Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
***** Acces problem to record *****\

Identifieur interne : 001A07 ( Pmc/Corpus ); précédent : 001A069; suivant : 001A080 ***** probable Xml problem with record *****

Links to Exploration step


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Identifying Optimal Overload and Taper in Elite Swimmers over Time</title>
<author>
<name sortKey="Hellard, Philippe" sort="Hellard, Philippe" uniqKey="Hellard P" first="Philippe" last="Hellard">Philippe Hellard</name>
</author>
<author>
<name sortKey="Avalos, Marta" sort="Avalos, Marta" uniqKey="Avalos M" first="Marta" last="Avalos">Marta Avalos</name>
</author>
<author>
<name sortKey="Hausswirth, Christophe" sort="Hausswirth, Christophe" uniqKey="Hausswirth C" first="Christophe" last="Hausswirth">Christophe Hausswirth</name>
<affiliation>
<nlm:aff id="aff004">
<institution>Research Mission-Laboratory of Physiology, INSEP</institution>
,
<addr-line>Paris, France</addr-line>
;</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Pyne, David" sort="Pyne, David" uniqKey="Pyne D" first="David" last="Pyne">David Pyne</name>
<affiliation>
<nlm:aff id="aff006">
<institution>Department of Physiology, Australian Institute of Sport</institution>
,
<addr-line>Belconnen, Canberra, Australia</addr-line>
;</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Toussaint, Jean Francois" sort="Toussaint, Jean Francois" uniqKey="Toussaint J" first="Jean-Francois" last="Toussaint">Jean-Francois Toussaint</name>
<affiliation>
<nlm:aff id="aff005">
<institution>IRMES, Institut de Recherche bioMédicale et d’Epidémiologie du Sport, Insep</institution>
,
<addr-line>Paris, France</addr-line>
;</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Mujika, I Igo" sort="Mujika, I Igo" uniqKey="Mujika I" first="I Igo" last="Mujika">I Igo Mujika</name>
<affiliation>
<nlm:aff id="aff007">
<institution>USP Araba Sport Clinic</institution>
,
<addr-line>Vitoria-Gasteiz, Basque Country, Spain</addr-line>
</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">24421726</idno>
<idno type="pmc">3873657</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3873657</idno>
<idno type="RBID">PMC:3873657</idno>
<date when="2013">2013</date>
<idno type="wicri:Area/Pmc/Corpus">001A07</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">001A07</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Identifying Optimal Overload and Taper in Elite Swimmers over Time</title>
<author>
<name sortKey="Hellard, Philippe" sort="Hellard, Philippe" uniqKey="Hellard P" first="Philippe" last="Hellard">Philippe Hellard</name>
</author>
<author>
<name sortKey="Avalos, Marta" sort="Avalos, Marta" uniqKey="Avalos M" first="Marta" last="Avalos">Marta Avalos</name>
</author>
<author>
<name sortKey="Hausswirth, Christophe" sort="Hausswirth, Christophe" uniqKey="Hausswirth C" first="Christophe" last="Hausswirth">Christophe Hausswirth</name>
<affiliation>
<nlm:aff id="aff004">
<institution>Research Mission-Laboratory of Physiology, INSEP</institution>
,
<addr-line>Paris, France</addr-line>
;</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Pyne, David" sort="Pyne, David" uniqKey="Pyne D" first="David" last="Pyne">David Pyne</name>
<affiliation>
<nlm:aff id="aff006">
<institution>Department of Physiology, Australian Institute of Sport</institution>
,
<addr-line>Belconnen, Canberra, Australia</addr-line>
;</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Toussaint, Jean Francois" sort="Toussaint, Jean Francois" uniqKey="Toussaint J" first="Jean-Francois" last="Toussaint">Jean-Francois Toussaint</name>
<affiliation>
<nlm:aff id="aff005">
<institution>IRMES, Institut de Recherche bioMédicale et d’Epidémiologie du Sport, Insep</institution>
,
<addr-line>Paris, France</addr-line>
;</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Mujika, I Igo" sort="Mujika, I Igo" uniqKey="Mujika I" first="I Igo" last="Mujika">I Igo Mujika</name>
<affiliation>
<nlm:aff id="aff007">
<institution>USP Araba Sport Clinic</institution>
,
<addr-line>Vitoria-Gasteiz, Basque Country, Spain</addr-line>
</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of Sports Science & Medicine</title>
<idno type="eISSN">1303-2968</idno>
<imprint>
<date when="2013">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>The aim of this exploratory study was to identify the most influential training designs during the final six weeks of training (F6T) before a major swimming event, taking into account athletes’ evolution over several seasons. Fifteen female and 17 male elite swimmers were followed for one to nine F6T periods. The F6T was divided into two sub-periods of a three-week overload period (OP) and a three-week taper period (TP). The final time trial performance was recorded for each swimmer in his or her specialty at the end of both OP and TP. The change in performances (ΔP) between OP and TP was recorded. Training variables were derived from the weekly training volume at several intensity levels as a percentage of the individual maximal volume measured at each intensity level, and the individual total training load (TTL) was considered to be the mean of the loads at these seven intensity levels. Also, training patterns were identified from TTL in the three weeks of both OP and TP by cluster analysis. Mixed-model was used to analyse the longitudinal data. The training pattern during OP that was associated with the greatest improvement in performance was a training load peak followed by a linear slow decay (84 ± 17, 81 ± 22, and 80 ± 19 % of the maximal training load measured throughout the F6T period for each subject, Mean ± SD) (p < 0.05). During TP, a training load peak in the 1
<sup>st</sup>
week associated with a slow decay design (57 ± 26, 45 ± 24 and 38 ± 14%) led to higher ΔP (p < 0.05). From the 1
<sup>st</sup>
to 3
<sup>rd</sup>
season, the best results were characterized by maintenance of a medium training load from OP to TP. Progressively from the 4
<sup>th</sup>
season, high training loads during OP followed by a sharp decrease during TP were associated with higher ΔP.</p>
<p>
<boxed-text position="float" orientation="portrait">
<caption>
<title>Key Points</title>
</caption>
<list list-type="bullet">
<list-item>
<p>During the overload training period, a medium training load peak in the first week followed by an exponential slow decay training load design was linked to highest performance improvement.</p>
</list-item>
<list-item>
<p>During the taper period, a training load peak in the first week associated with a slow decay design led to higher performances.</p>
</list-item>
<list-item>
<p>Over the course of the swimmers’ athletic careers, better performances were obtained with an increase in training load during the overload period followed by a sharper decrease in the taper period.</p>
</list-item>
<list-item>
<p>Training loads schedules during the final six weeks of training before a major swimming event and changes over time could be prescribed on the basis of the model results.</p>
</list-item>
</list>
</boxed-text>
</p>
</div>
</front>
</TEI>
<pmc article-type="research-article">
<pmc-comment>The publisher of this article does not allow downloading of the full text in XML form.</pmc-comment>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">J Sports Sci Med</journal-id>
<journal-id journal-id-type="iso-abbrev">J Sports Sci Med</journal-id>
<journal-id journal-id-type="publisher-id">JSSM</journal-id>
<journal-title-group>
<journal-title>Journal of Sports Science & Medicine</journal-title>
</journal-title-group>
<issn pub-type="epub">1303-2968</issn>
<publisher>
<publisher-name>Asist Group</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">24421726</article-id>
<article-id pub-id-type="pmc">3873657</article-id>
<article-id pub-id-type="publisher-id">jssm-12-668</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Research Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Identifying Optimal Overload and Taper in Elite Swimmers over Time</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Hellard</surname>
<given-names>Philippe</given-names>
</name>
<xref ref-type="aff" rid="aff001 aff005">
<sup>1,5</sup>
</xref>
<xref ref-type="bio" rid="d35e36">*</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Avalos</surname>
<given-names>Marta</given-names>
</name>
<xref ref-type="aff" rid="aff002 aff003">
<sup>2,3</sup>
</xref>
<xref ref-type="corresp" rid="cor1"></xref>
<xref ref-type="bio" rid="d35e72">*</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Hausswirth</surname>
<given-names>Christophe</given-names>
</name>
<xref ref-type="aff" rid="aff004">
<sup>4</sup>
</xref>
<xref ref-type="bio" rid="d35e106">*</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Pyne</surname>
<given-names>David</given-names>
</name>
<xref ref-type="aff" rid="aff006">
<sup>6</sup>
</xref>
<xref ref-type="bio" rid="d35e140">*</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Toussaint</surname>
<given-names>Jean-Francois</given-names>
</name>
<xref ref-type="aff" rid="aff005">
<sup>5</sup>
</xref>
<xref ref-type="bio" rid="d35e174">*</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Mujika</surname>
<given-names>Iñigo</given-names>
</name>
<xref ref-type="aff" rid="aff007">
<sup>7</sup>
</xref>
<xref ref-type="bio" rid="d35e208">*</xref>
</contrib>
</contrib-group>
<aff id="aff001">
<label>1</label>
<institution>Research Department, French Swimming Federation</institution>
,
<addr-line>Paris, France</addr-line>
;</aff>
<aff id="aff002">
<label>2</label>
<institution>INSERM, ISPED, Centre INSERM U897-Epidemiologie-Biostatistique</institution>
,
<addr-line>Bordeaux, France</addr-line>
;</aff>
<aff id="aff003">
<label>3</label>
<institution>Univ. Bordeaux, ISPED, Centre INSERM U897-Epidemiologie-Biostatistique</institution>
,
<addr-line>Bordeaux, France</addr-line>
;</aff>
<aff id="aff004">
<label>4</label>
<institution>Research Mission-Laboratory of Physiology, INSEP</institution>
,
<addr-line>Paris, France</addr-line>
;</aff>
<aff id="aff005">
<label>5</label>
<institution>IRMES, Institut de Recherche bioMédicale et d’Epidémiologie du Sport, Insep</institution>
,
<addr-line>Paris, France</addr-line>
;</aff>
<aff id="aff006">
<label>6</label>
<institution>Department of Physiology, Australian Institute of Sport</institution>
,
<addr-line>Belconnen, Canberra, Australia</addr-line>
;</aff>
<aff id="aff007">
<label>7</label>
<institution>USP Araba Sport Clinic</institution>
,
<addr-line>Vitoria-Gasteiz, Basque Country, Spain</addr-line>
</aff>
<author-notes>
<corresp id="cor1">✉ Bordeaux School of Public Health (ISPED), Univ. Bordeaux Segalen, 146 rue Leo Saignat, F-33076 Bordeaux Cedex, France</corresp>
</author-notes>
<pub-date pub-type="collection">
<month>12</month>
<year>2013</year>
</pub-date>
<pub-date pub-type="epub">
<day>01</day>
<month>12</month>
<year>2013</year>
</pub-date>
<volume>12</volume>
<issue>4</issue>
<fpage>668</fpage>
<lpage>678</lpage>
<history>
<date date-type="received">
<day>01</day>
<month>12</month>
<year>2012</year>
</date>
<date date-type="accepted">
<day>16</day>
<month>9</month>
<year>2013</year>
</date>
</history>
<permissions>
<copyright-statement>© Journal of Sports Science and Medicine</copyright-statement>
<copyright-year>2013</copyright-year>
</permissions>
<abstract>
<p>The aim of this exploratory study was to identify the most influential training designs during the final six weeks of training (F6T) before a major swimming event, taking into account athletes’ evolution over several seasons. Fifteen female and 17 male elite swimmers were followed for one to nine F6T periods. The F6T was divided into two sub-periods of a three-week overload period (OP) and a three-week taper period (TP). The final time trial performance was recorded for each swimmer in his or her specialty at the end of both OP and TP. The change in performances (ΔP) between OP and TP was recorded. Training variables were derived from the weekly training volume at several intensity levels as a percentage of the individual maximal volume measured at each intensity level, and the individual total training load (TTL) was considered to be the mean of the loads at these seven intensity levels. Also, training patterns were identified from TTL in the three weeks of both OP and TP by cluster analysis. Mixed-model was used to analyse the longitudinal data. The training pattern during OP that was associated with the greatest improvement in performance was a training load peak followed by a linear slow decay (84 ± 17, 81 ± 22, and 80 ± 19 % of the maximal training load measured throughout the F6T period for each subject, Mean ± SD) (p < 0.05). During TP, a training load peak in the 1
<sup>st</sup>
week associated with a slow decay design (57 ± 26, 45 ± 24 and 38 ± 14%) led to higher ΔP (p < 0.05). From the 1
<sup>st</sup>
to 3
<sup>rd</sup>
season, the best results were characterized by maintenance of a medium training load from OP to TP. Progressively from the 4
<sup>th</sup>
season, high training loads during OP followed by a sharp decrease during TP were associated with higher ΔP.</p>
<p>
<boxed-text position="float" orientation="portrait">
<caption>
<title>Key Points</title>
</caption>
<list list-type="bullet">
<list-item>
<p>During the overload training period, a medium training load peak in the first week followed by an exponential slow decay training load design was linked to highest performance improvement.</p>
</list-item>
<list-item>
<p>During the taper period, a training load peak in the first week associated with a slow decay design led to higher performances.</p>
</list-item>
<list-item>
<p>Over the course of the swimmers’ athletic careers, better performances were obtained with an increase in training load during the overload period followed by a sharper decrease in the taper period.</p>
</list-item>
<list-item>
<p>Training loads schedules during the final six weeks of training before a major swimming event and changes over time could be prescribed on the basis of the model results.</p>
</list-item>
</list>
</boxed-text>
</p>
</abstract>
<kwd-group>
<title>Key words</title>
<kwd>Repeated measures</kwd>
<kwd>random-effects methodology</kwd>
<kwd>monitoring training</kwd>
<kwd>pre-taper and taper</kwd>
<kwd>elite swimmers</kwd>
<kwd>periodization</kwd>
</kwd-group>
<counts>
<fig-count count="4"></fig-count>
<table-count count="4"></table-count>
<equation-count count="0"></equation-count>
<ref-count count="38"></ref-count>
<page-count count="11"></page-count>
</counts>
</article-meta>
</front>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001A07  | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 001A07  | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     
   |texte=   
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024