Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Microbial players involved in the decline of filamentous and colonial cyanobacterial blooms with a focus on fungal parasitism.

Identifieur interne : 002A78 ( PubMed/Corpus ); précédent : 002A77; suivant : 002A79

Microbial players involved in the decline of filamentous and colonial cyanobacterial blooms with a focus on fungal parasitism.

Auteurs : Mélanie Gerphagnon ; Deborah J. Macarthur ; Delphine Latour ; Claire M M. Gachon ; Floris Van Ogtrop ; Frank H. Gleason ; Télesphore Sime-Ngando

Source :

RBID : pubmed:25818470

English descriptors

Abstract

In the forthcoming decades, it is widely believed that the dominance of colonial and filamentous bloom-forming cyanobacteria (e.g. Microcystis, Planktothrix, Anabaena and Cylindrospermopsis) will increase in freshwater systems as a combined result of anthropogenic nutrient input into freshwater bodies and climate change. While the physicochemical parameters controlling bloom dynamics are well known, the role of biotic factors remains comparatively poorly studied. Morphology and toxicity often - but not always - limit the availability of cyanobacteria to filter feeding zooplankton (e.g. cladocerans). Filamentous and colonial cyanobacteria are widely regarded as trophic dead-ends mostly inedible for zooplankton, but substantial evidence shows that some grazers (e.g. copepods) can bypass this size constraint by breaking down filaments, making the bloom biomass available to other zooplankton species. A wide range of algicidal bacteria (mostly from the Alcaligenes, Flavobacterium/Cytophaga group and Pseudomonas) and viruses (Podoviridae, Siphoviridae and Myoviridae) may also contribute to bloom control, via their lytic activity underpinned by a diverse array of mechanisms. Fungal parasitism by the Chytridiomycota remains the least studied. While each of these biotic factors has traditionally been studied in isolation, emerging research consistently point to complex interwoven interactions between biotic and environmental factors.

DOI: 10.1111/1462-2920.12860
PubMed: 25818470

Links to Exploration step

pubmed:25818470

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Microbial players involved in the decline of filamentous and colonial cyanobacterial blooms with a focus on fungal parasitism.</title>
<author>
<name sortKey="Gerphagnon, Melanie" sort="Gerphagnon, Melanie" uniqKey="Gerphagnon M" first="Mélanie" last="Gerphagnon">Mélanie Gerphagnon</name>
<affiliation>
<nlm:affiliation>LMGE, Laboratoire Microorganismes: Génome et Environnement, UMR CNRS 6023, Clermont Université, Université Blaise Pascal, BP 80026, Aubière CEDEX, 63171, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Macarthur, Deborah J" sort="Macarthur, Deborah J" uniqKey="Macarthur D" first="Deborah J" last="Macarthur">Deborah J. Macarthur</name>
<affiliation>
<nlm:affiliation>School of Biological Sciences, University of Sydney, Sydney, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Latour, Delphine" sort="Latour, Delphine" uniqKey="Latour D" first="Delphine" last="Latour">Delphine Latour</name>
<affiliation>
<nlm:affiliation>LMGE, Laboratoire Microorganismes: Génome et Environnement, UMR CNRS 6023, Clermont Université, Université Blaise Pascal, BP 80026, Aubière CEDEX, 63171, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gachon, Claire M M" sort="Gachon, Claire M M" uniqKey="Gachon C" first="Claire M M" last="Gachon">Claire M M. Gachon</name>
<affiliation>
<nlm:affiliation>Culture Collection for Algae and Protozoa, Scottish Marine Institute, Scottish Association for Marine Science, Oban, PA37 1QA, UK.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Van Ogtrop, Floris" sort="Van Ogtrop, Floris" uniqKey="Van Ogtrop F" first="Floris" last="Van Ogtrop">Floris Van Ogtrop</name>
<affiliation>
<nlm:affiliation>School of Biological Sciences, University of Sydney, Sydney, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gleason, Frank H" sort="Gleason, Frank H" uniqKey="Gleason F" first="Frank H" last="Gleason">Frank H. Gleason</name>
<affiliation>
<nlm:affiliation>School of Biological Sciences, University of Sydney, Sydney, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sime Ngando, Telesphore" sort="Sime Ngando, Telesphore" uniqKey="Sime Ngando T" first="Télesphore" last="Sime-Ngando">Télesphore Sime-Ngando</name>
<affiliation>
<nlm:affiliation>LMGE, Laboratoire Microorganismes: Génome et Environnement, UMR CNRS 6023, Clermont Université, Université Blaise Pascal, BP 80026, Aubière CEDEX, 63171, France.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:25818470</idno>
<idno type="pmid">25818470</idno>
<idno type="doi">10.1111/1462-2920.12860</idno>
<idno type="wicri:Area/PubMed/Corpus">002A78</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002A78</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Microbial players involved in the decline of filamentous and colonial cyanobacterial blooms with a focus on fungal parasitism.</title>
<author>
<name sortKey="Gerphagnon, Melanie" sort="Gerphagnon, Melanie" uniqKey="Gerphagnon M" first="Mélanie" last="Gerphagnon">Mélanie Gerphagnon</name>
<affiliation>
<nlm:affiliation>LMGE, Laboratoire Microorganismes: Génome et Environnement, UMR CNRS 6023, Clermont Université, Université Blaise Pascal, BP 80026, Aubière CEDEX, 63171, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Macarthur, Deborah J" sort="Macarthur, Deborah J" uniqKey="Macarthur D" first="Deborah J" last="Macarthur">Deborah J. Macarthur</name>
<affiliation>
<nlm:affiliation>School of Biological Sciences, University of Sydney, Sydney, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Latour, Delphine" sort="Latour, Delphine" uniqKey="Latour D" first="Delphine" last="Latour">Delphine Latour</name>
<affiliation>
<nlm:affiliation>LMGE, Laboratoire Microorganismes: Génome et Environnement, UMR CNRS 6023, Clermont Université, Université Blaise Pascal, BP 80026, Aubière CEDEX, 63171, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gachon, Claire M M" sort="Gachon, Claire M M" uniqKey="Gachon C" first="Claire M M" last="Gachon">Claire M M. Gachon</name>
<affiliation>
<nlm:affiliation>Culture Collection for Algae and Protozoa, Scottish Marine Institute, Scottish Association for Marine Science, Oban, PA37 1QA, UK.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Van Ogtrop, Floris" sort="Van Ogtrop, Floris" uniqKey="Van Ogtrop F" first="Floris" last="Van Ogtrop">Floris Van Ogtrop</name>
<affiliation>
<nlm:affiliation>School of Biological Sciences, University of Sydney, Sydney, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gleason, Frank H" sort="Gleason, Frank H" uniqKey="Gleason F" first="Frank H" last="Gleason">Frank H. Gleason</name>
<affiliation>
<nlm:affiliation>School of Biological Sciences, University of Sydney, Sydney, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sime Ngando, Telesphore" sort="Sime Ngando, Telesphore" uniqKey="Sime Ngando T" first="Télesphore" last="Sime-Ngando">Télesphore Sime-Ngando</name>
<affiliation>
<nlm:affiliation>LMGE, Laboratoire Microorganismes: Génome et Environnement, UMR CNRS 6023, Clermont Université, Université Blaise Pascal, BP 80026, Aubière CEDEX, 63171, France.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Environmental microbiology</title>
<idno type="eISSN">1462-2920</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Anabaena (growth & development)</term>
<term>Animals</term>
<term>Chytridiomycota (physiology)</term>
<term>Climate Change</term>
<term>Cyanobacteria (growth & development)</term>
<term>Cylindrospermopsis (growth & development)</term>
<term>Eutrophication (physiology)</term>
<term>Fresh Water (microbiology)</term>
<term>Microcystis (growth & development)</term>
<term>Zooplankton (growth & development)</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Anabaena</term>
<term>Cyanobacteria</term>
<term>Cylindrospermopsis</term>
<term>Microcystis</term>
<term>Zooplankton</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Fresh Water</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Chytridiomycota</term>
<term>Eutrophication</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Climate Change</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In the forthcoming decades, it is widely believed that the dominance of colonial and filamentous bloom-forming cyanobacteria (e.g. Microcystis, Planktothrix, Anabaena and Cylindrospermopsis) will increase in freshwater systems as a combined result of anthropogenic nutrient input into freshwater bodies and climate change. While the physicochemical parameters controlling bloom dynamics are well known, the role of biotic factors remains comparatively poorly studied. Morphology and toxicity often - but not always - limit the availability of cyanobacteria to filter feeding zooplankton (e.g. cladocerans). Filamentous and colonial cyanobacteria are widely regarded as trophic dead-ends mostly inedible for zooplankton, but substantial evidence shows that some grazers (e.g. copepods) can bypass this size constraint by breaking down filaments, making the bloom biomass available to other zooplankton species. A wide range of algicidal bacteria (mostly from the Alcaligenes, Flavobacterium/Cytophaga group and Pseudomonas) and viruses (Podoviridae, Siphoviridae and Myoviridae) may also contribute to bloom control, via their lytic activity underpinned by a diverse array of mechanisms. Fungal parasitism by the Chytridiomycota remains the least studied. While each of these biotic factors has traditionally been studied in isolation, emerging research consistently point to complex interwoven interactions between biotic and environmental factors.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25818470</PMID>
<DateCreated>
<Year>2015</Year>
<Month>09</Month>
<Day>02</Day>
</DateCreated>
<DateCompleted>
<Year>2016</Year>
<Month>04</Month>
<Day>18</Day>
</DateCompleted>
<DateRevised>
<Year>2015</Year>
<Month>09</Month>
<Day>02</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1462-2920</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>17</Volume>
<Issue>8</Issue>
<PubDate>
<Year>2015</Year>
<Month>Aug</Month>
</PubDate>
</JournalIssue>
<Title>Environmental microbiology</Title>
<ISOAbbreviation>Environ. Microbiol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Microbial players involved in the decline of filamentous and colonial cyanobacterial blooms with a focus on fungal parasitism.</ArticleTitle>
<Pagination>
<MedlinePgn>2573-87</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/1462-2920.12860</ELocationID>
<Abstract>
<AbstractText>In the forthcoming decades, it is widely believed that the dominance of colonial and filamentous bloom-forming cyanobacteria (e.g. Microcystis, Planktothrix, Anabaena and Cylindrospermopsis) will increase in freshwater systems as a combined result of anthropogenic nutrient input into freshwater bodies and climate change. While the physicochemical parameters controlling bloom dynamics are well known, the role of biotic factors remains comparatively poorly studied. Morphology and toxicity often - but not always - limit the availability of cyanobacteria to filter feeding zooplankton (e.g. cladocerans). Filamentous and colonial cyanobacteria are widely regarded as trophic dead-ends mostly inedible for zooplankton, but substantial evidence shows that some grazers (e.g. copepods) can bypass this size constraint by breaking down filaments, making the bloom biomass available to other zooplankton species. A wide range of algicidal bacteria (mostly from the Alcaligenes, Flavobacterium/Cytophaga group and Pseudomonas) and viruses (Podoviridae, Siphoviridae and Myoviridae) may also contribute to bloom control, via their lytic activity underpinned by a diverse array of mechanisms. Fungal parasitism by the Chytridiomycota remains the least studied. While each of these biotic factors has traditionally been studied in isolation, emerging research consistently point to complex interwoven interactions between biotic and environmental factors.</AbstractText>
<CopyrightInformation>© 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Gerphagnon</LastName>
<ForeName>Mélanie</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>LMGE, Laboratoire Microorganismes: Génome et Environnement, UMR CNRS 6023, Clermont Université, Université Blaise Pascal, BP 80026, Aubière CEDEX, 63171, France.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Culture Collection for Algae and Protozoa, Scottish Marine Institute, Scottish Association for Marine Science, Oban, PA37 1QA, UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Macarthur</LastName>
<ForeName>Deborah J</ForeName>
<Initials>DJ</Initials>
<AffiliationInfo>
<Affiliation>School of Biological Sciences, University of Sydney, Sydney, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Latour</LastName>
<ForeName>Delphine</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>LMGE, Laboratoire Microorganismes: Génome et Environnement, UMR CNRS 6023, Clermont Université, Université Blaise Pascal, BP 80026, Aubière CEDEX, 63171, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gachon</LastName>
<ForeName>Claire M M</ForeName>
<Initials>CM</Initials>
<AffiliationInfo>
<Affiliation>Culture Collection for Algae and Protozoa, Scottish Marine Institute, Scottish Association for Marine Science, Oban, PA37 1QA, UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Van Ogtrop</LastName>
<ForeName>Floris</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>School of Biological Sciences, University of Sydney, Sydney, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gleason</LastName>
<ForeName>Frank H</ForeName>
<Initials>FH</Initials>
<AffiliationInfo>
<Affiliation>School of Biological Sciences, University of Sydney, Sydney, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sime-Ngando</LastName>
<ForeName>Télesphore</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>LMGE, Laboratoire Microorganismes: Génome et Environnement, UMR CNRS 6023, Clermont Université, Université Blaise Pascal, BP 80026, Aubière CEDEX, 63171, France.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>06</Month>
<Day>11</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Environ Microbiol</MedlineTA>
<NlmUniqueID>100883692</NlmUniqueID>
<ISSNLinking>1462-2912</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D017033" MajorTopicYN="N">Anabaena</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008411" MajorTopicYN="N">Chytridiomycota</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057231" MajorTopicYN="N">Climate Change</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000458" MajorTopicYN="N">Cyanobacteria</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D046891" MajorTopicYN="N">Cylindrospermopsis</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005068" MajorTopicYN="N">Eutrophication</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005618" MajorTopicYN="N">Fresh Water</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D046931" MajorTopicYN="N">Microcystis</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015048" MajorTopicYN="N">Zooplankton</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>05</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2015</Year>
<Month>03</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>03</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>3</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>3</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>4</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25818470</ArticleId>
<ArticleId IdType="doi">10.1111/1462-2920.12860</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002A78 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 002A78 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:25818470
   |texte=   Microbial players involved in the decline of filamentous and colonial cyanobacterial blooms with a focus on fungal parasitism.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:25818470" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a AustralieFrV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024