Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Effects of Food Components That Activate TRPA1 Receptors on Mucosal Ion Transport in the Mouse Intestine.

Identifieur interne : 001722 ( PubMed/Corpus ); précédent : 001721; suivant : 001723

Effects of Food Components That Activate TRPA1 Receptors on Mucosal Ion Transport in the Mouse Intestine.

Auteurs : Linda J. Fothergill ; Brid Callaghan ; Leni R. Rivera ; Tinamarie Lieu ; Daniel P. Poole ; Hyun-Jung Cho ; David M. Bravo ; John B. Furness

Source :

RBID : pubmed:27735854

English descriptors

Abstract

TRPA1 is a ligand-activated cation channel found in the intestine and other tissues. Components of food that stimulate TRPA1 receptors (phytonutrients) include allyl isothiocyanate, cinnamaldehyde and linalool, but these may also act at other receptors. Cells lining the intestinal mucosa are immunoreactive for TRPA1 and Trpa1 mRNA occurs in mucosal extracts, suggesting that the TRPA1 receptor is the target for these agonists. However, in situ hybridisation reveals Trpa1 expression in 5-HT containing enteroendocrine cells, not enterocytes. TRPA1 agonists evoke mucosal secretion, which may be indirect (through release of 5-HT) or direct by activation of enterocytes. We investigated effects of the phytonutrients on transmucosal ion currents in mouse duodenum and colon, and the specificity of the phytonutrients in cells transfected with Trpa1, and in Trpa1-deficient mice. The phytonutrients increased currents in the duodenum with the relative potencies: allyl isothiocyanate (AITC) > cinnamaldehyde > linalool (0.1 to 300 μM). The rank order was similar in the colon, but linalool was ineffective. Responses to AITC were reduced by the TRPA1 antagonist HC-030031 (100 μM), and were greatly diminished in Trpa1-/- duodenum and colon. Responses were not reduced by tetrodotoxin, 5-HT receptor antagonists, or atropine, but inhibition of prostaglandin synthesis reduced responses. Thus, functional TRPA1 channels are expressed by enterocytes of the duodenum and colon. Activation of enterocyte TRPA1 by food components has the potential to facilitate nutrient absorption.

DOI: 10.3390/nu8100623
PubMed: 27735854

Links to Exploration step

pubmed:27735854

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Effects of Food Components That Activate TRPA1 Receptors on Mucosal Ion Transport in the Mouse Intestine.</title>
<author>
<name sortKey="Fothergill, Linda J" sort="Fothergill, Linda J" uniqKey="Fothergill L" first="Linda J" last="Fothergill">Linda J. Fothergill</name>
<affiliation>
<nlm:affiliation>Department of Anatomy & Neuroscience, University of Melbourne, Parkville VIC 3010, Australia. l.fothergill@student.unimelb.edu.au.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Callaghan, Brid" sort="Callaghan, Brid" uniqKey="Callaghan B" first="Brid" last="Callaghan">Brid Callaghan</name>
<affiliation>
<nlm:affiliation>Department of Anatomy & Neuroscience, University of Melbourne, Parkville VIC 3010, Australia. b.callaghan@unimelb.edu.ac.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rivera, Leni R" sort="Rivera, Leni R" uniqKey="Rivera L" first="Leni R" last="Rivera">Leni R. Rivera</name>
<affiliation>
<nlm:affiliation>Department of Anatomy & Neuroscience, University of Melbourne, Parkville VIC 3010, Australia. leni.rivera@deakin.edu.au.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lieu, Tinamarie" sort="Lieu, Tinamarie" uniqKey="Lieu T" first="Tinamarie" last="Lieu">Tinamarie Lieu</name>
<affiliation>
<nlm:affiliation>Monash Institute of Pharmaceutical Sciences, Monash University, Parkville VIC 3052, Australia. Tinamarie.lieu@monash.edu.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Poole, Daniel P" sort="Poole, Daniel P" uniqKey="Poole D" first="Daniel P" last="Poole">Daniel P. Poole</name>
<affiliation>
<nlm:affiliation>Department of Anatomy & Neuroscience, University of Melbourne, Parkville VIC 3010, Australia. Daniel.Poole@monash.edu.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Cho, Hyun Jung" sort="Cho, Hyun Jung" uniqKey="Cho H" first="Hyun-Jung" last="Cho">Hyun-Jung Cho</name>
<affiliation>
<nlm:affiliation>Biological Optical Microscopy Platform, University of Melbourne, Parkville VIC 3010, Australia. hcho@unimelb.edu.au.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bravo, David M" sort="Bravo, David M" uniqKey="Bravo D" first="David M" last="Bravo">David M. Bravo</name>
<affiliation>
<nlm:affiliation>In Vivo Animal Nutrition & Health, Talhouët, Saint-Nolff 56250, France. david.bravo@pancosma.ch.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Furness, John B" sort="Furness, John B" uniqKey="Furness J" first="John B" last="Furness">John B. Furness</name>
<affiliation>
<nlm:affiliation>Department of Anatomy & Neuroscience, University of Melbourne, Parkville VIC 3010, Australia. j.furness@unimelb.edu.au.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:27735854</idno>
<idno type="pmid">27735854</idno>
<idno type="doi">10.3390/nu8100623</idno>
<idno type="wicri:Area/PubMed/Corpus">001722</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001722</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Effects of Food Components That Activate TRPA1 Receptors on Mucosal Ion Transport in the Mouse Intestine.</title>
<author>
<name sortKey="Fothergill, Linda J" sort="Fothergill, Linda J" uniqKey="Fothergill L" first="Linda J" last="Fothergill">Linda J. Fothergill</name>
<affiliation>
<nlm:affiliation>Department of Anatomy & Neuroscience, University of Melbourne, Parkville VIC 3010, Australia. l.fothergill@student.unimelb.edu.au.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Callaghan, Brid" sort="Callaghan, Brid" uniqKey="Callaghan B" first="Brid" last="Callaghan">Brid Callaghan</name>
<affiliation>
<nlm:affiliation>Department of Anatomy & Neuroscience, University of Melbourne, Parkville VIC 3010, Australia. b.callaghan@unimelb.edu.ac.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rivera, Leni R" sort="Rivera, Leni R" uniqKey="Rivera L" first="Leni R" last="Rivera">Leni R. Rivera</name>
<affiliation>
<nlm:affiliation>Department of Anatomy & Neuroscience, University of Melbourne, Parkville VIC 3010, Australia. leni.rivera@deakin.edu.au.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lieu, Tinamarie" sort="Lieu, Tinamarie" uniqKey="Lieu T" first="Tinamarie" last="Lieu">Tinamarie Lieu</name>
<affiliation>
<nlm:affiliation>Monash Institute of Pharmaceutical Sciences, Monash University, Parkville VIC 3052, Australia. Tinamarie.lieu@monash.edu.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Poole, Daniel P" sort="Poole, Daniel P" uniqKey="Poole D" first="Daniel P" last="Poole">Daniel P. Poole</name>
<affiliation>
<nlm:affiliation>Department of Anatomy & Neuroscience, University of Melbourne, Parkville VIC 3010, Australia. Daniel.Poole@monash.edu.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Cho, Hyun Jung" sort="Cho, Hyun Jung" uniqKey="Cho H" first="Hyun-Jung" last="Cho">Hyun-Jung Cho</name>
<affiliation>
<nlm:affiliation>Biological Optical Microscopy Platform, University of Melbourne, Parkville VIC 3010, Australia. hcho@unimelb.edu.au.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bravo, David M" sort="Bravo, David M" uniqKey="Bravo D" first="David M" last="Bravo">David M. Bravo</name>
<affiliation>
<nlm:affiliation>In Vivo Animal Nutrition & Health, Talhouët, Saint-Nolff 56250, France. david.bravo@pancosma.ch.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Furness, John B" sort="Furness, John B" uniqKey="Furness J" first="John B" last="Furness">John B. Furness</name>
<affiliation>
<nlm:affiliation>Department of Anatomy & Neuroscience, University of Melbourne, Parkville VIC 3010, Australia. j.furness@unimelb.edu.au.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Nutrients</title>
<idno type="eISSN">2072-6643</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acrolein (analogs & derivatives)</term>
<term>Acrolein (pharmacology)</term>
<term>Animals</term>
<term>Calcium (metabolism)</term>
<term>Colon (physiology)</term>
<term>Duodenum (physiology)</term>
<term>Electrophysiological Phenomena</term>
<term>Enterocytes (drug effects)</term>
<term>Enterocytes (metabolism)</term>
<term>Food</term>
<term>Gene Expression</term>
<term>HEK293 Cells</term>
<term>Humans</term>
<term>Intestinal Mucosa (chemistry)</term>
<term>Intestinal Mucosa (physiology)</term>
<term>Isothiocyanates (pharmacology)</term>
<term>Male</term>
<term>Mice</term>
<term>Mice, Inbred C57BL</term>
<term>Mice, Knockout</term>
<term>Monoterpenes (pharmacology)</term>
<term>Phytochemicals (pharmacology)</term>
<term>Serotonin 5-HT3 Receptor Antagonists (pharmacology)</term>
<term>Transfection</term>
<term>Transient Receptor Potential Channels (deficiency)</term>
<term>Transient Receptor Potential Channels (drug effects)</term>
<term>Transient Receptor Potential Channels (genetics)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analogs & derivatives" xml:lang="en">
<term>Acrolein</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="deficiency" xml:lang="en">
<term>Transient Receptor Potential Channels</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="drug effects" xml:lang="en">
<term>Transient Receptor Potential Channels</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Transient Receptor Potential Channels</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Calcium</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Acrolein</term>
<term>Isothiocyanates</term>
<term>Monoterpenes</term>
<term>Phytochemicals</term>
<term>Serotonin 5-HT3 Receptor Antagonists</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Intestinal Mucosa</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Enterocytes</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Enterocytes</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Colon</term>
<term>Duodenum</term>
<term>Intestinal Mucosa</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Electrophysiological Phenomena</term>
<term>Food</term>
<term>Gene Expression</term>
<term>HEK293 Cells</term>
<term>Humans</term>
<term>Male</term>
<term>Mice</term>
<term>Mice, Inbred C57BL</term>
<term>Mice, Knockout</term>
<term>Transfection</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">TRPA1 is a ligand-activated cation channel found in the intestine and other tissues. Components of food that stimulate TRPA1 receptors (phytonutrients) include allyl isothiocyanate, cinnamaldehyde and linalool, but these may also act at other receptors. Cells lining the intestinal mucosa are immunoreactive for TRPA1 and Trpa1 mRNA occurs in mucosal extracts, suggesting that the TRPA1 receptor is the target for these agonists. However, in situ hybridisation reveals Trpa1 expression in 5-HT containing enteroendocrine cells, not enterocytes. TRPA1 agonists evoke mucosal secretion, which may be indirect (through release of 5-HT) or direct by activation of enterocytes. We investigated effects of the phytonutrients on transmucosal ion currents in mouse duodenum and colon, and the specificity of the phytonutrients in cells transfected with Trpa1, and in Trpa1-deficient mice. The phytonutrients increased currents in the duodenum with the relative potencies: allyl isothiocyanate (AITC) > cinnamaldehyde > linalool (0.1 to 300 μM). The rank order was similar in the colon, but linalool was ineffective. Responses to AITC were reduced by the TRPA1 antagonist HC-030031 (100 μM), and were greatly diminished in Trpa1-/- duodenum and colon. Responses were not reduced by tetrodotoxin, 5-HT receptor antagonists, or atropine, but inhibition of prostaglandin synthesis reduced responses. Thus, functional TRPA1 channels are expressed by enterocytes of the duodenum and colon. Activation of enterocyte TRPA1 by food components has the potential to facilitate nutrient absorption.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">27735854</PMID>
<DateCreated>
<Year>2016</Year>
<Month>10</Month>
<Day>13</Day>
</DateCreated>
<DateCompleted>
<Year>2017</Year>
<Month>03</Month>
<Day>27</Day>
</DateCompleted>
<DateRevised>
<Year>2017</Year>
<Month>11</Month>
<Day>16</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">2072-6643</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>8</Volume>
<Issue>10</Issue>
<PubDate>
<Year>2016</Year>
<Month>Oct</Month>
<Day>10</Day>
</PubDate>
</JournalIssue>
<Title>Nutrients</Title>
<ISOAbbreviation>Nutrients</ISOAbbreviation>
</Journal>
<ArticleTitle>Effects of Food Components That Activate TRPA1 Receptors on Mucosal Ion Transport in the Mouse Intestine.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">E623</ELocationID>
<Abstract>
<AbstractText>TRPA1 is a ligand-activated cation channel found in the intestine and other tissues. Components of food that stimulate TRPA1 receptors (phytonutrients) include allyl isothiocyanate, cinnamaldehyde and linalool, but these may also act at other receptors. Cells lining the intestinal mucosa are immunoreactive for TRPA1 and Trpa1 mRNA occurs in mucosal extracts, suggesting that the TRPA1 receptor is the target for these agonists. However, in situ hybridisation reveals Trpa1 expression in 5-HT containing enteroendocrine cells, not enterocytes. TRPA1 agonists evoke mucosal secretion, which may be indirect (through release of 5-HT) or direct by activation of enterocytes. We investigated effects of the phytonutrients on transmucosal ion currents in mouse duodenum and colon, and the specificity of the phytonutrients in cells transfected with Trpa1, and in Trpa1-deficient mice. The phytonutrients increased currents in the duodenum with the relative potencies: allyl isothiocyanate (AITC) > cinnamaldehyde > linalool (0.1 to 300 μM). The rank order was similar in the colon, but linalool was ineffective. Responses to AITC were reduced by the TRPA1 antagonist HC-030031 (100 μM), and were greatly diminished in Trpa1-/- duodenum and colon. Responses were not reduced by tetrodotoxin, 5-HT receptor antagonists, or atropine, but inhibition of prostaglandin synthesis reduced responses. Thus, functional TRPA1 channels are expressed by enterocytes of the duodenum and colon. Activation of enterocyte TRPA1 by food components has the potential to facilitate nutrient absorption.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Fothergill</LastName>
<ForeName>Linda J</ForeName>
<Initials>LJ</Initials>
<AffiliationInfo>
<Affiliation>Department of Anatomy & Neuroscience, University of Melbourne, Parkville VIC 3010, Australia. l.fothergill@student.unimelb.edu.au.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Callaghan</LastName>
<ForeName>Brid</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>Department of Anatomy & Neuroscience, University of Melbourne, Parkville VIC 3010, Australia. b.callaghan@unimelb.edu.ac.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rivera</LastName>
<ForeName>Leni R</ForeName>
<Initials>LR</Initials>
<AffiliationInfo>
<Affiliation>Department of Anatomy & Neuroscience, University of Melbourne, Parkville VIC 3010, Australia. leni.rivera@deakin.edu.au.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Metabolic Research Unit, School of Medicine, Deakin University, Geelong VIC 3216, Australia. leni.rivera@deakin.edu.au.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lieu</LastName>
<ForeName>TinaMarie</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Monash Institute of Pharmaceutical Sciences, Monash University, Parkville VIC 3052, Australia. Tinamarie.lieu@monash.edu.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Poole</LastName>
<ForeName>Daniel P</ForeName>
<Initials>DP</Initials>
<AffiliationInfo>
<Affiliation>Department of Anatomy & Neuroscience, University of Melbourne, Parkville VIC 3010, Australia. Daniel.Poole@monash.edu.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Monash Institute of Pharmaceutical Sciences, Monash University, Parkville VIC 3052, Australia. Daniel.Poole@monash.edu.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cho</LastName>
<ForeName>Hyun-Jung</ForeName>
<Initials>HJ</Initials>
<AffiliationInfo>
<Affiliation>Biological Optical Microscopy Platform, University of Melbourne, Parkville VIC 3010, Australia. hcho@unimelb.edu.au.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bravo</LastName>
<ForeName>David M</ForeName>
<Initials>DM</Initials>
<AffiliationInfo>
<Affiliation>In Vivo Animal Nutrition & Health, Talhouët, Saint-Nolff 56250, France. david.bravo@pancosma.ch.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Furness</LastName>
<ForeName>John B</ForeName>
<Initials>JB</Initials>
<AffiliationInfo>
<Affiliation>Department of Anatomy & Neuroscience, University of Melbourne, Parkville VIC 3010, Australia. j.furness@unimelb.edu.au.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Florey Institute of Neuroscience and Mental Health, Parkville VIC 3010, Australia. j.furness@unimelb.edu.au.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>10</Month>
<Day>10</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Nutrients</MedlineTA>
<NlmUniqueID>101521595</NlmUniqueID>
<ISSNLinking>2072-6643</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017879">Isothiocyanates</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D039821">Monoterpenes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D064209">Phytochemicals</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D058831">Serotonin 5-HT3 Receptor Antagonists</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D050051">Transient Receptor Potential Channels</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C475685">Trpa1 protein, mouse</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>62414-75-9</RegistryNumber>
<NameOfSubstance UI="C041942">2,3,4-tri-O-acetylarabinopyranosyl isothiocyanate</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>7864XYD3JJ</RegistryNumber>
<NameOfSubstance UI="D000171">Acrolein</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>D81QY6I88E</RegistryNumber>
<NameOfSubstance UI="C018584">linalool</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>SR60A3XG0F</RegistryNumber>
<NameOfSubstance UI="C012843">cinnamic aldehyde</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>SY7Q814VUP</RegistryNumber>
<NameOfSubstance UI="D002118">Calcium</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2013 Feb 22;288(8):5790-802</RefSource>
<PMID Version="1">23288842</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Physiol. 2007 Jul 1;582(Pt 1):379-92</RefSource>
<PMID Version="1">17495045</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Anim Sci. 2008 Apr;86(14 Suppl):E140-8</RefSource>
<PMID Version="1">18073277</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Physiol Heart Circ Physiol. 2012 Oct 15;303(8):H1011-21</RefSource>
<PMID Version="1">22886413</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Pharm Biotechnol. 2011 Jan 1;12(1):24-34</RefSource>
<PMID Version="1">20932260</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Physiol. 1990 Mar;258(3 Pt 1):G432-9</RefSource>
<PMID Version="1">1969234</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>FEBS Lett. 2008 Jan 23;582(2):229-32</RefSource>
<PMID Version="1">18082143</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2012;7(6):e38439</RefSource>
<PMID Version="1">22723860</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Br J Pharmacol. 2009 Aug;157(8):1398-409</RefSource>
<PMID Version="1">19594761</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuron. 2004 Mar 25;41(6):849-57</RefSource>
<PMID Version="1">15046718</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell Tissue Res. 2014 Apr;356(1):77-82</RefSource>
<PMID Version="1">24442491</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Arch Anim Nutr. 2010 Apr;64(2):136-54</RefSource>
<PMID Version="1">20481352</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Physiol. 1991 Nov;261(5 Pt 1):G833-40</RefSource>
<PMID Version="1">1951703</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Clin Invest. 2003 Apr;111(7):931-43</RefSource>
<PMID Version="1">12671039</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2010 May 14;285(20):15167-77</RefSource>
<PMID Version="1">20231274</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Opin Pharmacol. 2006 Dec;6(6):547-52</RefSource>
<PMID Version="1">16973419</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2009 Mar 3;106(9):3408-13</RefSource>
<PMID Version="1">19211797</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Phytochemistry. 2008 Jan;69(2):299-322</RefSource>
<PMID Version="1">17919666</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Vet Res Commun. 2011 Mar;35(3):169-80</RefSource>
<PMID Version="1">21213046</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Comp Neurol. 2004 Jan 26;469(1):16-36</RefSource>
<PMID Version="1">14689471</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Physiol Gastrointest Liver Physiol. 2009 Jun;296(6):G1151-66</RefSource>
<PMID Version="1">19342508</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Physiol. 2007 Apr 15;580(Pt. 2):593-604</RefSource>
<PMID Version="1">17272350</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochem Pharmacol. 2008 Jan 15;75(2):494-502</RefSource>
<PMID Version="1">17920563</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Physiol Pharmacol. 2008 Sep;59(3):543-52</RefSource>
<PMID Version="1">18953096</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Br J Pharmacol. 2012 May;166(2):510-21</RefSource>
<PMID Version="1">22233379</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Physiol. 2007 Apr 15;580(Pt. 2):605-16</RefSource>
<PMID Version="1">17272349</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuron. 2006 Apr 20;50(2):277-89</RefSource>
<PMID Version="1">16630838</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Gastroenterology. 2011 Aug;141(2):565-75, 575.e1-4</RefSource>
<PMID Version="1">21689654</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Physiol Gastrointest Liver Physiol. 2012 Apr;302(7):G690-701</RefSource>
<PMID Version="1">22207576</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000171" MajorTopicYN="N">Acrolein</DescriptorName>
<QualifierName UI="Q000031" MajorTopicYN="N">analogs & derivatives</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002118" MajorTopicYN="N">Calcium</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003106" MajorTopicYN="N">Colon</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004386" MajorTopicYN="N">Duodenum</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055724" MajorTopicYN="N">Electrophysiological Phenomena</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020895" MajorTopicYN="N">Enterocytes</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005502" MajorTopicYN="N">Food</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015870" MajorTopicYN="N">Gene Expression</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057809" MajorTopicYN="N">HEK293 Cells</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007413" MajorTopicYN="N">Intestinal Mucosa</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017879" MajorTopicYN="N">Isothiocyanates</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008810" MajorTopicYN="N">Mice, Inbred C57BL</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018345" MajorTopicYN="N">Mice, Knockout</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D039821" MajorTopicYN="N">Monoterpenes</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D064209" MajorTopicYN="N">Phytochemicals</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058831" MajorTopicYN="N">Serotonin 5-HT3 Receptor Antagonists</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014162" MajorTopicYN="N">Transfection</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D050051" MajorTopicYN="N">Transient Receptor Potential Channels</DescriptorName>
<QualifierName UI="Q000172" MajorTopicYN="N">deficiency</QualifierName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">enteroendocrine cells</Keyword>
<Keyword MajorTopicYN="Y">intestine</Keyword>
<Keyword MajorTopicYN="Y">micronutrients</Keyword>
<Keyword MajorTopicYN="Y">serotonin</Keyword>
<Keyword MajorTopicYN="Y">transepithelial transport</Keyword>
<Keyword MajorTopicYN="Y">transient receptor potential A1</Keyword>
</KeywordList>
<CoiStatement>The authors declare no conflict of interest.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>07</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2016</Year>
<Month>09</Month>
<Day>26</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>09</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>10</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>10</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>3</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">27735854</ArticleId>
<ArticleId IdType="pii">nu8100623</ArticleId>
<ArticleId IdType="doi">10.3390/nu8100623</ArticleId>
<ArticleId IdType="pmc">PMC5084011</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001722 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 001722 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:27735854
   |texte=   Effects of Food Components That Activate TRPA1 Receptors on Mucosal Ion Transport in the Mouse Intestine.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:27735854" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a AustralieFrV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024