Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Global microbial carbonate proliferation after the end-Devonian mass extinction: Mainly controlled by demise of skeletal bioconstructors.

Identifieur interne : 001D54 ( PubMed/Checkpoint ); précédent : 001D53; suivant : 001D55

Global microbial carbonate proliferation after the end-Devonian mass extinction: Mainly controlled by demise of skeletal bioconstructors.

Auteurs : Le Yao [République populaire de Chine] ; Markus Aretz [France] ; Jitao Chen [République populaire de Chine] ; Gregory E. Webb [Australie] ; Xiangdong Wang [République populaire de Chine]

Source :

RBID : pubmed:28009013

Abstract

Microbial carbonates commonly flourished following mass extinction events. The end-Devonian (Hangenberg) mass extinction event is a first-order mass extinction on the scale of the 'Big Five' extinctions. However, to date, it is still unclear whether global microbial carbonate proliferation occurred after the Hangenberg event. The earliest known Carboniferous stromatolites on tidal flats are described from intertidal environments of the lowermost Tournaisian (Qianheishan Formation) in northwestern China. With other early Tournaisian microbe-dominated bioconstructions extensively distributed on shelves, the Qianheishan stromatolites support microbial carbonate proliferation after the Hangenberg extinction. Additional support comes from quantitative analysis of the abundance of microbe-dominated bioconstructions through the Famennian and early Tournaisian, which shows that they were globally distributed (between 40° latitude on both sides of the palaeoequator) and that their abundance increased distinctly in the early Tournaisian compared to the latest Devonian (Strunian). Comparison of variations in the relative abundance of skeleton- versus microbe-dominated bioconstructions across the Hangenberg and 'Big Five' extinctions suggests that changes in abundance of skeletal bioconstructors may play a first-order control on microbial carbonate proliferation during extinction transitions but that microbial proliferation is not a general necessary feature after mass extinctions.

DOI: 10.1038/srep39694
PubMed: 28009013


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:28009013

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Global microbial carbonate proliferation after the end-Devonian mass extinction: Mainly controlled by demise of skeletal bioconstructors.</title>
<author>
<name sortKey="Yao, Le" sort="Yao, Le" uniqKey="Yao L" first="Le" last="Yao">Le Yao</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Economic Stratigraphy and Palaeogeography, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Economic Stratigraphy and Palaeogeography, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008</wicri:regionArea>
<wicri:noRegion>Nanjing 210008</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Aretz, Markus" sort="Aretz, Markus" uniqKey="Aretz M" first="Markus" last="Aretz">Markus Aretz</name>
<affiliation wicri:level="1">
<nlm:affiliation>Université de Toulouse, UPS (OMP), GET, 14 Avenue Edouard Belin, Toulouse F-31400, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Université de Toulouse, UPS (OMP), GET, 14 Avenue Edouard Belin, Toulouse F-31400</wicri:regionArea>
<wicri:noRegion>31400</wicri:noRegion>
<placeName>
<settlement type="city">Toulouse</settlement>
<region type="region" nuts="2">Occitanie (région administrative)</region>
<region type="old region" nuts="2">Midi-Pyrénées</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Chen, Jitao" sort="Chen, Jitao" uniqKey="Chen J" first="Jitao" last="Chen">Jitao Chen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Economic Stratigraphy and Palaeogeography, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Economic Stratigraphy and Palaeogeography, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008</wicri:regionArea>
<wicri:noRegion>Nanjing 210008</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Webb, Gregory E" sort="Webb, Gregory E" uniqKey="Webb G" first="Gregory E" last="Webb">Gregory E. Webb</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Earth Sciences, The University of Queensland, St. Lucia, Queensland 4072, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Earth Sciences, The University of Queensland, St. Lucia, Queensland 4072</wicri:regionArea>
<wicri:noRegion>Queensland 4072</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wang, Xiangdong" sort="Wang, Xiangdong" uniqKey="Wang X" first="Xiangdong" last="Wang">Xiangdong Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Economic Stratigraphy and Palaeogeography, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Economic Stratigraphy and Palaeogeography, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008</wicri:regionArea>
<wicri:noRegion>Nanjing 210008</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:28009013</idno>
<idno type="pmid">28009013</idno>
<idno type="doi">10.1038/srep39694</idno>
<idno type="wicri:Area/PubMed/Corpus">001403</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001403</idno>
<idno type="wicri:Area/PubMed/Curation">001381</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">001381</idno>
<idno type="wicri:Area/PubMed/Checkpoint">001381</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">001381</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Global microbial carbonate proliferation after the end-Devonian mass extinction: Mainly controlled by demise of skeletal bioconstructors.</title>
<author>
<name sortKey="Yao, Le" sort="Yao, Le" uniqKey="Yao L" first="Le" last="Yao">Le Yao</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Economic Stratigraphy and Palaeogeography, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Economic Stratigraphy and Palaeogeography, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008</wicri:regionArea>
<wicri:noRegion>Nanjing 210008</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Aretz, Markus" sort="Aretz, Markus" uniqKey="Aretz M" first="Markus" last="Aretz">Markus Aretz</name>
<affiliation wicri:level="1">
<nlm:affiliation>Université de Toulouse, UPS (OMP), GET, 14 Avenue Edouard Belin, Toulouse F-31400, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Université de Toulouse, UPS (OMP), GET, 14 Avenue Edouard Belin, Toulouse F-31400</wicri:regionArea>
<wicri:noRegion>31400</wicri:noRegion>
<placeName>
<settlement type="city">Toulouse</settlement>
<region type="region" nuts="2">Occitanie (région administrative)</region>
<region type="old region" nuts="2">Midi-Pyrénées</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Chen, Jitao" sort="Chen, Jitao" uniqKey="Chen J" first="Jitao" last="Chen">Jitao Chen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Economic Stratigraphy and Palaeogeography, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Economic Stratigraphy and Palaeogeography, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008</wicri:regionArea>
<wicri:noRegion>Nanjing 210008</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Webb, Gregory E" sort="Webb, Gregory E" uniqKey="Webb G" first="Gregory E" last="Webb">Gregory E. Webb</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Earth Sciences, The University of Queensland, St. Lucia, Queensland 4072, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Earth Sciences, The University of Queensland, St. Lucia, Queensland 4072</wicri:regionArea>
<wicri:noRegion>Queensland 4072</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wang, Xiangdong" sort="Wang, Xiangdong" uniqKey="Wang X" first="Xiangdong" last="Wang">Xiangdong Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Economic Stratigraphy and Palaeogeography, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Economic Stratigraphy and Palaeogeography, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008</wicri:regionArea>
<wicri:noRegion>Nanjing 210008</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Scientific reports</title>
<idno type="eISSN">2045-2322</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Microbial carbonates commonly flourished following mass extinction events. The end-Devonian (Hangenberg) mass extinction event is a first-order mass extinction on the scale of the 'Big Five' extinctions. However, to date, it is still unclear whether global microbial carbonate proliferation occurred after the Hangenberg event. The earliest known Carboniferous stromatolites on tidal flats are described from intertidal environments of the lowermost Tournaisian (Qianheishan Formation) in northwestern China. With other early Tournaisian microbe-dominated bioconstructions extensively distributed on shelves, the Qianheishan stromatolites support microbial carbonate proliferation after the Hangenberg extinction. Additional support comes from quantitative analysis of the abundance of microbe-dominated bioconstructions through the Famennian and early Tournaisian, which shows that they were globally distributed (between 40° latitude on both sides of the palaeoequator) and that their abundance increased distinctly in the early Tournaisian compared to the latest Devonian (Strunian). Comparison of variations in the relative abundance of skeleton- versus microbe-dominated bioconstructions across the Hangenberg and 'Big Five' extinctions suggests that changes in abundance of skeletal bioconstructors may play a first-order control on microbial carbonate proliferation during extinction transitions but that microbial proliferation is not a general necessary feature after mass extinctions.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="In-Data-Review" Owner="NLM">
<PMID Version="1">28009013</PMID>
<DateCreated>
<Year>2016</Year>
<Month>12</Month>
<Day>23</Day>
</DateCreated>
<DateRevised>
<Year>2017</Year>
<Month>02</Month>
<Day>20</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">2045-2322</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>6</Volume>
<PubDate>
<Year>2016</Year>
<Month>Dec</Month>
<Day>23</Day>
</PubDate>
</JournalIssue>
<Title>Scientific reports</Title>
<ISOAbbreviation>Sci Rep</ISOAbbreviation>
</Journal>
<ArticleTitle>Global microbial carbonate proliferation after the end-Devonian mass extinction: Mainly controlled by demise of skeletal bioconstructors.</ArticleTitle>
<Pagination>
<MedlinePgn>39694</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1038/srep39694</ELocationID>
<Abstract>
<AbstractText>Microbial carbonates commonly flourished following mass extinction events. The end-Devonian (Hangenberg) mass extinction event is a first-order mass extinction on the scale of the 'Big Five' extinctions. However, to date, it is still unclear whether global microbial carbonate proliferation occurred after the Hangenberg event. The earliest known Carboniferous stromatolites on tidal flats are described from intertidal environments of the lowermost Tournaisian (Qianheishan Formation) in northwestern China. With other early Tournaisian microbe-dominated bioconstructions extensively distributed on shelves, the Qianheishan stromatolites support microbial carbonate proliferation after the Hangenberg extinction. Additional support comes from quantitative analysis of the abundance of microbe-dominated bioconstructions through the Famennian and early Tournaisian, which shows that they were globally distributed (between 40° latitude on both sides of the palaeoequator) and that their abundance increased distinctly in the early Tournaisian compared to the latest Devonian (Strunian). Comparison of variations in the relative abundance of skeleton- versus microbe-dominated bioconstructions across the Hangenberg and 'Big Five' extinctions suggests that changes in abundance of skeletal bioconstructors may play a first-order control on microbial carbonate proliferation during extinction transitions but that microbial proliferation is not a general necessary feature after mass extinctions.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Yao</LastName>
<ForeName>Le</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Economic Stratigraphy and Palaeogeography, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>University of Chinese Academy of Sciences, Beijing 100049, China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Université de Toulouse, UPS (OMP), GET, 14 Avenue Edouard Belin, Toulouse F-31400, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Aretz</LastName>
<ForeName>Markus</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Université de Toulouse, UPS (OMP), GET, 14 Avenue Edouard Belin, Toulouse F-31400, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Jitao</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Economic Stratigraphy and Palaeogeography, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Webb</LastName>
<ForeName>Gregory E</ForeName>
<Initials>GE</Initials>
<AffiliationInfo>
<Affiliation>School of Earth Sciences, The University of Queensland, St. Lucia, Queensland 4072, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Xiangdong</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Economic Stratigraphy and Palaeogeography, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>12</Month>
<Day>23</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Sci Rep</MedlineTA>
<NlmUniqueID>101563288</NlmUniqueID>
<ISSNLinking>2045-2322</ISSNLinking>
</MedlineJournalInfo>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2004 Jul 1;430(6995):75-8</RefSource>
<PMID Version="1">15229600</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2006 Jun 8;441(7094):714-8</RefSource>
<PMID Version="1">16760969</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Geobiology. 2012 Jan;10 (1):3-24</RefSource>
<PMID Version="1">22051154</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>10</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>11</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>12</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>12</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>12</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28009013</ArticleId>
<ArticleId IdType="pii">srep39694</ArticleId>
<ArticleId IdType="doi">10.1038/srep39694</ArticleId>
<ArticleId IdType="pmc">PMC5180103</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Australie</li>
<li>France</li>
<li>République populaire de Chine</li>
</country>
<region>
<li>Midi-Pyrénées</li>
<li>Occitanie (région administrative)</li>
</region>
<settlement>
<li>Toulouse</li>
</settlement>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Yao, Le" sort="Yao, Le" uniqKey="Yao L" first="Le" last="Yao">Le Yao</name>
</noRegion>
<name sortKey="Chen, Jitao" sort="Chen, Jitao" uniqKey="Chen J" first="Jitao" last="Chen">Jitao Chen</name>
<name sortKey="Wang, Xiangdong" sort="Wang, Xiangdong" uniqKey="Wang X" first="Xiangdong" last="Wang">Xiangdong Wang</name>
</country>
<country name="France">
<region name="Occitanie (région administrative)">
<name sortKey="Aretz, Markus" sort="Aretz, Markus" uniqKey="Aretz M" first="Markus" last="Aretz">Markus Aretz</name>
</region>
</country>
<country name="Australie">
<noRegion>
<name sortKey="Webb, Gregory E" sort="Webb, Gregory E" uniqKey="Webb G" first="Gregory E" last="Webb">Gregory E. Webb</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001D54 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 001D54 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:28009013
   |texte=   Global microbial carbonate proliferation after the end-Devonian mass extinction: Mainly controlled by demise of skeletal bioconstructors.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:28009013" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a AustralieFrV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024