Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Contributions of adhesive proteins to the cellular and bacterial response to surfaces treated with bioactive polymers: case of poly(sodium styrene sulfonate) grafted titanium surfaces.

Identifieur interne : 002719 ( PubMed/Corpus ); précédent : 002718; suivant : 002720

Contributions of adhesive proteins to the cellular and bacterial response to surfaces treated with bioactive polymers: case of poly(sodium styrene sulfonate) grafted titanium surfaces.

Auteurs : Helena P. Felgueiras ; Ines Ben Aissa ; Margaret D M. Evans ; Véronique Migonney

Source :

RBID : pubmed:26449451

English descriptors

Abstract

The research developed on functionalized model or prosthetic surfaces with bioactive polymers has raised the possibility to modulate and/or control the biological in vitro and in vivo responses to synthetic biomaterials. The mechanisms underlying the bioactivity exhibited by sulfonated groups on surfaces involves both selective adsorption and conformational changes of adsorbed proteins. Indeed, surfaces functionalized by grafting poly(sodium styrene sulfonate) [poly(NaSS)] modulate the cellular and bacterial response by inducing specific interactions with fibronectin (Fn). Once implanted, a biomaterial surface is exposed to a milieu of many proteins that compete for the surface which dictates the subsequent biological response. Once understood, this can be controlled by dictating exposure of active binding sites. In this in vitro study, we report the influence of binary mixtures of proteins [albumin (BSA), Fn and collagen type I (Col I)] adsorbed on poly(NaSS) grafted Ti6Al4V on the adhesion and differentiation of MC3T3-E1 osteoblast-like cells and the adhesion and proliferation of Staphylococcus aureus (S. aureus). Outcomes showed that poly(NaSS) stimulated cell spreading, attachment strength, differentiation and mineralization, whatever the nature of protein provided at the interface compared with ungrafted Ti6Al4V (control). While in competition, Fn and Col I were capable of prevailing over BSA. Fn played an important role in the early interactions of the cells with the surface, while Col I was responsible for increased alkaline phosphatase, calcium and phosphate productions associated with differentiation. Poly(NaSS) grafted surfaces decreased the adhesion of S. aureus and the presence of Fn on these chemically altered surfaces increased bacterial resistance ≈70% compared to the ungrafted Ti6Al4V. Overall, our study showed that poly(NaSS) grafted Ti6Al4V selectively adsorbed proteins (particularly Fn) promoting the adhesion and differentiation of osteoblast-like cells while reducing bacterial adhesion to create a bioactive surface with potential for orthopaedic applications.

DOI: 10.1007/s10856-015-5596-y
PubMed: 26449451

Links to Exploration step

pubmed:26449451

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Contributions of adhesive proteins to the cellular and bacterial response to surfaces treated with bioactive polymers: case of poly(sodium styrene sulfonate) grafted titanium surfaces.</title>
<author>
<name sortKey="Felgueiras, Helena P" sort="Felgueiras, Helena P" uniqKey="Felgueiras H" first="Helena P" last="Felgueiras">Helena P. Felgueiras</name>
<affiliation>
<nlm:affiliation>Laboratoire de "Chimie, Structures et Propriétés de Biomatériaux et d'Agents Thérapeutiques" (CSPBAT) - UMR CNRS 7244, Institut Galilée, Université Paris 13, Sorbonne Paris Cité, 99 avenue JB Clément, 93430, Villetaneuse, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Aissa, Ines Ben" sort="Aissa, Ines Ben" uniqKey="Aissa I" first="Ines Ben" last="Aissa">Ines Ben Aissa</name>
<affiliation>
<nlm:affiliation>Laboratoire de "Chimie, Structures et Propriétés de Biomatériaux et d'Agents Thérapeutiques" (CSPBAT) - UMR CNRS 7244, Institut Galilée, Université Paris 13, Sorbonne Paris Cité, 99 avenue JB Clément, 93430, Villetaneuse, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Evans, Margaret D M" sort="Evans, Margaret D M" uniqKey="Evans M" first="Margaret D M" last="Evans">Margaret D M. Evans</name>
<affiliation>
<nlm:affiliation>CSIRO Biomedical Materials Program, 11 Julius Avenue, North Ride, Sydney, NSW, 2113, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Migonney, Veronique" sort="Migonney, Veronique" uniqKey="Migonney V" first="Véronique" last="Migonney">Véronique Migonney</name>
<affiliation>
<nlm:affiliation>Laboratoire de "Chimie, Structures et Propriétés de Biomatériaux et d'Agents Thérapeutiques" (CSPBAT) - UMR CNRS 7244, Institut Galilée, Université Paris 13, Sorbonne Paris Cité, 99 avenue JB Clément, 93430, Villetaneuse, France. veronique.migonney@univ-paris13.fr.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:26449451</idno>
<idno type="pmid">26449451</idno>
<idno type="doi">10.1007/s10856-015-5596-y</idno>
<idno type="wicri:Area/PubMed/Corpus">002719</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002719</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Contributions of adhesive proteins to the cellular and bacterial response to surfaces treated with bioactive polymers: case of poly(sodium styrene sulfonate) grafted titanium surfaces.</title>
<author>
<name sortKey="Felgueiras, Helena P" sort="Felgueiras, Helena P" uniqKey="Felgueiras H" first="Helena P" last="Felgueiras">Helena P. Felgueiras</name>
<affiliation>
<nlm:affiliation>Laboratoire de "Chimie, Structures et Propriétés de Biomatériaux et d'Agents Thérapeutiques" (CSPBAT) - UMR CNRS 7244, Institut Galilée, Université Paris 13, Sorbonne Paris Cité, 99 avenue JB Clément, 93430, Villetaneuse, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Aissa, Ines Ben" sort="Aissa, Ines Ben" uniqKey="Aissa I" first="Ines Ben" last="Aissa">Ines Ben Aissa</name>
<affiliation>
<nlm:affiliation>Laboratoire de "Chimie, Structures et Propriétés de Biomatériaux et d'Agents Thérapeutiques" (CSPBAT) - UMR CNRS 7244, Institut Galilée, Université Paris 13, Sorbonne Paris Cité, 99 avenue JB Clément, 93430, Villetaneuse, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Evans, Margaret D M" sort="Evans, Margaret D M" uniqKey="Evans M" first="Margaret D M" last="Evans">Margaret D M. Evans</name>
<affiliation>
<nlm:affiliation>CSIRO Biomedical Materials Program, 11 Julius Avenue, North Ride, Sydney, NSW, 2113, Australia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Migonney, Veronique" sort="Migonney, Veronique" uniqKey="Migonney V" first="Véronique" last="Migonney">Véronique Migonney</name>
<affiliation>
<nlm:affiliation>Laboratoire de "Chimie, Structures et Propriétés de Biomatériaux et d'Agents Thérapeutiques" (CSPBAT) - UMR CNRS 7244, Institut Galilée, Université Paris 13, Sorbonne Paris Cité, 99 avenue JB Clément, 93430, Villetaneuse, France. veronique.migonney@univ-paris13.fr.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of materials science. Materials in medicine</title>
<idno type="eISSN">1573-4838</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>3T3 Cells</term>
<term>Animals</term>
<term>Bacterial Adhesion</term>
<term>Bacterial Proteins (chemistry)</term>
<term>Cell Differentiation</term>
<term>Cell Proliferation</term>
<term>Mice</term>
<term>Polymers (chemistry)</term>
<term>Protein Binding</term>
<term>Spectroscopy, Fourier Transform Infrared</term>
<term>Staphylococcus aureus (physiology)</term>
<term>Surface Properties</term>
<term>Titanium (chemistry)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Bacterial Proteins</term>
<term>Polymers</term>
<term>Titanium</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Staphylococcus aureus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>3T3 Cells</term>
<term>Animals</term>
<term>Bacterial Adhesion</term>
<term>Cell Differentiation</term>
<term>Cell Proliferation</term>
<term>Mice</term>
<term>Protein Binding</term>
<term>Spectroscopy, Fourier Transform Infrared</term>
<term>Surface Properties</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The research developed on functionalized model or prosthetic surfaces with bioactive polymers has raised the possibility to modulate and/or control the biological in vitro and in vivo responses to synthetic biomaterials. The mechanisms underlying the bioactivity exhibited by sulfonated groups on surfaces involves both selective adsorption and conformational changes of adsorbed proteins. Indeed, surfaces functionalized by grafting poly(sodium styrene sulfonate) [poly(NaSS)] modulate the cellular and bacterial response by inducing specific interactions with fibronectin (Fn). Once implanted, a biomaterial surface is exposed to a milieu of many proteins that compete for the surface which dictates the subsequent biological response. Once understood, this can be controlled by dictating exposure of active binding sites. In this in vitro study, we report the influence of binary mixtures of proteins [albumin (BSA), Fn and collagen type I (Col I)] adsorbed on poly(NaSS) grafted Ti6Al4V on the adhesion and differentiation of MC3T3-E1 osteoblast-like cells and the adhesion and proliferation of Staphylococcus aureus (S. aureus). Outcomes showed that poly(NaSS) stimulated cell spreading, attachment strength, differentiation and mineralization, whatever the nature of protein provided at the interface compared with ungrafted Ti6Al4V (control). While in competition, Fn and Col I were capable of prevailing over BSA. Fn played an important role in the early interactions of the cells with the surface, while Col I was responsible for increased alkaline phosphatase, calcium and phosphate productions associated with differentiation. Poly(NaSS) grafted surfaces decreased the adhesion of S. aureus and the presence of Fn on these chemically altered surfaces increased bacterial resistance ≈70% compared to the ungrafted Ti6Al4V. Overall, our study showed that poly(NaSS) grafted Ti6Al4V selectively adsorbed proteins (particularly Fn) promoting the adhesion and differentiation of osteoblast-like cells while reducing bacterial adhesion to create a bioactive surface with potential for orthopaedic applications.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">26449451</PMID>
<DateCreated>
<Year>2015</Year>
<Month>10</Month>
<Day>09</Day>
</DateCreated>
<DateCompleted>
<Year>2016</Year>
<Month>08</Month>
<Day>26</Day>
</DateCompleted>
<DateRevised>
<Year>2017</Year>
<Month>10</Month>
<Day>21</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1573-4838</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>26</Volume>
<Issue>11</Issue>
<PubDate>
<Year>2015</Year>
<Month>Nov</Month>
</PubDate>
</JournalIssue>
<Title>Journal of materials science. Materials in medicine</Title>
<ISOAbbreviation>J Mater Sci Mater Med</ISOAbbreviation>
</Journal>
<ArticleTitle>Contributions of adhesive proteins to the cellular and bacterial response to surfaces treated with bioactive polymers: case of poly(sodium styrene sulfonate) grafted titanium surfaces.</ArticleTitle>
<Pagination>
<MedlinePgn>261</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s10856-015-5596-y</ELocationID>
<Abstract>
<AbstractText>The research developed on functionalized model or prosthetic surfaces with bioactive polymers has raised the possibility to modulate and/or control the biological in vitro and in vivo responses to synthetic biomaterials. The mechanisms underlying the bioactivity exhibited by sulfonated groups on surfaces involves both selective adsorption and conformational changes of adsorbed proteins. Indeed, surfaces functionalized by grafting poly(sodium styrene sulfonate) [poly(NaSS)] modulate the cellular and bacterial response by inducing specific interactions with fibronectin (Fn). Once implanted, a biomaterial surface is exposed to a milieu of many proteins that compete for the surface which dictates the subsequent biological response. Once understood, this can be controlled by dictating exposure of active binding sites. In this in vitro study, we report the influence of binary mixtures of proteins [albumin (BSA), Fn and collagen type I (Col I)] adsorbed on poly(NaSS) grafted Ti6Al4V on the adhesion and differentiation of MC3T3-E1 osteoblast-like cells and the adhesion and proliferation of Staphylococcus aureus (S. aureus). Outcomes showed that poly(NaSS) stimulated cell spreading, attachment strength, differentiation and mineralization, whatever the nature of protein provided at the interface compared with ungrafted Ti6Al4V (control). While in competition, Fn and Col I were capable of prevailing over BSA. Fn played an important role in the early interactions of the cells with the surface, while Col I was responsible for increased alkaline phosphatase, calcium and phosphate productions associated with differentiation. Poly(NaSS) grafted surfaces decreased the adhesion of S. aureus and the presence of Fn on these chemically altered surfaces increased bacterial resistance ≈70% compared to the ungrafted Ti6Al4V. Overall, our study showed that poly(NaSS) grafted Ti6Al4V selectively adsorbed proteins (particularly Fn) promoting the adhesion and differentiation of osteoblast-like cells while reducing bacterial adhesion to create a bioactive surface with potential for orthopaedic applications.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Felgueiras</LastName>
<ForeName>Helena P</ForeName>
<Initials>HP</Initials>
<AffiliationInfo>
<Affiliation>Laboratoire de "Chimie, Structures et Propriétés de Biomatériaux et d'Agents Thérapeutiques" (CSPBAT) - UMR CNRS 7244, Institut Galilée, Université Paris 13, Sorbonne Paris Cité, 99 avenue JB Clément, 93430, Villetaneuse, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Aissa</LastName>
<ForeName>Ines Ben</ForeName>
<Initials>IB</Initials>
<AffiliationInfo>
<Affiliation>Laboratoire de "Chimie, Structures et Propriétés de Biomatériaux et d'Agents Thérapeutiques" (CSPBAT) - UMR CNRS 7244, Institut Galilée, Université Paris 13, Sorbonne Paris Cité, 99 avenue JB Clément, 93430, Villetaneuse, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Evans</LastName>
<ForeName>Margaret D M</ForeName>
<Initials>MD</Initials>
<AffiliationInfo>
<Affiliation>CSIRO Biomedical Materials Program, 11 Julius Avenue, North Ride, Sydney, NSW, 2113, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Migonney</LastName>
<ForeName>Véronique</ForeName>
<Initials>V</Initials>
<AffiliationInfo>
<Affiliation>Laboratoire de "Chimie, Structures et Propriétés de Biomatériaux et d'Agents Thérapeutiques" (CSPBAT) - UMR CNRS 7244, Institut Galilée, Université Paris 13, Sorbonne Paris Cité, 99 avenue JB Clément, 93430, Villetaneuse, France. veronique.migonney@univ-paris13.fr.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>10</Month>
<Day>08</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Mater Sci Mater Med</MedlineTA>
<NlmUniqueID>9013087</NlmUniqueID>
<ISSNLinking>0957-4530</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001426">Bacterial Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011108">Polymers</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>D1JT611TNE</RegistryNumber>
<NameOfSubstance UI="D014025">Titanium</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>J Biomed Mater Res A. 2007 Dec 1;83(3):712-9</RefSource>
<PMID Version="1">17559125</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Int J Oral Maxillofac Implants. 2012 Sep-Oct;27(5):1081-90</RefSource>
<PMID Version="1">23057020</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2000 Dec 15;275(50):38981-9</RefSource>
<PMID Version="1">10986291</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Commun Integr Biol. 2010 Sep;3(5):475-7</RefSource>
<PMID Version="1">21057645</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Acta Biomater. 2009 Jan;5(1):124-33</RefSource>
<PMID Version="1">18809363</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biomed Mater Res. 1986 Nov-Dec;20(9):1263-75</RefSource>
<PMID Version="1">2946694</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Dent Mater J. 2007 Sep;26(5):647-55</RefSource>
<PMID Version="1">18203463</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biomed Mater Res. 1998 Fall;43(3):338-48</RefSource>
<PMID Version="1">9730073</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>N Engl J Med. 2004 Apr 1;350(14):1422-9</RefSource>
<PMID Version="1">15070792</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biomaterials. 2004 Aug;25(18):4135-48</RefSource>
<PMID Version="1">15046904</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biomater Sci Polym Ed. 1991;3(1):95-107</RefSource>
<PMID Version="1">1786247</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 1982 Dec 25;257(24):14973-8</RefSource>
<PMID Version="1">7174679</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Acta Biomater. 2010 Feb;6(2):667-75</RefSource>
<PMID Version="1">19733698</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Matrix Biol. 1996 Nov;15(5):313-20; discussion 321</RefSource>
<PMID Version="1">8981327</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Infect Dis Clin North Am. 2005 Dec;19(4):885-914</RefSource>
<PMID Version="1">16297738</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Conf Proc IEEE Eng Med Biol Soc. 2007;2007:5119-22</RefSource>
<PMID Version="1">18003158</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biomed Mater Res A. 2013 Feb;101(2):582-9</RefSource>
<PMID Version="1">22961843</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell. 1979 Apr;16(4):941-52</RefSource>
<PMID Version="1">222472</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Cell Sci. 2009 Jan 15;122(Pt 2):159-63</RefSource>
<PMID Version="1">19118207</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biomaterials. 2000 Apr;21(7):667-81</RefSource>
<PMID Version="1">10711964</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biomaterials. 2007 Feb;28(4):586-94</RefSource>
<PMID Version="1">17046057</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mater Sci Eng C Mater Biol Appl. 2014 Jun 1;39:196-202</RefSource>
<PMID Version="1">24863216</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biointerphases. 2012 Dec;7(1-4):48</RefSource>
<PMID Version="1">22875482</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Colloids Surf B Biointerfaces. 2013 Mar 1;103:395-404</RefSource>
<PMID Version="1">23261559</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Cell Res. 1995 Jan;216(1):35-45</RefSource>
<PMID Version="1">7813631</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Langmuir. 2014 Aug 12;30(31):9477-83</RefSource>
<PMID Version="1">25054428</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biomacromolecules. 2002 Jan-Feb;3(1):63-8</RefSource>
<PMID Version="1">11866557</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Lett Appl Microbiol. 1995 Jul;21(1):1-4</RefSource>
<PMID Version="1">7544985</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Dent Mater J. 2011;30(2):158-69</RefSource>
<PMID Version="1">21422666</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Cell Physiol. 2000 Aug;184(2):207-13</RefSource>
<PMID Version="1">10867645</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biomed Biotechnol. 2004;2004(1):24-34</RefSource>
<PMID Version="1">15123885</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biomaterials. 2006 Jul;27(21):3912-9</RefSource>
<PMID Version="1">16564569</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Langmuir. 2012 Jun 5;28(22):8433-45</RefSource>
<PMID Version="1">22551342</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Physiol Res. 2004;53 Suppl 1:S35-45</RefSource>
<PMID Version="1">15119934</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Orthop Res. 1994 May;12(3):432-8</RefSource>
<PMID Version="1">8207597</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Front Biosci. 1997 Mar 01;2:d126-46</RefSource>
<PMID Version="1">9159220</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Eur J Biochem. 2000 Sep;267(17):5421-6</RefSource>
<PMID Version="1">10951200</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Opin Cell Biol. 2008 Oct;20(5):495-501</RefSource>
<PMID Version="1">18640274</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 1996 Feb 16;271(7):3938-44</RefSource>
<PMID Version="1">8632016</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biomacromolecules. 2003 May-Jun;4(3):766-71</RefSource>
<PMID Version="1">12741796</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biomaterials. 2003 Nov;24(25):4639-54</RefSource>
<PMID Version="1">12951007</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biomacromolecules. 2002 Jan-Feb;3(1):51-6</RefSource>
<PMID Version="1">11866555</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Colloid Interface Sci. 2004 Oct 1;278(1):81-90</RefSource>
<PMID Version="1">15313640</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Bone Miner Res. 2002 Oct;17 (10 ):1785-94</RefSource>
<PMID Version="1">12369782</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Matrix Biol. 2002 Mar;21(2):139-47</RefSource>
<PMID Version="1">11852230</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D016475" MajorTopicYN="N">3T3 Cells</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001422" MajorTopicYN="N">Bacterial Adhesion</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001426" MajorTopicYN="N">Bacterial Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002454" MajorTopicYN="N">Cell Differentiation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D049109" MajorTopicYN="N">Cell Proliferation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011108" MajorTopicYN="N">Polymers</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011485" MajorTopicYN="N">Protein Binding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017550" MajorTopicYN="N">Spectroscopy, Fourier Transform Infrared</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013211" MajorTopicYN="N">Staphylococcus aureus</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013499" MajorTopicYN="N">Surface Properties</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014025" MajorTopicYN="N">Titanium</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>06</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>10</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>10</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>10</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>8</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26449451</ArticleId>
<ArticleId IdType="doi">10.1007/s10856-015-5596-y</ArticleId>
<ArticleId IdType="pii">10.1007/s10856-015-5596-y</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002719 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 002719 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:26449451
   |texte=   Contributions of adhesive proteins to the cellular and bacterial response to surfaces treated with bioactive polymers: case of poly(sodium styrene sulfonate) grafted titanium surfaces.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:26449451" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a AustralieFrV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024