano, Milan, Italy.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:26158464</idno>
<idno type="pmid">26158464</idno>
<idno type="doi">10.1371/journal.pone.0131951</idno>
<idno type="wicri:Area/PubMed/Corpus">002B93</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002B93</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Effects of Increasing Neuromuscular Electrical Stimulation Current Intensity on Cortical Sensorimotor Network Activation: A Time Domain fNIRS Study.</title>
<author>
<name sortKey="Muthalib, Makii" sort="Muthalib, Makii" uniqKey="Muthalib M" first="Makii" last="Muthalib">Makii Muthalib</name>
<affiliation>
<nlm:affiliation>Movement To Health (M2H), EuroMov, University of Montpellier, Montpellier, France; Movement Neuroscience, IHBI, Queensland University of Technology, Brisbane, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Re, Rebecca" sort="Re, Rebecca" uniqKey="Re R" first="Rebecca" last="Re">Rebecca Re</name>
<affiliation>
<nlm:affiliation>Dipartimento di Fisica, Politecnico di Milano, Milan, Italy.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zucchelli, Lucia" sort="Zucchelli, Lucia" uniqKey="Zucchelli L" first="Lucia" last="Zucchelli">Lucia Zucchelli</name>
<affiliation>
<nlm:affiliation>Dipartimento di Fisica, Politecnico di Milano, Milan, Italy.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Perrey, Stephane" sort="Perrey, Stephane" uniqKey="Perrey S" first="Stephane" last="Perrey">Stephane Perrey</name>
<affiliation>
<nlm:affiliation>Movement To Health (M2H), EuroMov, University of Montpellier, Montpellier, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Contini, Davide" sort="Contini, Davide" uniqKey="Contini D" first="Davide" last="Contini">Davide Contini</name>
<affiliation>
<nlm:affiliation>Dipartimento di Fisica, Politecnico di Milano, Milan, Italy.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Caffini, Matteo" sort="Caffini, Matteo" uniqKey="Caffini M" first="Matteo" last="Caffini">Matteo Caffini</name>
<affiliation>
<nlm:affiliation>Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Spinelli, Lorenzo" sort="Spinelli, Lorenzo" uniqKey="Spinelli L" first="Lorenzo" last="Spinelli">Lorenzo Spinelli</name>
<affiliation>
<nlm:affiliation>Istituto di Fotonica e Nanotecnologie, CNR, Politecnico di Milano, Milan, Italy.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kerr, Graham" sort="Kerr, Graham" uniqKey="Kerr G" first="Graham" last="Kerr">Graham Kerr</name>
<affiliation>
<nlm:affiliation>Movement Neuroscience, IHBI, Queensland University of Technology, Brisbane, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Quaresima, Valentina" sort="Quaresima, Valentina" uniqKey="Quaresima V" first="Valentina" last="Quaresima">Valentina Quaresima</name>
<affiliation>
<nlm:affiliation>Dipartimento di Medicina Clinica, Sanità Pubblica, Scienze della Vita e dell'Ambiente, Università degli Studi dell'Aquila, L'Aquila, Italy.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ferrari, Marco" sort="Ferrari, Marco" uniqKey="Ferrari M" first="Marco" last="Ferrari">Marco Ferrari</name>
<affiliation>
<nlm:affiliation>Dipartimento di Medicina Clinica, Sanità Pubblica, Scienze della Vita e dell'Ambiente, Università degli Studi dell'Aquila, L'Aquila, Italy.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Torricelli, Alessandro" sort="Torricelli, Alessandro" uniqKey="Torricelli A" first="Alessandro" last="Torricelli">Alessandro Torricelli</name>
<affiliation>
<nlm:affiliation>Dipartimento di Fisica, Politecnico di Milano, Milan, Italy.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adult</term>
<term>Brain Mapping</term>
<term>Electric Stimulation</term>
<term>Forearm</term>
<term>Hemoglobins (metabolism)</term>
<term>Humans</term>
<term>Linear Models</term>
<term>Male</term>
<term>Middle Aged</term>
<term>Motor Cortex (diagnostic imaging)</term>
<term>Motor Cortex (physiology)</term>
<term>Muscle, Skeletal (metabolism)</term>
<term>Muscle, Skeletal (physiology)</term>
<term>Nerve Net (physiology)</term>
<term>Oxyhemoglobins (metabolism)</term>
<term>Pain Measurement</term>
<term>Prefrontal Cortex (diagnostic imaging)</term>
<term>Prefrontal Cortex (physiology)</term>
<term>Radiography</term>
<term>Sensorimotor Cortex (diagnostic imaging)</term>
<term>Sensorimotor Cortex (physiology)</term>
<term>Spectroscopy, Near-Infrared</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Hemoglobins</term>
<term>Oxyhemoglobins</term>
</keywords>
<keywords scheme="MESH" qualifier="diagnostic imaging" xml:lang="en">
<term>Motor Cortex</term>
<term>Prefrontal Cortex</term>
<term>Sensorimotor Cortex</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Muscle, Skeletal</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Motor Cortex</term>
<term>Muscle, Skeletal</term>
<term>Nerve Net</term>
<term>Prefrontal Cortex</term>
<term>Sensorimotor Cortex</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Adult</term>
<term>Brain Mapping</term>
<term>Electric Stimulation</term>
<term>Forearm</term>
<term>Humans</term>
<term>Linear Models</term>
<term>Male</term>
<term>Middle Aged</term>
<term>Pain Measurement</term>
<term>Radiography</term>
<term>Spectroscopy, Near-Infrared</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Neuroimaging studies have shown neuromuscular electrical stimulation (NMES)-evoked movements activate regions of the cortical sensorimotor network, including the primary sensorimotor cortex (SMC), premotor cortex (PMC), supplementary motor area (SMA), and secondary somatosensory area (S2), as well as regions of the prefrontal cortex (PFC) known to be involved in pain processing. The aim of this study, on nine healthy subjects, was to compare the cortical network activation profile and pain ratings during NMES of the right forearm wrist extensor muscles at increasing current intensities up to and slightly over the individual maximal tolerated intensity (MTI), and with reference to voluntary (VOL) wrist extension movements. By exploiting the capability of the multi-channel time domain functional near-infrared spectroscopy technique to relate depth information to the photon time-of-flight, the cortical and superficial oxygenated (O2Hb) and deoxygenated (HHb) hemoglobin concentrations were estimated. The O2Hb and HHb maps obtained using the General Linear Model (NIRS-SPM) analysis method, showed that the VOL and NMES-evoked movements significantly increased activation (i.e., increase in O2Hb and corresponding decrease in HHb) in the cortical layer of the contralateral sensorimotor network (SMC, PMC/SMA, and S2). However, the level and area of contralateral sensorimotor network (including PFC) activation was significantly greater for NMES than VOL. Furthermore, there was greater bilateral sensorimotor network activation with the high NMES current intensities which corresponded with increased pain ratings. In conclusion, our findings suggest that greater bilateral sensorimotor network activation profile with high NMES current intensities could be in part attributable to increased attentional/pain processing and to increased bilateral sensorimotor integration in these cortical regions.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">26158464</PMID>
<DateCreated>
<Year>2015</Year>
<Month>07</Month>
<Day>10</Day>
</DateCreated>
<DateCompleted>
<Year>2016</Year>
<Month>04</Month>
<Day>14</Day>
</DateCompleted>
<DateRevised>
<Year>2017</Year>
<Month>02</Month>
<Day>20</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>10</Volume>
<Issue>7</Issue>
<PubDate>
<Year>2015</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS ONE</ISOAbbreviation>
</Journal>
<ArticleTitle>Effects of Increasing Neuromuscular Electrical Stimulation Current Intensity on Cortical Sensorimotor Network Activation: A Time Domain fNIRS Study.</ArticleTitle>
<Pagination>
<MedlinePgn>e0131951</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0131951</ELocationID>
<Abstract>
<AbstractText>Neuroimaging studies have shown neuromuscular electrical stimulation (NMES)-evoked movements activate regions of the cortical sensorimotor network, including the primary sensorimotor cortex (SMC), premotor cortex (PMC), supplementary motor area (SMA), and secondary somatosensory area (S2), as well as regions of the prefrontal cortex (PFC) known to be involved in pain processing. The aim of this study, on nine healthy subjects, was to compare the cortical network activation profile and pain ratings during NMES of the right forearm wrist extensor muscles at increasing current intensities up to and slightly over the individual maximal tolerated intensity (MTI), and with reference to voluntary (VOL) wrist extension movements. By exploiting the capability of the multi-channel time domain functional near-infrared spectroscopy technique to relate depth information to the photon time-of-flight, the cortical and superficial oxygenated (O2Hb) and deoxygenated (HHb) hemoglobin concentrations were estimated. The O2Hb and HHb maps obtained using the General Linear Model (NIRS-SPM) analysis method, showed that the VOL and NMES-evoked movements significantly increased activation (i.e., increase in O2Hb and corresponding decrease in HHb) in the cortical layer of the contralateral sensorimotor network (SMC, PMC/SMA, and S2). However, the level and area of contralateral sensorimotor network (including PFC) activation was significantly greater for NMES than VOL. Furthermore, there was greater bilateral sensorimotor network activation with the high NMES current intensities which corresponded with increased pain ratings. In conclusion, our findings suggest that greater bilateral sensorimotor network activation profile with high NMES current intensities could be in part attributable to increased attentional/pain processing and to increased bilateral sensorimotor integration in these cortical regions.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Muthalib</LastName>
<ForeName>Makii</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Movement To Health (M2H), EuroMov, University of Montpellier, Montpellier, France; Movement Neuroscience, IHBI, Queensland University of Technology, Brisbane, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Re</LastName>
<ForeName>Rebecca</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Dipartimento di Fisica, Politecnico di Milano, Milan, Italy.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zucchelli</LastName>
<ForeName>Lucia</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Dipartimento di Fisica, Politecnico di Milano, Milan, Italy.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Perrey</LastName>
<ForeName>Stephane</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Movement To Health (M2H), EuroMov, University of Montpellier, Montpellier, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Contini</LastName>
<ForeName>Davide</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Dipartimento di Fisica, Politecnico di Milano, Milan, Italy.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Caffini</LastName>
<ForeName>Matteo</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Spinelli</LastName>
<ForeName>Lorenzo</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Istituto di Fotonica e Nanotecnologie, CNR, Politecnico di Milano, Milan, Italy.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kerr</LastName>
<ForeName>Graham</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>Movement Neuroscience, IHBI, Queensland University of Technology, Brisbane, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Quaresima</LastName>
<ForeName>Valentina</ForeName>
<Initials>V</Initials>
<AffiliationInfo>
<Affiliation>Dipartimento di Medicina Clinica, Sanità Pubblica, Scienze della Vita e dell'Ambiente, Università degli Studi dell'Aquila, L'Aquila, Italy.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ferrari</LastName>
<ForeName>Marco</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Dipartimento di Medicina Clinica, Sanità Pubblica, Scienze della Vita e dell'Ambiente, Università degli Studi dell'Aquila, L'Aquila, Italy.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Torricelli</LastName>
<ForeName>Alessandro</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Dipartimento di Fisica, Politecnico di Milano, Milan, Italy.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>07</Month>
<Day>09</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D006454">Hemoglobins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010108">Oxyhemoglobins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>J Biomed Opt. 2009 May-Jun;14(3):034004</RefSource>
<PMID Version="1">19566297</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2014 Jan 15;85 Pt 1:471-7</RefSource>
<PMID Version="1">23416251</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2008 Jun;41(2):252-9</RefSource>
<PMID Version="1">18394924</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cereb Cortex. 2006 Oct;16(10):1389-417</RefSource>
<PMID Version="1">16306322</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain Topogr. 2009 Nov;22(3):197-214</RefSource>
<PMID Version="1">19705276</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Arch Phys Med Rehabil. 2011 Sep;92(9):1423-30</RefSource>
<PMID Version="1">21620374</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exerc Sport Sci Rev. 2007 Oct;35(4):180-5</RefSource>
<PMID Version="1">17921786</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biomed Opt. 2005 Jan-Feb;10(1):11012</RefSource>
<PMID Version="1">15847578</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biomed Opt Express. 2011 Feb 25;2(3):705-16</RefSource>
<PMID Version="1">21412474</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Sports Med. 2005;35(3):191-212</RefSource>
<PMID Version="1">15730336</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Phys Med Biol. 2001 Mar;46(3):879-96</RefSource>
<PMID Version="1">11277232</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2012 Nov 1;63(2):921-35</RefSource>
<PMID Version="1">22510258</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hum Brain Mapp. 2012 Jan;33(1):40-9</RefSource>
<PMID Version="1">21591025</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2012 May 15;61(1):70-81</RefSource>
<PMID Version="1">22426347</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hum Brain Mapp. 2009 Mar;30(3):963-75</RefSource>
<PMID Version="1">18344193</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2006 Dec;33(4):1042-54</RefSource>
<PMID Version="1">16997579</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2007 Feb;97(2):1288-97</RefSource>
<PMID Version="1">17122318</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2005 Oct 1;27(4):842-51</RefSource>
<PMID Version="1">15979346</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 2003 May;150(1):33-9</RefSource>
<PMID Version="1">12698214</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Adv Exp Med Biol. 2012;737:45-9</RefSource>
<PMID Version="1">22259080</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Eur J Pain. 2005 Aug;9(4):463-84</RefSource>
<PMID Version="1">15979027</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Clin Neurophysiol. 2011 Mar;122(3):456-63</RefSource>
<PMID Version="1">20739217</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Phys Med Biol. 1997 Jun;42(6):1009-22</RefSource>
<PMID Version="1">9194125</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Muscle Nerve. 2010 Jan;41(1):54-62</RefSource>
<PMID Version="1">19882645</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Phys Med Biol. 2002 Dec 7;47(23):4131-44</RefSource>
<PMID Version="1">12502038</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Eur J Appl Physiol. 2009 Sep;107(2):235-41</RefSource>
<PMID Version="1">19568766</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hum Brain Mapp. 2013 Aug;34(8):1768-82</RefSource>
<PMID Version="1">22438199</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurosci Lett. 2003 Nov 27;352(1):1-4</RefSource>
<PMID Version="1">14615035</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Comput Biol Med. 2012 Mar;42(3):282-9</RefSource>
<PMID Version="1">21742320</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neuroeng Rehabil. 2012;9:48</RefSource>
<PMID Version="1">22828165</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biomed Opt. 2005 Jan-Feb;10(1):11013</RefSource>
<PMID Version="1">15847579</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Appl Physiol (1985). 2006 Jan;100(1):328-35</RefSource>
<PMID Version="1">16357086</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuropsychologia. 1971 Mar;9(1):97-113</RefSource>
<PMID Version="1">5146491</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Eur J Appl Physiol. 2011 Oct;111(10):2439-49</RefSource>
<PMID Version="1">21643920</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 1999 Jun;126(4):536-44</RefSource>
<PMID Version="1">10422717</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2004 Jun;22(2):771-8</RefSource>
<PMID Version="1">15193606</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Sci Med Sport. 2000 Mar;3(1):35-43</RefSource>
<PMID Version="1">10839227</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Clin Neurophysiol. 2013 Jul;124(7):1353-63</RefSource>
<PMID Version="1">23478202</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Opt Express. 2007 Dec 10;15(25):16400-12</RefSource>
<PMID Version="1">19550930</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2013;8(5):e64095</RefSource>
<PMID Version="1">23724023</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Opin Anaesthesiol. 2008 Dec;21(6):796-804</RefSource>
<PMID Version="1">18997532</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2011 Aug 1;57(3):991-1002</RefSource>
<PMID Version="1">21600294</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hum Brain Mapp. 2013 Oct;34(10):2655-68</RefSource>
<PMID Version="1">22706963</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Physiol. 1992;453:525-46</RefSource>
<PMID Version="1">1464843</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biomed Opt. 2012 May;17(5):056005</RefSource>
<PMID Version="1">22612128</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Muscle Nerve. 2007 May;35(5):562-90</RefSource>
<PMID Version="1">17299744</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2009;4(11):e8016</RefSource>
<PMID Version="1">19956637</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Appl Physiol (1985). 2011 Feb;110(2):433-50</RefSource>
<PMID Version="1">21127206</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2012 Jan 2;59(1):519-29</RefSource>
<PMID Version="1">21840399</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Conf Proc IEEE Eng Med Biol Soc. 2012;2012:2287-90</RefSource>
<PMID Version="1">23366380</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2014 Jan 15;85 Pt 1:6-27</RefSource>
<PMID Version="1">23684868</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Philos Trans R Soc Lond B Biol Sci. 2000 Feb 29;355(1394):267-73</RefSource>
<PMID Version="1">10724460</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2009 Jan 15;44(2):469-79</RefSource>
<PMID Version="1">18950717</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Opt Express. 2006 Jun 12;14(12):5418-32</RefSource>
<PMID Version="1">19516708</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Eur J Pain. 2005 Apr;9(2):163-5</RefSource>
<PMID Version="1">15737808</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2014 Jan 15;85 Pt 1:28-50</RefSource>
<PMID Version="1">23747285</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2005 May 1;25(4):1325-35</RefSource>
<PMID Version="1">15850749</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2002 Nov;17(3):1437-50</RefSource>
<PMID Version="1">12414283</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Clin Neurophysiol. 2013 Oct;124(10):2060-2</RefSource>
<PMID Version="1">23648071</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain. 2003 May;126(Pt 5):1079-91</RefSource>
<PMID Version="1">12690048</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2011 Feb 14;54(4):2922-36</RefSource>
<PMID Version="1">21029781</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Phys Med Rehabil. 2003 Jan;82(1):17-20</RefSource>
<PMID Version="1">12510180</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Philos Trans A Math Phys Eng Sci. 2011 Nov 28;369(1955):4425-39</RefSource>
<PMID Version="1">22006899</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Plast Reconstr Surg. 2006 May;117(6):1964-71</RefSource>
<PMID Version="1">16651971</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuron. 2007 Aug 2;55(3):377-91</RefSource>
<PMID Version="1">17678852</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2007 Feb 1;34(3):1227-37</RefSource>
<PMID Version="1">17137794</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2009 Jan 15;44(2):428-47</RefSource>
<PMID Version="1">18848897</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Appl Opt. 2004 May 20;43(15):3037-47</RefSource>
<PMID Version="1">15176190</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Cereb Blood Flow Metab. 2012 Jul;32(7):1259-76</RefSource>
<PMID Version="1">22252238</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biomed Opt. 2014 Aug;19(8):086012</RefSource>
<PMID Version="1">25121480</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2012 Feb 15;59(4):3119-27</RefSource>
<PMID Version="1">22155327</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biomed Opt. 2005 Nov-Dec;10(6):064008</RefSource>
<PMID Version="1">16409073</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2000 Jan;83(1):528-36</RefSource>
<PMID Version="1">10634893</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Med Phys. 2009 Sep;36(9):4103-14</RefSource>
<PMID Version="1">19810483</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Conf Proc IEEE Eng Med Biol Soc. 2009;2009:1375-9</RefSource>
<PMID Version="1">19964758</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exerc Immunol Rev. 2006;12:72-85</RefSource>
<PMID Version="1">17201073</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2011;6(10):e26377</RefSource>
<PMID Version="1">22039475</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000328" MajorTopicYN="N">Adult</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001931" MajorTopicYN="N">Brain Mapping</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004558" MajorTopicYN="N">Electric Stimulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005542" MajorTopicYN="N">Forearm</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006454" MajorTopicYN="N">Hemoglobins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016014" MajorTopicYN="N">Linear Models</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009044" MajorTopicYN="N">Motor Cortex</DescriptorName>
<QualifierName UI="Q000000981" MajorTopicYN="N">diagnostic imaging</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018482" MajorTopicYN="N">Muscle, Skeletal</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009415" MajorTopicYN="N">Nerve Net</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010108" MajorTopicYN="N">Oxyhemoglobins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010147" MajorTopicYN="N">Pain Measurement</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017397" MajorTopicYN="N">Prefrontal Cortex</DescriptorName>
<QualifierName UI="Q000000981" MajorTopicYN="N">diagnostic imaging</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011859" MajorTopicYN="N">Radiography</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D066191" MajorTopicYN="N">Sensorimotor Cortex</DescriptorName>
<QualifierName UI="Q000000981" MajorTopicYN="N">diagnostic imaging</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019265" MajorTopicYN="Y">Spectroscopy, Near-Infrared</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">PMC4497661</OtherID>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>12</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>06</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>7</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>7</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>4</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26158464</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0131951</ArticleId>
<ArticleId IdType="pii">PONE-D-14-54948</ArticleId>
<ArticleId IdType="pmc">PMC4497661</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002B93 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 002B93 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:26158464
   |texte=   Effects of Increasing Neuromuscular Electrical Stimulation Current Intensity on Cortical Sensorimotor Network Activation: A Time Domain fNIRS Study.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:26158464" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a AustralieFrV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024