Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Engineered nanoparticles against MDR in cancer: The state of the art and its prospective

Identifieur interne : 002195 ( Pmc/Corpus ); précédent : 002194; suivant : 002196

Engineered nanoparticles against MDR in cancer: The state of the art and its prospective

Auteurs : Javed Ahmad ; Sohail Akhter ; Nigel H. Greig ; Mohammad Amjad Kamal ; Patrick Midoux ; Chantal Pichon

Source :

RBID : PMC:5182049

Abstract

Cancer is a highly heterogeneous disease, both within a single patient as well as between patients, and is the leading cause of death worldwide. A variety of mono and combinational therapies, including chemotherapy, have been developed and refined over recent years for its effective treatment. However, the evolution of chemotherapeutic resistance or multidrug resistance (MDR) in cancer has become a major challenge to successful chemotherapy. MDR is a complex process that combines multifaceted non-cellular and cellular-based mechanisms. Research in the area of cancer nanotechnology over the past two decades has reached the point where smartly designed nanoparticles with targeting ligands can aid successful chemotherapy by preferentially accumulating within the tumor region through means of active and passive targeting to overcome MDR, and simultaneously reduce the off-target accumulation of their payload. Such nanoparticle formulations – sometimes termed nanomedicines - are at different stages of cancer clinical trials and show promise in resistant cases. Nanoparticles as chemotherapeutics carriers provide the opportunity to have multiple payloads of drug and/or imaging agents for combinational and theranostic therapy. Moreover, nanotechnology has the potential to combine new treatment strategies, such as near-infrared (NIR), magnetic resonance imaging (MRI), and high intensity focused ultrasound (HIFU) into cancer chemotherapy and imaging. Here we discuss the cellular/non-cellular factors that underpin MDR in cancer, and the potential of nanomedicines to combat MDR, along with recent advances in combining nanotechnology with other approaches in cancer therapy.


Url:
PubMed: 27319945
PubMed Central: 5182049

Links to Exploration step

PMC:5182049

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Engineered nanoparticles against MDR in cancer: The state of the art and its prospective</title>
<author>
<name sortKey="Ahmad, Javed" sort="Ahmad, Javed" uniqKey="Ahmad J" first="Javed" last="Ahmad">Javed Ahmad</name>
<affiliation>
<nlm:aff id="A1">Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, UP-229010, India</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Akhter, Sohail" sort="Akhter, Sohail" uniqKey="Akhter S" first="Sohail" last="Akhter">Sohail Akhter</name>
<affiliation>
<nlm:aff id="A2">LE STUDIUM
<sup>®</sup>
Loire Valley Institute for Advanced Studies, Centre-Val de Loire region, France</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="A3">Nucleic acids transfer by non-viral methods, Centre de Biophysique Moléculaire, CNRS UPR4301, Orléans, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Greig, Nigel H" sort="Greig, Nigel H" uniqKey="Greig N" first="Nigel H." last="Greig">Nigel H. Greig</name>
<affiliation>
<nlm:aff id="A4">Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National, Institute on Aging, National Institutes of Health, Biomedical Research Center, 251 Bayview Boulevard, Baltimore, MD 21224, USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kamal, Mohammad Amjad" sort="Kamal, Mohammad Amjad" uniqKey="Kamal M" first="Mohammad Amjad" last="Kamal">Mohammad Amjad Kamal</name>
<affiliation>
<nlm:aff id="A5">Metabolomics & Enzymology Unit, Fundamental and Applied Biology Group, King Fahd Medical Research Center, King Abdulaziz University, P. O. Box 80216, Jeddah 21589, Saudi Arabia</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="A6">Enzymoics, 7 Peterlee Place, Hebersham, NSW 2770, Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Midoux, Patrick" sort="Midoux, Patrick" uniqKey="Midoux P" first="Patrick" last="Midoux">Patrick Midoux</name>
<affiliation>
<nlm:aff id="A3">Nucleic acids transfer by non-viral methods, Centre de Biophysique Moléculaire, CNRS UPR4301, Orléans, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Pichon, Chantal" sort="Pichon, Chantal" uniqKey="Pichon C" first="Chantal" last="Pichon">Chantal Pichon</name>
<affiliation>
<nlm:aff id="A3">Nucleic acids transfer by non-viral methods, Centre de Biophysique Moléculaire, CNRS UPR4301, Orléans, France</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">27319945</idno>
<idno type="pmc">5182049</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5182049</idno>
<idno type="RBID">PMC:5182049</idno>
<date when="2016">2016</date>
<idno type="wicri:Area/Pmc/Corpus">002195</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">002195</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Engineered nanoparticles against MDR in cancer: The state of the art and its prospective</title>
<author>
<name sortKey="Ahmad, Javed" sort="Ahmad, Javed" uniqKey="Ahmad J" first="Javed" last="Ahmad">Javed Ahmad</name>
<affiliation>
<nlm:aff id="A1">Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, UP-229010, India</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Akhter, Sohail" sort="Akhter, Sohail" uniqKey="Akhter S" first="Sohail" last="Akhter">Sohail Akhter</name>
<affiliation>
<nlm:aff id="A2">LE STUDIUM
<sup>®</sup>
Loire Valley Institute for Advanced Studies, Centre-Val de Loire region, France</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="A3">Nucleic acids transfer by non-viral methods, Centre de Biophysique Moléculaire, CNRS UPR4301, Orléans, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Greig, Nigel H" sort="Greig, Nigel H" uniqKey="Greig N" first="Nigel H." last="Greig">Nigel H. Greig</name>
<affiliation>
<nlm:aff id="A4">Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National, Institute on Aging, National Institutes of Health, Biomedical Research Center, 251 Bayview Boulevard, Baltimore, MD 21224, USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kamal, Mohammad Amjad" sort="Kamal, Mohammad Amjad" uniqKey="Kamal M" first="Mohammad Amjad" last="Kamal">Mohammad Amjad Kamal</name>
<affiliation>
<nlm:aff id="A5">Metabolomics & Enzymology Unit, Fundamental and Applied Biology Group, King Fahd Medical Research Center, King Abdulaziz University, P. O. Box 80216, Jeddah 21589, Saudi Arabia</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="A6">Enzymoics, 7 Peterlee Place, Hebersham, NSW 2770, Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Midoux, Patrick" sort="Midoux, Patrick" uniqKey="Midoux P" first="Patrick" last="Midoux">Patrick Midoux</name>
<affiliation>
<nlm:aff id="A3">Nucleic acids transfer by non-viral methods, Centre de Biophysique Moléculaire, CNRS UPR4301, Orléans, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Pichon, Chantal" sort="Pichon, Chantal" uniqKey="Pichon C" first="Chantal" last="Pichon">Chantal Pichon</name>
<affiliation>
<nlm:aff id="A3">Nucleic acids transfer by non-viral methods, Centre de Biophysique Moléculaire, CNRS UPR4301, Orléans, France</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Current pharmaceutical design</title>
<idno type="ISSN">1381-6128</idno>
<idno type="eISSN">1873-4286</idno>
<imprint>
<date when="2016">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p id="P1">Cancer is a highly heterogeneous disease, both within a single patient as well as between patients, and is the leading cause of death worldwide. A variety of mono and combinational therapies, including chemotherapy, have been developed and refined over recent years for its effective treatment. However, the evolution of chemotherapeutic resistance or multidrug resistance (MDR) in cancer has become a major challenge to successful chemotherapy. MDR is a complex process that combines multifaceted non-cellular and cellular-based mechanisms. Research in the area of cancer nanotechnology over the past two decades has reached the point where smartly designed nanoparticles with targeting ligands can aid successful chemotherapy by preferentially accumulating within the tumor region through means of active and passive targeting to overcome MDR, and simultaneously reduce the off-target accumulation of their payload. Such nanoparticle formulations – sometimes termed nanomedicines - are at different stages of cancer clinical trials and show promise in resistant cases. Nanoparticles as chemotherapeutics carriers provide the opportunity to have multiple payloads of drug and/or imaging agents for combinational and theranostic therapy. Moreover, nanotechnology has the potential to combine new treatment strategies, such as near-infrared (NIR), magnetic resonance imaging (MRI), and high intensity focused ultrasound (HIFU) into cancer chemotherapy and imaging. Here we discuss the cellular/non-cellular factors that underpin MDR in cancer, and the potential of nanomedicines to combat MDR, along with recent advances in combining nanotechnology with other approaches in cancer therapy.</p>
</div>
</front>
</TEI>
<pmc article-type="research-article">
<pmc-comment>The publisher of this article does not allow downloading of the full text in XML form.</pmc-comment>
<pmc-dir>properties manuscript</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-journal-id">9602487</journal-id>
<journal-id journal-id-type="pubmed-jr-id">21197</journal-id>
<journal-id journal-id-type="nlm-ta">Curr Pharm Des</journal-id>
<journal-id journal-id-type="iso-abbrev">Curr. Pharm. Des.</journal-id>
<journal-title-group>
<journal-title>Current pharmaceutical design</journal-title>
</journal-title-group>
<issn pub-type="ppub">1381-6128</issn>
<issn pub-type="epub">1873-4286</issn>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">27319945</article-id>
<article-id pub-id-type="pmc">5182049</article-id>
<article-id pub-id-type="manuscript">NIHMS837362</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Engineered nanoparticles against MDR in cancer: The state of the art and its prospective</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author" equal-contrib="yes">
<name>
<surname>Ahmad</surname>
<given-names>Javed</given-names>
</name>
<xref ref-type="aff" rid="A1">1</xref>
</contrib>
<contrib contrib-type="author" equal-contrib="yes">
<name>
<surname>Akhter</surname>
<given-names>Sohail</given-names>
</name>
<xref ref-type="corresp" rid="CR1">*</xref>
<xref ref-type="aff" rid="A2">2</xref>
<xref ref-type="aff" rid="A3">3</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Greig</surname>
<given-names>Nigel H.</given-names>
</name>
<xref ref-type="aff" rid="A4">4</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Kamal</surname>
<given-names>Mohammad Amjad</given-names>
</name>
<xref ref-type="aff" rid="A5">5</xref>
<xref ref-type="aff" rid="A6">6</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Midoux</surname>
<given-names>Patrick</given-names>
</name>
<xref ref-type="aff" rid="A3">3</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Pichon</surname>
<given-names>Chantal</given-names>
</name>
<xref ref-type="aff" rid="A3">3</xref>
</contrib>
</contrib-group>
<aff id="A1">
<label>1</label>
Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, UP-229010, India</aff>
<aff id="A2">
<label>2</label>
LE STUDIUM
<sup>®</sup>
Loire Valley Institute for Advanced Studies, Centre-Val de Loire region, France</aff>
<aff id="A3">
<label>3</label>
Nucleic acids transfer by non-viral methods, Centre de Biophysique Moléculaire, CNRS UPR4301, Orléans, France</aff>
<aff id="A4">
<label>4</label>
Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National, Institute on Aging, National Institutes of Health, Biomedical Research Center, 251 Bayview Boulevard, Baltimore, MD 21224, USA</aff>
<aff id="A5">
<label>5</label>
Metabolomics & Enzymology Unit, Fundamental and Applied Biology Group, King Fahd Medical Research Center, King Abdulaziz University, P. O. Box 80216, Jeddah 21589, Saudi Arabia</aff>
<aff id="A6">
<label>6</label>
Enzymoics, 7 Peterlee Place, Hebersham, NSW 2770, Australia</aff>
<author-notes>
<corresp id="CR1">
<label>*</label>
<bold>Author for correspondence</bold>
,
<bold>Sohail Akhter</bold>
,
<italic>Senior Fellow</italic>
of LE STUDIUM
<sup>®</sup>
Loire Valley Institute for Advanced Studies, Centre-Val de Loire region, France at Nucleic acids transfer by non-viral methods, Centre de BiophysiqueMoléculaire, CNRS UPR4301, Orléans, France,
<email>sohailakhtermph@gmail.com</email>
, Contact: +33699908746 </corresp>
</author-notes>
<pub-date pub-type="nihms-submitted">
<day>21</day>
<month>12</month>
<year>2016</year>
</pub-date>
<pub-date pub-type="ppub">
<year>2016</year>
</pub-date>
<pub-date pub-type="pmc-release">
<day>23</day>
<month>12</month>
<year>2016</year>
</pub-date>
<volume>22</volume>
<issue>28</issue>
<fpage>4360</fpage>
<lpage>4373</lpage>
<abstract>
<p id="P1">Cancer is a highly heterogeneous disease, both within a single patient as well as between patients, and is the leading cause of death worldwide. A variety of mono and combinational therapies, including chemotherapy, have been developed and refined over recent years for its effective treatment. However, the evolution of chemotherapeutic resistance or multidrug resistance (MDR) in cancer has become a major challenge to successful chemotherapy. MDR is a complex process that combines multifaceted non-cellular and cellular-based mechanisms. Research in the area of cancer nanotechnology over the past two decades has reached the point where smartly designed nanoparticles with targeting ligands can aid successful chemotherapy by preferentially accumulating within the tumor region through means of active and passive targeting to overcome MDR, and simultaneously reduce the off-target accumulation of their payload. Such nanoparticle formulations – sometimes termed nanomedicines - are at different stages of cancer clinical trials and show promise in resistant cases. Nanoparticles as chemotherapeutics carriers provide the opportunity to have multiple payloads of drug and/or imaging agents for combinational and theranostic therapy. Moreover, nanotechnology has the potential to combine new treatment strategies, such as near-infrared (NIR), magnetic resonance imaging (MRI), and high intensity focused ultrasound (HIFU) into cancer chemotherapy and imaging. Here we discuss the cellular/non-cellular factors that underpin MDR in cancer, and the potential of nanomedicines to combat MDR, along with recent advances in combining nanotechnology with other approaches in cancer therapy.</p>
</abstract>
<kwd-group>
<kwd>Multidrug resistance</kwd>
<kwd>MDR</kwd>
<kwd>efflux transporter</kwd>
<kwd>Nanoparticles</kwd>
<kwd>passive targeting</kwd>
<kwd>active targeting</kwd>
<kwd>pH-sensitive</kwd>
<kwd>HIFU</kwd>
<kwd>Combinational drug targeting</kwd>
</kwd-group>
</article-meta>
</front>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002195 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 002195 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:5182049
   |texte=   Engineered nanoparticles against MDR in cancer: The state of the art and its prospective
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:27319945" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a AustralieFrV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024