Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Molecular Weight Cut-Off and Structural Analysis of Vacuum-Assisted Titania Membranes for Water Processing.

Identifieur interne : 001A45 ( PubMed/Checkpoint ); précédent : 001A44; suivant : 001A46

Molecular Weight Cut-Off and Structural Analysis of Vacuum-Assisted Titania Membranes for Water Processing.

Auteurs : Siti Nurehan Abd Jalil [Australie] ; David K. Wang [Australie] ; Christelle Yacou [Australie] ; Julius Motuzas [Australie] ; Simon Smart [Australie] ; João C. Diniz Da Costa [Australie]

Source :

RBID : pubmed:28774057

Abstract

This work investigates the structural formation and analyses of titania membranes (TM) prepared using different vacuum exposure times for molecular weight (MW) cut-off performance and oil/water separation. Titania membranes were synthesized via a sol-gel method and coated on macroporous alumina tubes followed by exposure to a vacuum between 30 and 1200 s and then calcined at 400 °C. X-ray diffraction and nitrogen adsorption analyses showed that the crystallite size and particle size of titania increased as a function of vacuum time. All the TM membranes were mesoporous with an average pore diameter of ~3.6 nm with an anatase crystal morphology. Water, glucose, sucrose, and polyvinylpyrrolidone with 40 and 360 kDa (PVP-40 kDa and PVP-360 kDa) were used as feed solutions for MW cut-off and hexadecane solution for oil filtration investigation. The TM membranes were not able to separate glucose and sucrose, thus indicating the membrane pore sizes are larger than the kinetic diameter of sucrose of 0.9 nm, irrespective of vacuum exposure time. They also showed only moderate rejection (20%) of the smaller PVP-40 kDa, however, all the membranes were able to obtain an excellent rejection of near 100% for the larger PVP-360 kDa molecule. Furthermore, the TM membranes were tested for the separation of oil emulsions with a high concentration of oil (3000 ppm), reaching high oil rejections of more than 90% of oil. In general, the water fluxes increased with the vacuum exposure time indicating a pore structural tailoring effect. It is therefore proposed that a mechanism of pore size tailoring was formed by an interconnected network of Ti-O-Ti nanoparticles with inter-particle voids, which increased as TiO₂ nanoparticle size increased as a function of vacuum exposure time, and thus reduced the water transport resistance through the TM membranes.

DOI: 10.3390/ma9110938
PubMed: 28774057


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:28774057

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Molecular Weight Cut-Off and Structural Analysis of Vacuum-Assisted Titania Membranes for Water Processing.</title>
<author>
<name sortKey="Abd Jalil, Siti Nurehan" sort="Abd Jalil, Siti Nurehan" uniqKey="Abd Jalil S" first="Siti Nurehan" last="Abd Jalil">Siti Nurehan Abd Jalil</name>
<affiliation wicri:level="1">
<nlm:affiliation>The University of Queensland, FIM²Lab-Functional Interfacial Materials and Membranes Laboratory, School of Chemical Engineering, Brisbane 4072, Australia. s.abdjalil@uq.edu.au.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>The University of Queensland, FIM²Lab-Functional Interfacial Materials and Membranes Laboratory, School of Chemical Engineering, Brisbane 4072</wicri:regionArea>
<wicri:noRegion>Brisbane 4072</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wang, David K" sort="Wang, David K" uniqKey="Wang D" first="David K" last="Wang">David K. Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>The University of Queensland, FIM²Lab-Functional Interfacial Materials and Membranes Laboratory, School of Chemical Engineering, Brisbane 4072, Australia. d.wang1@uq.edu.au.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>The University of Queensland, FIM²Lab-Functional Interfacial Materials and Membranes Laboratory, School of Chemical Engineering, Brisbane 4072</wicri:regionArea>
<wicri:noRegion>Brisbane 4072</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yacou, Christelle" sort="Yacou, Christelle" uniqKey="Yacou C" first="Christelle" last="Yacou">Christelle Yacou</name>
<affiliation wicri:level="1">
<nlm:affiliation>The University of Queensland, FIM²Lab-Functional Interfacial Materials and Membranes Laboratory, School of Chemical Engineering, Brisbane 4072, Australia. Christelle.yacou@univ-ag.fr.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>The University of Queensland, FIM²Lab-Functional Interfacial Materials and Membranes Laboratory, School of Chemical Engineering, Brisbane 4072</wicri:regionArea>
<wicri:noRegion>Brisbane 4072</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Motuzas, Julius" sort="Motuzas, Julius" uniqKey="Motuzas J" first="Julius" last="Motuzas">Julius Motuzas</name>
<affiliation wicri:level="1">
<nlm:affiliation>The University of Queensland, FIM²Lab-Functional Interfacial Materials and Membranes Laboratory, School of Chemical Engineering, Brisbane 4072, Australia. j.motuzas@uq.edu.au.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>The University of Queensland, FIM²Lab-Functional Interfacial Materials and Membranes Laboratory, School of Chemical Engineering, Brisbane 4072</wicri:regionArea>
<wicri:noRegion>Brisbane 4072</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Smart, Simon" sort="Smart, Simon" uniqKey="Smart S" first="Simon" last="Smart">Simon Smart</name>
<affiliation wicri:level="1">
<nlm:affiliation>The University of Queensland, FIM²Lab-Functional Interfacial Materials and Membranes Laboratory, School of Chemical Engineering, Brisbane 4072, Australia. s.smart@uq.edu.au.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>The University of Queensland, FIM²Lab-Functional Interfacial Materials and Membranes Laboratory, School of Chemical Engineering, Brisbane 4072</wicri:regionArea>
<wicri:noRegion>Brisbane 4072</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Diniz Da Costa, Joao C" sort="Diniz Da Costa, Joao C" uniqKey="Diniz Da Costa J" first="João C" last="Diniz Da Costa">João C. Diniz Da Costa</name>
<affiliation wicri:level="1">
<nlm:affiliation>The University of Queensland, FIM²Lab-Functional Interfacial Materials and Membranes Laboratory, School of Chemical Engineering, Brisbane 4072, Australia. j.dacosta@uq.edu.au.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>The University of Queensland, FIM²Lab-Functional Interfacial Materials and Membranes Laboratory, School of Chemical Engineering, Brisbane 4072</wicri:regionArea>
<wicri:noRegion>Brisbane 4072</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:28774057</idno>
<idno type="pmid">28774057</idno>
<idno type="doi">10.3390/ma9110938</idno>
<idno type="wicri:Area/PubMed/Corpus">001623</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001623</idno>
<idno type="wicri:Area/PubMed/Curation">001601</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">001601</idno>
<idno type="wicri:Area/PubMed/Checkpoint">001601</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">001601</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Molecular Weight Cut-Off and Structural Analysis of Vacuum-Assisted Titania Membranes for Water Processing.</title>
<author>
<name sortKey="Abd Jalil, Siti Nurehan" sort="Abd Jalil, Siti Nurehan" uniqKey="Abd Jalil S" first="Siti Nurehan" last="Abd Jalil">Siti Nurehan Abd Jalil</name>
<affiliation wicri:level="1">
<nlm:affiliation>The University of Queensland, FIM²Lab-Functional Interfacial Materials and Membranes Laboratory, School of Chemical Engineering, Brisbane 4072, Australia. s.abdjalil@uq.edu.au.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>The University of Queensland, FIM²Lab-Functional Interfacial Materials and Membranes Laboratory, School of Chemical Engineering, Brisbane 4072</wicri:regionArea>
<wicri:noRegion>Brisbane 4072</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wang, David K" sort="Wang, David K" uniqKey="Wang D" first="David K" last="Wang">David K. Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>The University of Queensland, FIM²Lab-Functional Interfacial Materials and Membranes Laboratory, School of Chemical Engineering, Brisbane 4072, Australia. d.wang1@uq.edu.au.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>The University of Queensland, FIM²Lab-Functional Interfacial Materials and Membranes Laboratory, School of Chemical Engineering, Brisbane 4072</wicri:regionArea>
<wicri:noRegion>Brisbane 4072</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yacou, Christelle" sort="Yacou, Christelle" uniqKey="Yacou C" first="Christelle" last="Yacou">Christelle Yacou</name>
<affiliation wicri:level="1">
<nlm:affiliation>The University of Queensland, FIM²Lab-Functional Interfacial Materials and Membranes Laboratory, School of Chemical Engineering, Brisbane 4072, Australia. Christelle.yacou@univ-ag.fr.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>The University of Queensland, FIM²Lab-Functional Interfacial Materials and Membranes Laboratory, School of Chemical Engineering, Brisbane 4072</wicri:regionArea>
<wicri:noRegion>Brisbane 4072</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Motuzas, Julius" sort="Motuzas, Julius" uniqKey="Motuzas J" first="Julius" last="Motuzas">Julius Motuzas</name>
<affiliation wicri:level="1">
<nlm:affiliation>The University of Queensland, FIM²Lab-Functional Interfacial Materials and Membranes Laboratory, School of Chemical Engineering, Brisbane 4072, Australia. j.motuzas@uq.edu.au.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>The University of Queensland, FIM²Lab-Functional Interfacial Materials and Membranes Laboratory, School of Chemical Engineering, Brisbane 4072</wicri:regionArea>
<wicri:noRegion>Brisbane 4072</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Smart, Simon" sort="Smart, Simon" uniqKey="Smart S" first="Simon" last="Smart">Simon Smart</name>
<affiliation wicri:level="1">
<nlm:affiliation>The University of Queensland, FIM²Lab-Functional Interfacial Materials and Membranes Laboratory, School of Chemical Engineering, Brisbane 4072, Australia. s.smart@uq.edu.au.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>The University of Queensland, FIM²Lab-Functional Interfacial Materials and Membranes Laboratory, School of Chemical Engineering, Brisbane 4072</wicri:regionArea>
<wicri:noRegion>Brisbane 4072</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Diniz Da Costa, Joao C" sort="Diniz Da Costa, Joao C" uniqKey="Diniz Da Costa J" first="João C" last="Diniz Da Costa">João C. Diniz Da Costa</name>
<affiliation wicri:level="1">
<nlm:affiliation>The University of Queensland, FIM²Lab-Functional Interfacial Materials and Membranes Laboratory, School of Chemical Engineering, Brisbane 4072, Australia. j.dacosta@uq.edu.au.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>The University of Queensland, FIM²Lab-Functional Interfacial Materials and Membranes Laboratory, School of Chemical Engineering, Brisbane 4072</wicri:regionArea>
<wicri:noRegion>Brisbane 4072</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Materials (Basel, Switzerland)</title>
<idno type="ISSN">1996-1944</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">This work investigates the structural formation and analyses of titania membranes (TM) prepared using different vacuum exposure times for molecular weight (MW) cut-off performance and oil/water separation. Titania membranes were synthesized via a sol-gel method and coated on macroporous alumina tubes followed by exposure to a vacuum between 30 and 1200 s and then calcined at 400 °C. X-ray diffraction and nitrogen adsorption analyses showed that the crystallite size and particle size of titania increased as a function of vacuum time. All the TM membranes were mesoporous with an average pore diameter of ~3.6 nm with an anatase crystal morphology. Water, glucose, sucrose, and polyvinylpyrrolidone with 40 and 360 kDa (PVP-40 kDa and PVP-360 kDa) were used as feed solutions for MW cut-off and hexadecane solution for oil filtration investigation. The TM membranes were not able to separate glucose and sucrose, thus indicating the membrane pore sizes are larger than the kinetic diameter of sucrose of 0.9 nm, irrespective of vacuum exposure time. They also showed only moderate rejection (20%) of the smaller PVP-40 kDa, however, all the membranes were able to obtain an excellent rejection of near 100% for the larger PVP-360 kDa molecule. Furthermore, the TM membranes were tested for the separation of oil emulsions with a high concentration of oil (3000 ppm), reaching high oil rejections of more than 90% of oil. In general, the water fluxes increased with the vacuum exposure time indicating a pore structural tailoring effect. It is therefore proposed that a mechanism of pore size tailoring was formed by an interconnected network of Ti-O-Ti nanoparticles with inter-particle voids, which increased as TiO₂ nanoparticle size increased as a function of vacuum exposure time, and thus reduced the water transport resistance through the TM membranes.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">28774057</PMID>
<DateCreated>
<Year>2017</Year>
<Month>08</Month>
<Day>04</Day>
</DateCreated>
<DateRevised>
<Year>2017</Year>
<Month>08</Month>
<Day>07</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Print">1996-1944</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>9</Volume>
<Issue>11</Issue>
<PubDate>
<Year>2016</Year>
<Month>Nov</Month>
<Day>18</Day>
</PubDate>
</JournalIssue>
<Title>Materials (Basel, Switzerland)</Title>
<ISOAbbreviation>Materials (Basel)</ISOAbbreviation>
</Journal>
<ArticleTitle>Molecular Weight Cut-Off and Structural Analysis of Vacuum-Assisted Titania Membranes for Water Processing.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">E938</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.3390/ma9110938</ELocationID>
<Abstract>
<AbstractText>This work investigates the structural formation and analyses of titania membranes (TM) prepared using different vacuum exposure times for molecular weight (MW) cut-off performance and oil/water separation. Titania membranes were synthesized via a sol-gel method and coated on macroporous alumina tubes followed by exposure to a vacuum between 30 and 1200 s and then calcined at 400 °C. X-ray diffraction and nitrogen adsorption analyses showed that the crystallite size and particle size of titania increased as a function of vacuum time. All the TM membranes were mesoporous with an average pore diameter of ~3.6 nm with an anatase crystal morphology. Water, glucose, sucrose, and polyvinylpyrrolidone with 40 and 360 kDa (PVP-40 kDa and PVP-360 kDa) were used as feed solutions for MW cut-off and hexadecane solution for oil filtration investigation. The TM membranes were not able to separate glucose and sucrose, thus indicating the membrane pore sizes are larger than the kinetic diameter of sucrose of 0.9 nm, irrespective of vacuum exposure time. They also showed only moderate rejection (20%) of the smaller PVP-40 kDa, however, all the membranes were able to obtain an excellent rejection of near 100% for the larger PVP-360 kDa molecule. Furthermore, the TM membranes were tested for the separation of oil emulsions with a high concentration of oil (3000 ppm), reaching high oil rejections of more than 90% of oil. In general, the water fluxes increased with the vacuum exposure time indicating a pore structural tailoring effect. It is therefore proposed that a mechanism of pore size tailoring was formed by an interconnected network of Ti-O-Ti nanoparticles with inter-particle voids, which increased as TiO₂ nanoparticle size increased as a function of vacuum exposure time, and thus reduced the water transport resistance through the TM membranes.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Abd Jalil</LastName>
<ForeName>Siti Nurehan</ForeName>
<Initials>SN</Initials>
<AffiliationInfo>
<Affiliation>The University of Queensland, FIM²Lab-Functional Interfacial Materials and Membranes Laboratory, School of Chemical Engineering, Brisbane 4072, Australia. s.abdjalil@uq.edu.au.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Faculty of Chemical Engineering, Universiti Teknologi MARA (UiTM), Shah Alam 40450, Malaysia. s.abdjalil@uq.edu.au.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>David K</ForeName>
<Initials>DK</Initials>
<AffiliationInfo>
<Affiliation>The University of Queensland, FIM²Lab-Functional Interfacial Materials and Membranes Laboratory, School of Chemical Engineering, Brisbane 4072, Australia. d.wang1@uq.edu.au.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yacou</LastName>
<ForeName>Christelle</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>The University of Queensland, FIM²Lab-Functional Interfacial Materials and Membranes Laboratory, School of Chemical Engineering, Brisbane 4072, Australia. Christelle.yacou@univ-ag.fr.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Engineering, Université des Antilles, BP 250, Pointe à Pitre Cedex 97157, France. Christelle.yacou@univ-ag.fr.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Motuzas</LastName>
<ForeName>Julius</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>The University of Queensland, FIM²Lab-Functional Interfacial Materials and Membranes Laboratory, School of Chemical Engineering, Brisbane 4072, Australia. j.motuzas@uq.edu.au.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Smart</LastName>
<ForeName>Simon</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>The University of Queensland, FIM²Lab-Functional Interfacial Materials and Membranes Laboratory, School of Chemical Engineering, Brisbane 4072, Australia. s.smart@uq.edu.au.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Diniz da Costa</LastName>
<ForeName>João C</ForeName>
<Initials>JC</Initials>
<AffiliationInfo>
<Affiliation>The University of Queensland, FIM²Lab-Functional Interfacial Materials and Membranes Laboratory, School of Chemical Engineering, Brisbane 4072, Australia. j.dacosta@uq.edu.au.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>11</Month>
<Day>18</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Materials (Basel)</MedlineTA>
<NlmUniqueID>101555929</NlmUniqueID>
<ISSNLinking>1996-1944</ISSNLinking>
</MedlineJournalInfo>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>J Phys Chem B. 2005 Mar 24;109(11):4947-52</RefSource>
<PMID Version="1">16863152</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Sci Rep. 2016 Jul 29;6:30703</RefSource>
<PMID Version="1">27469389</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 1982 Aug;79(15):4751-5</RefSource>
<PMID Version="1">6289316</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">organic rejection</Keyword>
<Keyword MajorTopicYN="N">titania membranes</Keyword>
<Keyword MajorTopicYN="N">vacuum-assisted method</Keyword>
<Keyword MajorTopicYN="N">water flux</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>09</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2016</Year>
<Month>11</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>11</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>8</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>8</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>8</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28774057</ArticleId>
<ArticleId IdType="pii">ma9110938</ArticleId>
<ArticleId IdType="doi">10.3390/ma9110938</ArticleId>
<ArticleId IdType="pmc">PMC5457227</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Australie</li>
</country>
</list>
<tree>
<country name="Australie">
<noRegion>
<name sortKey="Abd Jalil, Siti Nurehan" sort="Abd Jalil, Siti Nurehan" uniqKey="Abd Jalil S" first="Siti Nurehan" last="Abd Jalil">Siti Nurehan Abd Jalil</name>
</noRegion>
<name sortKey="Diniz Da Costa, Joao C" sort="Diniz Da Costa, Joao C" uniqKey="Diniz Da Costa J" first="João C" last="Diniz Da Costa">João C. Diniz Da Costa</name>
<name sortKey="Motuzas, Julius" sort="Motuzas, Julius" uniqKey="Motuzas J" first="Julius" last="Motuzas">Julius Motuzas</name>
<name sortKey="Smart, Simon" sort="Smart, Simon" uniqKey="Smart S" first="Simon" last="Smart">Simon Smart</name>
<name sortKey="Wang, David K" sort="Wang, David K" uniqKey="Wang D" first="David K" last="Wang">David K. Wang</name>
<name sortKey="Yacou, Christelle" sort="Yacou, Christelle" uniqKey="Yacou C" first="Christelle" last="Yacou">Christelle Yacou</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001A45 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 001A45 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:28774057
   |texte=   Molecular Weight Cut-Off and Structural Analysis of Vacuum-Assisted Titania Membranes for Water Processing.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:28774057" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a AustralieFrV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024