Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
***** Acces problem to record *****\

Identifieur interne : 001A069 ( Pmc/Corpus ); précédent : 001A068; suivant : 001A070 ***** probable Xml problem with record *****

Links to Exploration step


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Exaggeration and suppression of iridescence: the evolution of two-dimensional butterfly structural colours</title>
<author>
<name sortKey="Wickham, Shelley" sort="Wickham, Shelley" uniqKey="Wickham S" first="Shelley" last="Wickham">Shelley Wickham</name>
<affiliation>
<nlm:aff id="aff1">
<institution>School of Physics, University of Sydney</institution>
<addr-line>NSW 2006, Australia</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2">
<institution>Optical Fibre Technology Centre, Australian Photonics CRC, University of Sydney</institution>
<addr-line>NSW 2006, Australia</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Large, Maryanne C J" sort="Large, Maryanne C J" uniqKey="Large M" first="Maryanne C. J" last="Large">Maryanne C. J Large</name>
<affiliation>
<nlm:aff id="aff1">
<institution>School of Physics, University of Sydney</institution>
<addr-line>NSW 2006, Australia</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2">
<institution>Optical Fibre Technology Centre, Australian Photonics CRC, University of Sydney</institution>
<addr-line>NSW 2006, Australia</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Poladian, Leon" sort="Poladian, Leon" uniqKey="Poladian L" first="Leon" last="Poladian">Leon Poladian</name>
<affiliation>
<nlm:aff id="aff2">
<institution>Optical Fibre Technology Centre, Australian Photonics CRC, University of Sydney</institution>
<addr-line>NSW 2006, Australia</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff3">
<institution>School of Mathematics and Statistics, University of Sydney</institution>
<addr-line>NSW 2006, Australia</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff4">
<institution>Sydney University Biological Informatics & Technology Centre, University of Sydney</institution>
<addr-line>NSW 2006, Australia</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Jermiin, Lars S" sort="Jermiin, Lars S" uniqKey="Jermiin L" first="Lars S" last="Jermiin">Lars S. Jermiin</name>
<affiliation>
<nlm:aff id="aff4">
<institution>Sydney University Biological Informatics & Technology Centre, University of Sydney</institution>
<addr-line>NSW 2006, Australia</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff5">
<institution>School of Biological Sciences, University of Sydney</institution>
<addr-line>NSW 2006, Australia</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff6">
<institution>Unité de Biologie Moléculaire du Gène chez les Extrêmophiles, Institut Pasteur</institution>
<addr-line>25 rue de Dr Roux, 75724 Paris Cedex 15, France</addr-line>
</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">16849221</idno>
<idno type="pmc">1618482</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1618482</idno>
<idno type="RBID">PMC:1618482</idno>
<idno type="doi">10.1098/rsif.2005.0071</idno>
<date when="2005">2005</date>
<idno type="wicri:Area/Pmc/Corpus">001A06</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">001A06</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Exaggeration and suppression of iridescence: the evolution of two-dimensional butterfly structural colours</title>
<author>
<name sortKey="Wickham, Shelley" sort="Wickham, Shelley" uniqKey="Wickham S" first="Shelley" last="Wickham">Shelley Wickham</name>
<affiliation>
<nlm:aff id="aff1">
<institution>School of Physics, University of Sydney</institution>
<addr-line>NSW 2006, Australia</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2">
<institution>Optical Fibre Technology Centre, Australian Photonics CRC, University of Sydney</institution>
<addr-line>NSW 2006, Australia</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Large, Maryanne C J" sort="Large, Maryanne C J" uniqKey="Large M" first="Maryanne C. J" last="Large">Maryanne C. J Large</name>
<affiliation>
<nlm:aff id="aff1">
<institution>School of Physics, University of Sydney</institution>
<addr-line>NSW 2006, Australia</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2">
<institution>Optical Fibre Technology Centre, Australian Photonics CRC, University of Sydney</institution>
<addr-line>NSW 2006, Australia</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Poladian, Leon" sort="Poladian, Leon" uniqKey="Poladian L" first="Leon" last="Poladian">Leon Poladian</name>
<affiliation>
<nlm:aff id="aff2">
<institution>Optical Fibre Technology Centre, Australian Photonics CRC, University of Sydney</institution>
<addr-line>NSW 2006, Australia</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff3">
<institution>School of Mathematics and Statistics, University of Sydney</institution>
<addr-line>NSW 2006, Australia</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff4">
<institution>Sydney University Biological Informatics & Technology Centre, University of Sydney</institution>
<addr-line>NSW 2006, Australia</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Jermiin, Lars S" sort="Jermiin, Lars S" uniqKey="Jermiin L" first="Lars S" last="Jermiin">Lars S. Jermiin</name>
<affiliation>
<nlm:aff id="aff4">
<institution>Sydney University Biological Informatics & Technology Centre, University of Sydney</institution>
<addr-line>NSW 2006, Australia</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff5">
<institution>School of Biological Sciences, University of Sydney</institution>
<addr-line>NSW 2006, Australia</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff6">
<institution>Unité de Biologie Moléculaire du Gène chez les Extrêmophiles, Institut Pasteur</institution>
<addr-line>25 rue de Dr Roux, 75724 Paris Cedex 15, France</addr-line>
</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of the Royal Society Interface</title>
<idno type="ISSN">1742-5689</idno>
<idno type="eISSN">1742-5662</idno>
<imprint>
<date when="2005">2005</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Many butterfly species possess ‘structural’ colour, where colour is due to optical microstructures found in the wing scales. A number of such structures have been identified in butterfly scales, including three variations on a simple multi-layer structure. In this study, we optically characterize examples of all three types of multi-layer structure, as found in 10 species. The optical mechanism of the suppression and exaggeration of the angle-dependent optical properties (iridescence) of these structures is described. In addition, we consider the phylogeny of the butterflies, and are thus able to relate the optical properties of the structures to their evolutionary development. By applying two different types of analysis, the mechanism of adaptation is addressed. A simple parsimony analysis, in which all evolutionary changes are given an equal weighting, suggests convergent evolution of one structure. A Dollo parsimony analysis, in which the evolutionary ‘cost’ of losing a structure is less than that of gaining it, implies that ‘latent’ structures can be reused.</p>
</div>
</front>
</TEI>
<pmc article-type="research-article">
<pmc-comment>The publisher of this article does not allow downloading of the full text in XML form.</pmc-comment>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">J R Soc Interface</journal-id>
<journal-id journal-id-type="publisher-id">RSIF</journal-id>
<journal-title>Journal of the Royal Society Interface</journal-title>
<issn pub-type="ppub">1742-5689</issn>
<issn pub-type="epub">1742-5662</issn>
<publisher>
<publisher-name>The Royal Society</publisher-name>
<publisher-loc>London</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">16849221</article-id>
<article-id pub-id-type="pmc">1618482</article-id>
<article-id pub-id-type="publisher-id">rsif20050071</article-id>
<article-id pub-id-type="doi">10.1098/rsif.2005.0071</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Research Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Exaggeration and suppression of iridescence: the evolution of two-dimensional butterfly structural colours</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Wickham</surname>
<given-names>Shelley</given-names>
</name>
<xref ref-type="aff" rid="aff1">1</xref>
<xref ref-type="aff" rid="aff2">2</xref>
<xref ref-type="corresp" rid="cor1"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Large</surname>
<given-names>Maryanne C.J</given-names>
</name>
<xref ref-type="aff" rid="aff1">1</xref>
<xref ref-type="aff" rid="aff2">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Poladian</surname>
<given-names>Leon</given-names>
</name>
<xref ref-type="aff" rid="aff2">2</xref>
<xref ref-type="aff" rid="aff3">3</xref>
<xref ref-type="aff" rid="aff4">4</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Jermiin</surname>
<given-names>Lars S</given-names>
</name>
<xref ref-type="aff" rid="aff4">4</xref>
<xref ref-type="aff" rid="aff5">5</xref>
<xref ref-type="aff" rid="aff6">6</xref>
</contrib>
</contrib-group>
<aff id="aff1">
<label>1</label>
<institution>School of Physics, University of Sydney</institution>
<addr-line>NSW 2006, Australia</addr-line>
</aff>
<aff id="aff2">
<label>2</label>
<institution>Optical Fibre Technology Centre, Australian Photonics CRC, University of Sydney</institution>
<addr-line>NSW 2006, Australia</addr-line>
</aff>
<aff id="aff3">
<label>3</label>
<institution>School of Mathematics and Statistics, University of Sydney</institution>
<addr-line>NSW 2006, Australia</addr-line>
</aff>
<aff id="aff4">
<label>4</label>
<institution>Sydney University Biological Informatics & Technology Centre, University of Sydney</institution>
<addr-line>NSW 2006, Australia</addr-line>
</aff>
<aff id="aff5">
<label>5</label>
<institution>School of Biological Sciences, University of Sydney</institution>
<addr-line>NSW 2006, Australia</addr-line>
</aff>
<aff id="aff6">
<label>6</label>
<institution>Unité de Biologie Moléculaire du Gène chez les Extrêmophiles, Institut Pasteur</institution>
<addr-line>25 rue de Dr Roux, 75724 Paris Cedex 15, France</addr-line>
</aff>
<author-notes>
<corresp id="cor1">
<label></label>
Author for correspondence. Present address: Optical Fibre Technology Centre, 206 National Innovation Centre, Australian Technology Park, NSW 1430, Australia. (
<email>s.wickham@oftc.usyd.edu.au</email>
)</corresp>
</author-notes>
<pub-date pub-type="epub">
<day>15</day>
<month>9</month>
<year>2005</year>
</pub-date>
<pub-date pub-type="ppub">
<day>22</day>
<month>2</month>
<year>2006</year>
</pub-date>
<volume>3</volume>
<issue>6</issue>
<fpage>99</fpage>
<lpage>109</lpage>
<history>
<date date-type="received">
<day>21</day>
<month>6</month>
<year>2005</year>
</date>
<date date-type="accepted">
<day>27</day>
<month>7</month>
<year>2005</year>
</date>
</history>
<permissions>
<copyright-statement>© 2005 The Royal Society</copyright-statement>
<copyright-year>2005</copyright-year>
</permissions>
<abstract>
<p>Many butterfly species possess ‘structural’ colour, where colour is due to optical microstructures found in the wing scales. A number of such structures have been identified in butterfly scales, including three variations on a simple multi-layer structure. In this study, we optically characterize examples of all three types of multi-layer structure, as found in 10 species. The optical mechanism of the suppression and exaggeration of the angle-dependent optical properties (iridescence) of these structures is described. In addition, we consider the phylogeny of the butterflies, and are thus able to relate the optical properties of the structures to their evolutionary development. By applying two different types of analysis, the mechanism of adaptation is addressed. A simple parsimony analysis, in which all evolutionary changes are given an equal weighting, suggests convergent evolution of one structure. A Dollo parsimony analysis, in which the evolutionary ‘cost’ of losing a structure is less than that of gaining it, implies that ‘latent’ structures can be reused.</p>
</abstract>
<kwd-group>
<kwd>structural colour</kwd>
<kwd>lepidoptera</kwd>
<kwd>multi-layer</kwd>
<kwd>interference</kwd>
<kwd>iridescence</kwd>
</kwd-group>
</article-meta>
</front>
<floats-wrap>
<fig id="fig1" position="float">
<label>Figure 1</label>
<caption>
<p>(
<italic>a</italic>
) Butterfly wing scales. A key feature of all scales is the ridges running along their length. Several modified types of ridge are found to produce structural colour, these include: (
<italic>b</italic>
) a structure in which overlapping flanges running along the ridge, ‘ridge-lamellae’ (
<xref ref-type="bibr" rid="bib8">Ghiradella 1989</xref>
), are exaggerated; (
<italic>c</italic>
) one in which flanges running perpendicular to the ridge-lamellae, called ‘microribs’ (
<xref ref-type="bibr" rid="bib8">Ghiradella 1989</xref>
), are exaggerated; and (
<italic>d</italic>
) a variant in which a tilted multi-layer is formed by the microribs, and the ridge-lamellae are absent. Asterisk, ridge-lamellae; double asterisk, microribs. (Image of
<italic>Callicore aegina</italic>
courtesy of The Insect Company (www.insectcompany.com).)</p>
</caption>
<graphic xlink:href="rsif20050071f01"></graphic>
</fig>
<fig id="fig2" position="float">
<label>Figure 2</label>
<caption>
<p>Angle-dependent spectral measurements of the (
<italic>a</italic>
), ridge-lamellae and (
<italic>b</italic>
), microrib butterflies. Structural characteristics from the SEM images: the periodicity (
<italic>d</italic>
), and width (
<italic>w</italic>
) of the layers and the average number of layers (
<italic>N</italic>
), are given in the insets on the top right of each set of results. The insets on the bottom left of each set of results show the integrated normal incidence spectrum from the Cary measurement. The predicted peak wavelength (red line), FWHM spectral bandwidth (blue lines) and peak reflectance (dotted line) from a simple thin film analysis with the refractive index of chitin (
<italic>n</italic>
=1.56) are also shown on the normal incidence plot. This predicted reflectance value is corrected by the percentage of the scale actually covered in the reflecting structure (the coverage,
<italic>C</italic>
). As this inset is a multi-scale measurement, the presence of scattered non-coloured scales in the sample area of
<italic>P. humboldtii</italic>
and
<italic>T. brookiana</italic>
results in peak reflectance measurements that are an underestimate of the true absolute value, therefore giving a disagreement with the predicted intensity.</p>
</caption>
<graphic xlink:href="rsif20050071f02"></graphic>
</fig>
<fig id="fig3" position="float">
<label>Figure 3</label>
<caption>
<p>Angle-dependent spectral measurements of the four tilted multi-layer butterflies. The tristimulus values for each species are normalized to aid colour reproduction. The peak intensity of the reflection (
<italic>R</italic>
) and the periodicity (
<italic>d</italic>
), tilt angle (
<italic>a</italic>
) and number of layers (
<italic>N</italic>
) found in each structure are given in the insets on the top right of each set of results. The insets on the bottom left of each set of results show the theoretical prediction of the wavelength and
<italic>X</italic>
-tilt angle range of the strongest reflection as predicted by the bi-grating analysis.</p>
</caption>
<graphic xlink:href="rsif20050071f03"></graphic>
</fig>
<fig id="fig4" position="float">
<label>Figure 4</label>
<caption>
<p>Phylogeny of the butterflies. Classification of Papilionidae (
<italic>T. brookiana</italic>
,
<italic>T. magellanus</italic>
) follows GloBIS (
<xref ref-type="bibr" rid="bib27">Hauser
<italic>et al</italic>
. 2005</xref>
),
<xref ref-type="bibr" rid="bib28">Parsons (1996)</xref>
,
<xref ref-type="bibr" rid="bib29">Morinaka
<italic>et al</italic>
. (1999)</xref>
and
<xref ref-type="bibr" rid="bib30">Reed & Sperling (2001)</xref>
, classification of Nymphalidae (
<italic>C. aegina</italic>
,
<italic>M. didius</italic>
,
<italic>P. humboldtii</italic>
,
<italic>D. neglecta</italic>
,
<italic>E. midamus</italic>
,
<italic>P. peristera</italic>
,
<italic>C. martia</italic>
,
<italic>E. aesacus</italic>
) follows
<xref ref-type="bibr" rid="bib32">Harvey (1991)</xref>
,
<xref ref-type="bibr" rid="bib33">Ackery
<italic>et al</italic>
. (1999)</xref>
,
<xref ref-type="bibr" rid="bib35">Brower (2000)</xref>
.
<xref ref-type="bibr" rid="bib31">Wahlberg
<italic>et al</italic>
. (2003)</xref>
and
<xref ref-type="bibr" rid="bib34">Freitas & Brown (2004)</xref>
. Colour is used to indicate which type of multi-layer structure each species possesses (ridge-lamellae=blue, microrib=red, forward tilted multi-layer=green, backward tilted multi-layer=yellow). Ancestral structures are inferred using either (
<italic>a</italic>
) simple parsimony (
<xref ref-type="bibr" rid="bib36">Fitch 1971</xref>
) or (
<italic>b</italic>
) Dollo parsimony (
<xref ref-type="bibr" rid="bib36">Farris 1977</xref>
;
<xref ref-type="bibr" rid="bib38">Felsenstein 1989</xref>
), and are shown in the same colours with a schematic of the type of structure used to indicate the node(s) at which is it predicted to have evolved. In both cases, the progressive evolution of more complex microstructures is observed.</p>
</caption>
<graphic xlink:href="rsif20050071f04"></graphic>
</fig>
<fig id="fig5" position="float">
<label>Figure 5</label>
<caption>
<p>Phylogeny of the butterflies showing structural features relating to the intensity of the reflected colour, such as the number of layers (
<italic>N</italic>
), the filling fraction (
<italic>F</italic>
), and the percentage of the wing scale covered in reflecting elements (
<italic>C</italic>
). Some of these traits, such as
<italic>N</italic>
and
<italic>F</italic>
, follow the phylogenetic distribution of the species, and the ancestral traits predicted by a simple parsimony analysis (
<xref ref-type="bibr" rid="bib36">Fitch 1971</xref>
) are shown. A black line indicates
<italic>N</italic>
=high, a broken line indicates
<italic>N</italic>
=low, and a grey line indicates the number of layers is ambiguous. The coverage is more closely correlated with the occurrence of the ridge-lamellae structure, underlined in blue.</p>
</caption>
<graphic xlink:href="rsif20050071f05"></graphic>
</fig>
</floats-wrap>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001A069 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 001A069 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     
   |texte=   
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024