Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Spin crossover-induced colossal positive and negative thermal expansion in a nanoporous coordination framework material

Identifieur interne : 000D89 ( Pmc/Corpus ); précédent : 000D88; suivant : 000D90

Spin crossover-induced colossal positive and negative thermal expansion in a nanoporous coordination framework material

Auteurs : Benjamin R. Mullaney ; Laurence Goux-Capes ; David J. Price ; Guillaume Chastanet ; Jean-François Létard ; Cameron J. Kepert

Source :

RBID : PMC:5648752

Abstract

External control over the mechanical function of materials is paramount in the development of nanoscale machines. Yet, exploiting changes in atomic behaviour to produce controlled scalable motion is a formidable challenge. Here, we present an ultra-flexible coordination framework material in which a cooperative electronic transition induces an extreme abrupt change in the crystal lattice conformation. This arises due to a change in the preferred coordination character of Fe(II) sites at different spin states, generating scissor-type flexing of the crystal lattice. Diluting the framework with transition-inactive Ni(II) sites disrupts long-range communication of spin state through the lattice, producing a more gradual transition and continuous lattice movement, thus generating colossal positive and negative linear thermal expansion behaviour, with coefficients of thermal expansion an order of magnitude greater than previously reported. This study has wider implications in the development of advanced responsive structures, demonstrating electronic control over mechanical motion.


Url:
DOI: 10.1038/s41467-017-00776-1
PubMed: 29051479
PubMed Central: 5648752

Links to Exploration step

PMC:5648752

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Spin crossover-induced colossal positive and negative thermal expansion in a nanoporous coordination framework material</title>
<author>
<name sortKey="Mullaney, Benjamin R" sort="Mullaney, Benjamin R" uniqKey="Mullaney B" first="Benjamin R." last="Mullaney">Benjamin R. Mullaney</name>
<affiliation>
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 1936 834X</institution-id>
<institution-id institution-id-type="GRID">grid.1013.3</institution-id>
<institution>School of Chemistry,</institution>
<institution>The University of Sydney, Building F11,</institution>
</institution-wrap>
Sydney, NSW 2006 Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Goux Capes, Laurence" sort="Goux Capes, Laurence" uniqKey="Goux Capes L" first="Laurence" last="Goux-Capes">Laurence Goux-Capes</name>
<affiliation>
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 1936 834X</institution-id>
<institution-id institution-id-type="GRID">grid.1013.3</institution-id>
<institution>School of Chemistry,</institution>
<institution>The University of Sydney, Building F11,</institution>
</institution-wrap>
Sydney, NSW 2006 Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Price, David J" sort="Price, David J" uniqKey="Price D" first="David J." last="Price">David J. Price</name>
<affiliation>
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 1936 834X</institution-id>
<institution-id institution-id-type="GRID">grid.1013.3</institution-id>
<institution>School of Chemistry,</institution>
<institution>The University of Sydney, Building F11,</institution>
</institution-wrap>
Sydney, NSW 2006 Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Chastanet, Guillaume" sort="Chastanet, Guillaume" uniqKey="Chastanet G" first="Guillaume" last="Chastanet">Guillaume Chastanet</name>
<affiliation>
<nlm:aff id="Aff2">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0001 2106 639X</institution-id>
<institution-id institution-id-type="GRID">grid.412041.2</institution-id>
<institution>ICMCB, UPR CNRS 9048,</institution>
<institution>Université Bordeaux I,</institution>
</institution-wrap>
87 Av. du Doc. A., Schweitzer, F-33608 Pessac France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Letard, Jean Francois" sort="Letard, Jean Francois" uniqKey="Letard J" first="Jean-François" last="Létard">Jean-François Létard</name>
<affiliation>
<nlm:aff id="Aff2">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0001 2106 639X</institution-id>
<institution-id institution-id-type="GRID">grid.412041.2</institution-id>
<institution>ICMCB, UPR CNRS 9048,</institution>
<institution>Université Bordeaux I,</institution>
</institution-wrap>
87 Av. du Doc. A., Schweitzer, F-33608 Pessac France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kepert, Cameron J" sort="Kepert, Cameron J" uniqKey="Kepert C" first="Cameron J." last="Kepert">Cameron J. Kepert</name>
<affiliation>
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 1936 834X</institution-id>
<institution-id institution-id-type="GRID">grid.1013.3</institution-id>
<institution>School of Chemistry,</institution>
<institution>The University of Sydney, Building F11,</institution>
</institution-wrap>
Sydney, NSW 2006 Australia</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">29051479</idno>
<idno type="pmc">5648752</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5648752</idno>
<idno type="RBID">PMC:5648752</idno>
<idno type="doi">10.1038/s41467-017-00776-1</idno>
<date when="2017">2017</date>
<idno type="wicri:Area/Pmc/Corpus">000D89</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000D89</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Spin crossover-induced colossal positive and negative thermal expansion in a nanoporous coordination framework material</title>
<author>
<name sortKey="Mullaney, Benjamin R" sort="Mullaney, Benjamin R" uniqKey="Mullaney B" first="Benjamin R." last="Mullaney">Benjamin R. Mullaney</name>
<affiliation>
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 1936 834X</institution-id>
<institution-id institution-id-type="GRID">grid.1013.3</institution-id>
<institution>School of Chemistry,</institution>
<institution>The University of Sydney, Building F11,</institution>
</institution-wrap>
Sydney, NSW 2006 Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Goux Capes, Laurence" sort="Goux Capes, Laurence" uniqKey="Goux Capes L" first="Laurence" last="Goux-Capes">Laurence Goux-Capes</name>
<affiliation>
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 1936 834X</institution-id>
<institution-id institution-id-type="GRID">grid.1013.3</institution-id>
<institution>School of Chemistry,</institution>
<institution>The University of Sydney, Building F11,</institution>
</institution-wrap>
Sydney, NSW 2006 Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Price, David J" sort="Price, David J" uniqKey="Price D" first="David J." last="Price">David J. Price</name>
<affiliation>
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 1936 834X</institution-id>
<institution-id institution-id-type="GRID">grid.1013.3</institution-id>
<institution>School of Chemistry,</institution>
<institution>The University of Sydney, Building F11,</institution>
</institution-wrap>
Sydney, NSW 2006 Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Chastanet, Guillaume" sort="Chastanet, Guillaume" uniqKey="Chastanet G" first="Guillaume" last="Chastanet">Guillaume Chastanet</name>
<affiliation>
<nlm:aff id="Aff2">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0001 2106 639X</institution-id>
<institution-id institution-id-type="GRID">grid.412041.2</institution-id>
<institution>ICMCB, UPR CNRS 9048,</institution>
<institution>Université Bordeaux I,</institution>
</institution-wrap>
87 Av. du Doc. A., Schweitzer, F-33608 Pessac France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Letard, Jean Francois" sort="Letard, Jean Francois" uniqKey="Letard J" first="Jean-François" last="Létard">Jean-François Létard</name>
<affiliation>
<nlm:aff id="Aff2">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0001 2106 639X</institution-id>
<institution-id institution-id-type="GRID">grid.412041.2</institution-id>
<institution>ICMCB, UPR CNRS 9048,</institution>
<institution>Université Bordeaux I,</institution>
</institution-wrap>
87 Av. du Doc. A., Schweitzer, F-33608 Pessac France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kepert, Cameron J" sort="Kepert, Cameron J" uniqKey="Kepert C" first="Cameron J." last="Kepert">Cameron J. Kepert</name>
<affiliation>
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 1936 834X</institution-id>
<institution-id institution-id-type="GRID">grid.1013.3</institution-id>
<institution>School of Chemistry,</institution>
<institution>The University of Sydney, Building F11,</institution>
</institution-wrap>
Sydney, NSW 2006 Australia</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Nature Communications</title>
<idno type="eISSN">2041-1723</idno>
<imprint>
<date when="2017">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p id="Par1">External control over the mechanical function of materials is paramount in the development of nanoscale machines. Yet, exploiting changes in atomic behaviour to produce controlled scalable motion is a formidable challenge. Here, we present an ultra-flexible coordination framework material in which a cooperative electronic transition induces an extreme abrupt change in the crystal lattice conformation. This arises due to a change in the preferred coordination character of Fe(II) sites at different spin states, generating scissor-type flexing of the crystal lattice. Diluting the framework with transition-inactive Ni(II) sites disrupts long-range communication of spin state through the lattice, producing a more gradual transition and continuous lattice movement, thus generating colossal positive and negative linear thermal expansion behaviour, with coefficients of thermal expansion an order of magnitude greater than previously reported. This study has wider implications in the development of advanced responsive structures, demonstrating electronic control over mechanical motion.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Du, G" uniqKey="Du G">G Du</name>
</author>
<author>
<name sortKey="Moulin, E" uniqKey="Moulin E">E Moulin</name>
</author>
<author>
<name sortKey="Jouault, N" uniqKey="Jouault N">N Jouault</name>
</author>
<author>
<name sortKey="Buhler, E" uniqKey="Buhler E">E Buhler</name>
</author>
<author>
<name sortKey="Giuseppone, N" uniqKey="Giuseppone N">N Giuseppone</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, J" uniqKey="Chen J">J Chen</name>
</author>
<author>
<name sortKey="Hu, L" uniqKey="Hu L">L Hu</name>
</author>
<author>
<name sortKey="Deng, J" uniqKey="Deng J">J Deng</name>
</author>
<author>
<name sortKey="Xing, X" uniqKey="Xing X">X Xing</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Salvador, Jr" uniqKey="Salvador J">JR Salvador</name>
</author>
<author>
<name sortKey="Guo, F" uniqKey="Guo F">F Guo</name>
</author>
<author>
<name sortKey="Hogan, T" uniqKey="Hogan T">T Hogan</name>
</author>
<author>
<name sortKey="Kanatzidis, Mg" uniqKey="Kanatzidis M">MG Kanatzidis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Margadonna, S" uniqKey="Margadonna S">S Margadonna</name>
</author>
<author>
<name sortKey="Arvanitidis, J" uniqKey="Arvanitidis J">J Arvanitidis</name>
</author>
<author>
<name sortKey="Papagelis, K" uniqKey="Papagelis K">K Papagelis</name>
</author>
<author>
<name sortKey="Prassides, K" uniqKey="Prassides K">K Prassides</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mary, Ta" uniqKey="Mary T">TA Mary</name>
</author>
<author>
<name sortKey="Evans, Jso" uniqKey="Evans J">JSO Evans</name>
</author>
<author>
<name sortKey="Vogt, T" uniqKey="Vogt T">T Vogt</name>
</author>
<author>
<name sortKey="Sleight, Aw" uniqKey="Sleight A">AW Sleight</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Goodwin, Al" uniqKey="Goodwin A">AL Goodwin</name>
</author>
<author>
<name sortKey="Kepert, Cj" uniqKey="Kepert C">CJ Kepert</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Goodwin, Al" uniqKey="Goodwin A">AL Goodwin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Das, D" uniqKey="Das D">D Das</name>
</author>
<author>
<name sortKey="Jacobs, T" uniqKey="Jacobs T">T Jacobs</name>
</author>
<author>
<name sortKey="Barbour, Lj" uniqKey="Barbour L">LJ Barbour</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Azuma, M" uniqKey="Azuma M">M Azuma</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kahn, O" uniqKey="Kahn O">O Kahn</name>
</author>
<author>
<name sortKey="Martinez, Cj" uniqKey="Martinez C">CJ Martinez</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Halder, Gj" uniqKey="Halder G">GJ Halder</name>
</author>
<author>
<name sortKey="Kepert, Cj" uniqKey="Kepert C">CJ Kepert</name>
</author>
<author>
<name sortKey="Moubaraki, B" uniqKey="Moubaraki B">B Moubaraki</name>
</author>
<author>
<name sortKey="Murray, Ks" uniqKey="Murray K">KS Murray</name>
</author>
<author>
<name sortKey="Cashion, Jd" uniqKey="Cashion J">JD Cashion</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Real, Ja" uniqKey="Real J">JA Real</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, T" uniqKey="Liu T">T Liu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shepherd, Hj" uniqKey="Shepherd H">HJ Shepherd</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Southon, Pd" uniqKey="Southon P">PD Southon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bartual Murgui, C" uniqKey="Bartual Murgui C">C Bartual-Murgui</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Clements, Je" uniqKey="Clements J">JE Clements</name>
</author>
<author>
<name sortKey="Price, Jr" uniqKey="Price J">JR Price</name>
</author>
<author>
<name sortKey="Neville, Sm" uniqKey="Neville S">SM Neville</name>
</author>
<author>
<name sortKey="Kepert, Cj" uniqKey="Kepert C">CJ Kepert</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Su, S Q" uniqKey="Su S">S-Q Su</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Panda, Mk" uniqKey="Panda M">MK Panda</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wharmby, Mt" uniqKey="Wharmby M">MT Wharmby</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, Y" uniqKey="Liu Y">Y Liu</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Willenbacher, N" uniqKey="Willenbacher N">N Willenbacher</name>
</author>
<author>
<name sortKey="Spiering, H" uniqKey="Spiering H">H Spiering</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hauser, A" uniqKey="Hauser A">A Hauser</name>
</author>
<author>
<name sortKey="Gutlich, P" uniqKey="Gutlich P">P Gütlich</name>
</author>
<author>
<name sortKey="Spiering, H" uniqKey="Spiering H">H Spiering</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gutlich, P" uniqKey="Gutlich P">P Gütlich</name>
</author>
<author>
<name sortKey="Ksenofontov, V" uniqKey="Ksenofontov V">V Ksenofontov</name>
</author>
<author>
<name sortKey="Gaspar, Ab" uniqKey="Gaspar A">AB Gaspar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gutlich, P" uniqKey="Gutlich P">P Gütlich</name>
</author>
<author>
<name sortKey="Hauser, A" uniqKey="Hauser A">A Hauser</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Toby, Bh" uniqKey="Toby B">BH Toby</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Nat Commun</journal-id>
<journal-id journal-id-type="iso-abbrev">Nat Commun</journal-id>
<journal-title-group>
<journal-title>Nature Communications</journal-title>
</journal-title-group>
<issn pub-type="epub">2041-1723</issn>
<publisher>
<publisher-name>Nature Publishing Group UK</publisher-name>
<publisher-loc>London</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">29051479</article-id>
<article-id pub-id-type="pmc">5648752</article-id>
<article-id pub-id-type="publisher-id">776</article-id>
<article-id pub-id-type="doi">10.1038/s41467-017-00776-1</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Spin crossover-induced colossal positive and negative thermal expansion in a nanoporous coordination framework material</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author" equal-contrib="yes">
<name>
<surname>Mullaney</surname>
<given-names>Benjamin R.</given-names>
</name>
<xref ref-type="aff" rid="Aff1">1</xref>
</contrib>
<contrib contrib-type="author" equal-contrib="yes">
<name>
<surname>Goux-Capes</surname>
<given-names>Laurence</given-names>
</name>
<xref ref-type="aff" rid="Aff1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Price</surname>
<given-names>David J.</given-names>
</name>
<xref ref-type="aff" rid="Aff1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Chastanet</surname>
<given-names>Guillaume</given-names>
</name>
<xref ref-type="aff" rid="Aff2">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Létard</surname>
<given-names>Jean-François</given-names>
</name>
<xref ref-type="aff" rid="Aff2">2</xref>
</contrib>
<contrib contrib-type="author" corresp="yes">
<contrib-id contrib-id-type="orcid">http://orcid.org/0000-0002-6105-9706</contrib-id>
<name>
<surname>Kepert</surname>
<given-names>Cameron J.</given-names>
</name>
<address>
<email>cameron.kepert@sydney.edu.au</email>
</address>
<xref ref-type="aff" rid="Aff1">1</xref>
</contrib>
<aff id="Aff1">
<label>1</label>
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 1936 834X</institution-id>
<institution-id institution-id-type="GRID">grid.1013.3</institution-id>
<institution>School of Chemistry,</institution>
<institution>The University of Sydney, Building F11,</institution>
</institution-wrap>
Sydney, NSW 2006 Australia</aff>
<aff id="Aff2">
<label>2</label>
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0001 2106 639X</institution-id>
<institution-id institution-id-type="GRID">grid.412041.2</institution-id>
<institution>ICMCB, UPR CNRS 9048,</institution>
<institution>Université Bordeaux I,</institution>
</institution-wrap>
87 Av. du Doc. A., Schweitzer, F-33608 Pessac France</aff>
</contrib-group>
<pub-date pub-type="epub">
<day>20</day>
<month>10</month>
<year>2017</year>
</pub-date>
<pub-date pub-type="pmc-release">
<day>20</day>
<month>10</month>
<year>2017</year>
</pub-date>
<pub-date pub-type="collection">
<year>2017</year>
</pub-date>
<volume>8</volume>
<elocation-id>1053</elocation-id>
<history>
<date date-type="received">
<day>14</day>
<month>12</month>
<year>2016</year>
</date>
<date date-type="accepted">
<day>27</day>
<month>7</month>
<year>2017</year>
</date>
</history>
<permissions>
<copyright-statement>© The Author(s) 2017</copyright-statement>
<license license-type="OpenAccess">
<license-p>
<bold>Open Access</bold>
This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by/4.0/">http://creativecommons.org/licenses/by/4.0/</ext-link>
.</license-p>
</license>
</permissions>
<abstract id="Abs1">
<p id="Par1">External control over the mechanical function of materials is paramount in the development of nanoscale machines. Yet, exploiting changes in atomic behaviour to produce controlled scalable motion is a formidable challenge. Here, we present an ultra-flexible coordination framework material in which a cooperative electronic transition induces an extreme abrupt change in the crystal lattice conformation. This arises due to a change in the preferred coordination character of Fe(II) sites at different spin states, generating scissor-type flexing of the crystal lattice. Diluting the framework with transition-inactive Ni(II) sites disrupts long-range communication of spin state through the lattice, producing a more gradual transition and continuous lattice movement, thus generating colossal positive and negative linear thermal expansion behaviour, with coefficients of thermal expansion an order of magnitude greater than previously reported. This study has wider implications in the development of advanced responsive structures, demonstrating electronic control over mechanical motion.</p>
</abstract>
<abstract id="Abs2" abstract-type="web-summary">
<p id="Par2">Controlling mechanical motions in solid state devices is highly desirable for the development of nanoscale machines. Here, Kepert and colleagues exploit an ultra-flexible coordination framework in which thermally-controlled Fe(II) spin transitions result in remarkable flexing of the crystal lattice.</p>
</abstract>
<custom-meta-group>
<custom-meta>
<meta-name>issue-copyright-statement</meta-name>
<meta-value>© The Author(s) 2017</meta-value>
</custom-meta>
</custom-meta-group>
</article-meta>
</front>
<body>
<sec id="Sec1" sec-type="introduction">
<title>Introduction</title>
<p id="Par3">Control of mechanical function in solid state devices requires precise manipulation of material structure. Such functional components commonly employ vibrational or electronic mechanisms, such as magnetostriction
<sup>
<xref ref-type="bibr" rid="CR1">1</xref>
</sup>
and the piezoelectric effect
<sup>
<xref ref-type="bibr" rid="CR2">2</xref>
</sup>
which may be controlled, for example, through thermal, electrical and magnetic stimuli. However, the achievement of prominent push–pull mechanical action in a material presents a major challenge due to the large magnitude of controlled structural change required. One approach is through stimuli-responsive organic assemblies, such as electroactive polymers
<sup>
<xref ref-type="bibr" rid="CR3">3</xref>
</sup>
, and positionally switchable polymeric rotaxanes
<sup>
<xref ref-type="bibr" rid="CR4">4</xref>
</sup>
, which have potential as artificial molecular muscles. An alternative strategy is to target geometrically flexible crystalline materials which can undergo induced conformational change.</p>
<p id="Par4">Materials that exhibit anomalous thermal expansion properties are deeply important to understand and strategically design thermomechanical behaviour
<sup>
<xref ref-type="bibr" rid="CR5">5</xref>
</sup>
. It is well understood that most materials exhibit positive thermal expansion (PTE) as higher temperatures increase the amplitude of atomic bond vibrations
<sup>
<xref ref-type="bibr" rid="CR6">6</xref>
</sup>
, for which the relative rate of thermal expansion
<sup>
<xref ref-type="bibr" rid="CR7">7</xref>
</sup>
,
<italic>α</italic>
, usually lies within the range 0 × 10
<sup>−6</sup>
 K
<sup>−1</sup>
 < α < 20 × 10
<sup>−6</sup>
 K
<sup>−1</sup>
. Near-zero thermal expansion or negative thermal expansion (NTE) can arise from a range of different mechanisms, including phase transitions such as magnetostriction in ferromagnetic materials
<sup>
<xref ref-type="bibr" rid="CR8">8</xref>
</sup>
, valence transitions in intermetallic
<sup>
<xref ref-type="bibr" rid="CR9">9</xref>
</sup>
and fulleride
<sup>
<xref ref-type="bibr" rid="CR10">10</xref>
</sup>
materials, and the population of low-energy phonon modes, such as is observed in flexible oxide- or cyanide-bridged framework materials
<sup>
<xref ref-type="bibr" rid="CR11">11</xref>
,
<xref ref-type="bibr" rid="CR12">12</xref>
</sup>
. Colossal thermal expansion
<sup>
<xref ref-type="bibr" rid="CR13">13</xref>
</sup>
, in which the coefficient of thermal expansion has a magnitude, |α| > 100 × 10
<sup>−6</sup>
K
<sup>−1</sup>
, is of intense interest for generating the structural change necessary for thermomechanical action, and has been observed to arise through vibrational
<sup>
<xref ref-type="bibr" rid="CR13">13</xref>
,
<xref ref-type="bibr" rid="CR14">14</xref>
</sup>
, and intermetallic charge transfer
<sup>
<xref ref-type="bibr" rid="CR15">15</xref>
</sup>
mechanisms.</p>
<p id="Par5">Here we exploit the electronic phenomenon of spin crossover, which is very strongly coupled to the crystal lattice, to achieve unprecedented thermal mechanical function, as observed through extreme PTE and NTE. The spin crossover phenomenon, in which a metal ion switches between different electronic spin states, is a reversible transition that can be induced by multiple external inputs, such as temperature, pressure, guest or light irradiation
<sup>
<xref ref-type="bibr" rid="CR16">16</xref>
<xref ref-type="bibr" rid="CR19">19</xref>
</sup>
. The strong electron–lattice coupling is due to changes in the geometry and strength of coordination bonding at the metal site. Exploiting this structure–property relationship, recent reports have shown that spin crossover materials can be used to create light-induced molecular actuators
<sup>
<xref ref-type="bibr" rid="CR20">20</xref>
,
<xref ref-type="bibr" rid="CR21">21</xref>
</sup>
. Herein we present the ultra-flexible framework, [Fe(bpac)(Au(CN)
<sub>2</sub>
)
<sub>2</sub>
]·2EtOH (bpac = 1,2-bis(4′-pyridyl)acetylene), noted hereafter as [Fe], in which an electronic transition affects the delicate interplay of weak interactions in the framework, producing a dramatic mechanical effect on the lattice. Furthermore, strategically diluting the framework with Ni(II) disrupts the cooperativity of the spin crossover, resulting in continuous colossal thermal expansion over the transition temperature range.</p>
</sec>
<sec id="Sec2" sec-type="results">
<title>Results</title>
<sec id="Sec3">
<title>Framework lattice structure</title>
<p id="Par6">The single-crystal X-ray structure of [Fe] at 190 K is shown in Fig. 
<xref rid="Fig1" ref-type="fig">1a, b</xref>
. The framework consists of rhombic grids of {Fe(Au(CN)
<sub>2</sub>
)
<sub>2</sub>
} which lie parallel to the
<italic>ab</italic>
-plane and are pillared perpendicularly by disordered bpac ligands, forming a three-dimensional net. The length of the Au(CN)
<sub>2</sub>
<sup></sup>
and bpac ligands results in sufficient pore space for a second identical net to be interpenetrated within the first. The relative orientation of these nets is driven by strong aurophilic interactions, as evidenced by a characteristic Au···Au distance between the adjacent metal cyanide grids of 3.0843(5) Å. Modelling of the electron density in the pore space revealed 2 ethanol molecules per formula unit.
<fig id="Fig1">
<label>Fig. 1</label>
<caption>
<p>Single crystal structure of [Fe].
<bold>a</bold>
at 190 K viewed along the
<italic>a</italic>
-axis, and
<bold>b</bold>
, the
<italic>c</italic>
-axis directions. The lattice conformation of the {Fe(Au(CN)
<sub>2</sub>
)
<sub>2</sub>
} sheets in the
<italic>ab</italic>
-plane is shown for comparison at 190 K
<bold>c</bold>
, and 240 K
<bold>d</bold>
. Note the relative LS–HS change in the unit cell dimensions: Δ
<italic>a</italic>
 = −6.8%; Δ
<italic>b</italic>
 = + 10.2%. Au···Fe···Au angles:
<italic>ϕ</italic>
<sub>LS</sub>
 = 76.85°;
<italic>ϕ</italic>
<sub>HS</sub>
 = 67.77°. Fe and Au centres are represented by larger and smaller spheres respectively and the interpenetrating nets are shaded
<italic>blue</italic>
and
<italic>orange</italic>
. Hydrogen atoms and disordered solvent are omitted for clarity</p>
</caption>
<graphic xlink:href="41467_2017_776_Fig1_HTML" id="d29e438"></graphic>
</fig>
</p>
<p id="Par7">Single crystal structures obtained at 190 and 240 K reveal the framework to be in the low spin (LS) and high spin (HS) states respectively, as identified by the mean Fe–N bond length (1.96(4) Å at 190 K; 2.17(9) Å at 240 K)
<sup>
<xref ref-type="bibr" rid="CR22">22</xref>
</sup>
. As expected, the crystallographic
<italic>c</italic>
parameter increases from LS to HS, and correlates well with the increase in the Fe–N bond lengths. However, the change in the
<italic>a</italic>
and
<italic>b</italic>
parameters is so pronounced that it cannot be attributed to the change in bond length alone: from the LS to HS state, the parametric changes are Δ
<italic>a</italic>
 = −0.850(3) Å and Δ
<italic>b</italic>
 =  + 1.610(5) Å, which are observed crystallographically as an increased lattice compression (Fig. 
<xref rid="Fig1" ref-type="fig">1c, d</xref>
).</p>
</sec>
<sec id="Sec4">
<title>Lattice flexing mechanism</title>
<p id="Par8">To understand the mechanism for this remarkable behaviour, it is necessary to consider the various structural energetics involved. First, there is expected to be very little energy penalty associated with scissor-type motion of the rhombic {Fe(Au(CN)
<sub>2</sub>
)
<sub>2</sub>
} grids, with the framework topology being highly underconstrained, allowing weak intermolecular interactions to affect the grid geometry. Factors that influence this include weak inter-network ligand–ligand interactions and possible host–guest interactions, which appear to favour distortion of the framework away from a regular orthogonal geometry, leading to bond characteristics such as non-linear Au–CN–Fe linkages and a distorted Fe(N)
<sub>6</sub>
octahedral coordination. At temperatures above the transition, this framework distortion is geometrically allowed by the weaker bonding of the HS Fe(II) centres, which can adopt a distorted octahedral geometry with non-linear coordination of the cyanide groups. At 240 K the Fe(II) octahedral distortion parameter (the sum of the deviations from 90° for all
<italic>cis</italic>
bond angles), Σ
<sub>HS</sub>
 = 19°, and the acute Au···Fe···Au angle,
<italic> θ</italic>
<sub>HS</sub>
 = 67.77°. Conversely, LS Fe(II) is energetically driven to become more regularly octahedral, with a more linear coordination of the cyanide ligands, due to the stronger Fe–N bonds, and optimisation of metal–ligand orbital interactions of this spin state. These changes in the lattice conformation result in {Fe(Au(CN)
<sub>2</sub>
)
<sub>2</sub>
} rhombic grids with a structure that is closer to an orthogonal conformation. At 190 K the Fe(II) Σ
<sub>LS</sub>
is reduced to 10° and the acute Au···Fe···Au angle,
<italic> θ</italic>
<sub>LS</sub>
increases to 76.85°. It is clear that the scissor-like lattice flexing behaviour is partially driven by the Fe(II) coordination geometry, as the more rigidly orthogonal LS environment induces a lattice conformation such that the acute Au···Fe···Au angle is also closer to 90°, resulting in expansion along the
<italic>a</italic>
-axis, and contraction along the
<italic>b</italic>
-axis.</p>
<p id="Par9">This lattice flexing behaviour has not been previously observed in spin crossover materials, with the predominant behaviour being anisotropic PTE through the spin transition. The ‘Hofmann-type’ framework series incorporates tetracyanidometallate (
<italic>M</italic>
 = Ni, Pd, Pt) components, which are rigidly restrained to a near-orthogonal conformation of the metal cyanide grids
<sup>
<xref ref-type="bibr" rid="CR23">23</xref>
,
<xref ref-type="bibr" rid="CR24">24</xref>
</sup>
, while the structurally analogous [Fe(bipytz)(Au(CN)
<sub>2</sub>
)
<sub>2</sub>
] (bipytz = 3,6-bis(4-pyridyl)-1,2,4,5-tetrazine) framework conformation is driven by strong inter-lattice interactions which energetically preclude any significant flexing of the framework
<sup>
<xref ref-type="bibr" rid="CR25">25</xref>
</sup>
.</p>
</sec>
<sec id="Sec5">
<title>Spin crossover behaviour of [Fe]</title>
<p id="Par10">The spin transition properties of [Fe] were studied using variable temperature magnetic susceptibility (Fig. 
<xref rid="Fig2" ref-type="fig">2a</xref>
). The material undergoes an abrupt spin transition, with a cooling HS (
<sup>5</sup>
T
<sub>2g</sub>
) to LS (
<sup>1</sup>
A
<sub>1g</sub>
) transition temperature of
<inline-formula id="IEq1">
<alternatives>
<tex-math id="M1">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{1/2}^ \downarrow $$\end{document}</tex-math>
<mml:math id="M2">
<mml:msubsup>
<mml:mrow>
<mml:mi>T</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mn>1</mml:mn>
<mml:mo></mml:mo>
<mml:mn>2</mml:mn>
</mml:mrow>
<mml:mrow>
<mml:mi></mml:mi>
</mml:mrow>
</mml:msubsup>
</mml:math>
<inline-graphic xlink:href="41467_2017_776_Article_IEq1.gif"></inline-graphic>
</alternatives>
</inline-formula>
=221 K and a heating LS to HS transition temperature of
<inline-formula id="IEq2">
<alternatives>
<tex-math id="M3">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{1/2}^ \uparrow $$\end{document}</tex-math>
<mml:math id="M4">
<mml:msubsup>
<mml:mrow>
<mml:mi>T</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mn>1</mml:mn>
<mml:mo></mml:mo>
<mml:mn>2</mml:mn>
</mml:mrow>
<mml:mrow>
<mml:mi></mml:mi>
</mml:mrow>
</mml:msubsup>
</mml:math>
<inline-graphic xlink:href="41467_2017_776_Article_IEq2.gif"></inline-graphic>
</alternatives>
</inline-formula>
=226 K, producing a hysteresis width of ~ 5 K. Differential scanning calorimetry (DSC) data for this material are consistent with the presence of this reversible spin transition, showing an exothermic peak at 220 K on cooling, and an endothermic peak at 228 K on warming (Supplementary Fig. 
<xref rid="MOESM1" ref-type="media">13</xref>
).
<fig id="Fig2">
<label>Fig. 2</label>
<caption>
<p>Variable temperature behaviour of [Fe].
<bold>a</bold>
Molar magnetic susceptibility product
<italic>χ</italic>
<sub>M</sub>
<italic>T vs</italic>
. temperature.
<bold>b</bold>
the percentage change in lattice dimension for
<italic>a, b, c</italic>
and volume. Data are presented upon (
<italic>filled triangle</italic>
) cooling and (
<italic>unfilled triangle</italic>
) warming</p>
</caption>
<graphic xlink:href="41467_2017_776_Fig2_HTML" id="d29e637"></graphic>
</fig>
</p>
<p id="Par11">To study the structural behaviour of the framework above and below the spin transition, variable temperature synchrotron powder X-ray diffraction was employed, and modelled using Le Bail fits to yield lattice parameters
<sup>
<xref ref-type="bibr" rid="CR26">26</xref>
</sup>
. As shown in Fig. 
<xref rid="Fig2" ref-type="fig">2b</xref>
, the spin transition results in phase discontinuities at ~ 215 and ~ 221 K for the cooling and warming datasets respectively, over which there are large changes in the
<italic>a</italic>
,
<italic>b</italic>
and
<italic>c</italic>
parameters. From the LS (185 K) to HS (230 K) state, Δ
<italic>a</italic>
 = −0.606(1) Å and Δ
<italic>b</italic>
 =  + 1.343(2) Å. Below the spin transition the scissor-type lattice flexing continues until a second hysteretic transition occurs between 172 and 162 K, which is not electronic in origin (as is consistent with both the magnetic and DSC data, the latter indicating that only a small enthalpic change occurs; Supplementary Fig. 
<xref rid="MOESM1" ref-type="media">13a</xref>
), producing additional lattice changes from 140 to 185 K of Δ
<italic>a</italic>
 = −0.213(2) Å and Δ
<italic>b</italic>
 =  + 0.203(2) Å. In total from 140 to 230 K, the
<italic>a</italic>
parameter contracts by 6.2% and the
<italic>b</italic>
parameter expands by 10%. Indeed, the degrees of structural change are comparable with a number of notable materials which exhibit large abrupt phase transitions, including ~ 7% in a rotor compound
<sup>
<xref ref-type="bibr" rid="CR27">27</xref>
</sup>
and ~ 8% in an organometallic martensite
<sup>
<xref ref-type="bibr" rid="CR28">28</xref>
</sup>
. While the relative dimension changes for [Fe] are less than previously reported for certain porous materials
<sup>
<xref ref-type="bibr" rid="CR29">29</xref>
,
<xref ref-type="bibr" rid="CR30">30</xref>
</sup>
, importantly they are achieved through an electronic mechanism, which can be manipulated to produce controlled, continuous motion through lattice modification.</p>
</sec>
<sec id="Sec6">
<title>Metal dilution for continuous colossal thermal expansion</title>
<p id="Par12">The observation of extreme transition-induced changes in the lattice structure prompted us to investigate methods to produce continuous lattice motion. Temperature-dependent rates of dimension change cannot be determined for a discontinuous phase transition, but disruption of lattice cooperativity to induce a gradual structural transition in the bulk material enables extraction of coefficients of thermal expansion. The sharpness of a spin transition is understood to occur predominantly through long-range elastic interactions between metals centres
<sup>
<xref ref-type="bibr" rid="CR31">31</xref>
,
<xref ref-type="bibr" rid="CR32">32</xref>
</sup>
, and it has been shown that dilution with non-spin crossover metal sites disrupts the lattice cooperativity, resulting in more gradual spin transition behaviour
<sup>
<xref ref-type="bibr" rid="CR33">33</xref>
</sup>
.</p>
<p id="Par13">To apply this strategy, we required a metal with a coordination volume that is intermediate between that of HS and LS Fe(II) so as to minimise the dopant effect on the spin transition temperature. For this reason, we chose to introduce Ni(II) dopant sites into the [Fe] framework. The resulting materials, [Fe
<sub>
<italic>x</italic>
</sub>
Ni
<sub>1
<bold></bold>
<italic>x</italic>
</sub>
(bpac)(Au(CN)
<sub>2</sub>
)
<sub>2</sub>
]·2EtOH (denoted hereafter as [Fe
<sub>
<italic>x</italic>
</sub>
Ni
<sub>1−
<italic>x</italic>
</sub>
]), are isostructural with the pure [Fe] material. Temperature-dependent magnetic susceptibility studies on [Fe
<sub>
<italic>x</italic>
</sub>
Ni
<sub>1−
<italic>x</italic>
</sub>
] demonstrated that Ni(II) dilution results in a more gradual spin transition, as anticipated, with a higher Ni(II) proportion resulting in a wider temperature range of the transition, and an increased residual HS fraction below the transition (Fig. 
<xref rid="Fig3" ref-type="fig">3</xref>
).
<fig id="Fig3">
<label>Fig. 3</label>
<caption>
<p>Effect of metal dilution on spin crossover. The Fe(II) high spin fraction (γ
<sub>HS</sub>
) was calculated from variable temperature magnetic susceptibility data for [Fe
<sub>
<italic>x</italic>
</sub>
Ni
<sub>1−
<italic>x</italic>
</sub>
].
<italic>Lines</italic>
are included for visual clarity</p>
</caption>
<graphic xlink:href="41467_2017_776_Fig3_HTML" id="d29e775"></graphic>
</fig>
</p>
<p id="Par14">The gradual spin crossover behaviour of the [Fe
<sub>
<italic>x</italic>
</sub>
Ni
<sub>1−
<italic>x</italic>
</sub>
] series is directly coupled with continuous lattice motion over the spin transition, as observed by powder X-ray diffraction. Importantly, the diffraction data also indicate that this behaviour arises from the bulk homogeneous material, rather than from a distribution of varying dilution levels within different crystallites (Supplementary Fig. 
<xref rid="MOESM1" ref-type="media">5</xref>
). Continuous thermomechanical motion is clearly demonstrated by the [Fe
<sub>0.84</sub>
Ni
<sub>0.16</sub>
] material, which exhibits extreme lattice flexing (Fig. 
<xref rid="Fig4" ref-type="fig">4a</xref>
) that can be modelled to determine coefficients of thermal expansion (Fig. 
<xref rid="Fig4" ref-type="fig">4b</xref>
; Supplementary Note 
<xref rid="MOESM1" ref-type="media">4</xref>
;
<xref rid="MOESM3" ref-type="media">Supplementary Movie</xref>
for mechanism animation). At 215 K, the linear coefficients of thermal expansion along the
<italic>a</italic>
,
<italic>b</italic>
and
<italic>c</italic>
axes are α
<sub>
<italic>a</italic>
</sub>
 = −3200 × 10
<sup>−6</sup>
K
<sup>−1</sup>
, α
<sub>
<italic>b</italic>
</sub>
 =  + 5200 × 10
<sup>−6</sup>
K
<sup>−1</sup>
and α
<sub>
<italic>c</italic>
</sub>
 =  + 1500 × 10
<sup>−6</sup>
K
<sup>−1</sup>
respectively. To our knowledge, these continuous NTE and PTE values are an order of magnitude greater than any reported to date.
<fig id="Fig4">
<label>Fig. 4</label>
<caption>
<p>Temperature-dependence on the structure of [Fe
<sub>0.84</sub>
Ni
<sub>0.16</sub>
].
<bold>a</bold>
Lattice parameters (
<italic>markers</italic>
represent data;
<italic>line</italic>
represents fitted model):
<italic>a, b, c</italic>
and volume.
<bold>b</bold>
Thermal expansion coefficients (from model),
<italic>α</italic>
: for
<italic>a, b, c</italic>
and volume</p>
</caption>
<graphic xlink:href="41467_2017_776_Fig4_HTML" id="d29e887"></graphic>
</fig>
</p>
<p id="Par15">As increasing the Ni(II) dilution broadens the spin transition temperature, the colossal linear thermal expansion similarly occurs over a wider temperature range, with a concomitant reduction in its peak magnitude. As shown in Fig. 
<xref rid="Fig5" ref-type="fig">5</xref>
, the maximum coefficients of thermal expansion decrease from
<italic>x</italic>
 = 0.84 to 0.68, though a colossal magnitude is still observed, with |α| > 500 × 10
<sup>−6</sup>
K
<sup>−1</sup>
for the
<italic>a</italic>
and
<italic>b</italic>
parameters at 216 K. Further dilution to
<italic>x</italic>
 = 0.57 does not significantly affect the spin crossover behaviour, but at
<italic>x</italic>
 = 0.35 the transition is more gradual and incomplete, and the maximum thermal expansion coefficients decrease accordingly.
<fig id="Fig5">
<label>Fig. 5</label>
<caption>
<p>Maximum coefficients of thermal expansion for [Fe
<sub>
<italic>x</italic>
</sub>
Ni
<sub>1−
<italic>x</italic>
</sub>
]. These values were calculated using a model fit to the lattice parameter data.
<italic>Lines</italic>
are included as a visual guide</p>
</caption>
<graphic xlink:href="41467_2017_776_Fig5_HTML" id="d29e936"></graphic>
</fig>
</p>
</sec>
</sec>
<sec id="Sec7" sec-type="discussion">
<title>Discussion</title>
<p id="Par16">Controlling the energetics of spin switching has enabled access to an unprecedented magnitude of extreme linear thermal expansion behaviour. By coupling an electronic transition with an ultra-flexible crystal lattice, mechanical motion is generated by changes in the metal coordination behaviour. Here we have demonstrated that the weak energetic perturbation of temperature can generate extreme lattice movement and, moreover, that fine control of this effect can be engineered through variation in framework composition. It is also well established that spin transitions are accessible through other stimuli, such as pressure
<sup>
<xref ref-type="bibr" rid="CR34">34</xref>
</sup>
, guest effects
<sup>
<xref ref-type="bibr" rid="CR18">18</xref>
</sup>
or light irradiation
<sup>
<xref ref-type="bibr" rid="CR35">35</xref>
</sup>
. These could potentially allow access to new methods to induce mechanical change, perhaps paving the way toward light-activated artificial muscles.</p>
</sec>
<sec id="Sec8" sec-type="materials|methods">
<title>Methods</title>
<sec id="Sec9">
<title>Sample Preparation</title>
<p id="Par17">Single crystals of framework [Fe] were grown by slow diffusion of a 1:2:1 molar ratio of Fe(ClO
<sub>4</sub>
)
<sub>2</sub>
·9H
<sub>2</sub>
O, K[Au(CN)
<sub>2</sub>
] and 1,2-bis(4′-pyridyl)acetylene (bpac) in ethanol. Bulk powder was synthesised by fast mixing of the same components, with substitution of varying molar ratios of Ni(ClO
<sub>4</sub>
)
<sub>2</sub>
·6H
<sub>2</sub>
O for the Ni(II)-diluted species, [Fe
<sub>
<italic>x</italic>
</sub>
Ni
<sub>1−
<italic>x</italic>
</sub>
]. The crystal structures of the bulk synthesis products were confirmed by powder X-ray diffraction, and sample purity by elemental analysis (see Supplementary Methods).</p>
</sec>
<sec id="Sec10">
<title>Single-crystal X-ray diffraction</title>
<p id="Par18">Reflection data were collected on a Bruker-Nonius FR591 Kappa APEX II equipped with Mo-Kα (0.71073 Å) and an Oxford Instruments nitrogen gas cryostream. The crystal was first quench-cooled in the cryostream at 100 K, then data collections were performed at 190 and 240 K, below and above the spin crossover transition, respectively. Both structures were solved in the orthorhombic space group
<italic>Cmma</italic>
. Disordered guest ethanol molecules were modelled inside the pores of both structures (2.0 EtOH per formula unit).</p>
</sec>
<sec id="Sec11">
<title>Powder diffraction studies</title>
<p id="Par19">Variable temperature powder X-ray diffraction experiments were conducted on the Powder Diffraction beamline at the Australian Synchrotron. Unit cell parameters were modelled with a Le Bail fit, using the GSAS
<sup>
<xref ref-type="bibr" rid="CR26">26</xref>
</sup>
and EXPGUI
<sup>
<xref ref-type="bibr" rid="CR36">36</xref>
</sup>
software packages. Thermal expansion parameters were calculated by fitting a model function to the variable temperature unit cell data. The model included a sigmoidal component to reflect the transition temperature range, and a polynomial component to describe the temperature range outside the transition (Supplementary Note 
<xref rid="MOESM1" ref-type="media">4</xref>
).</p>
</sec>
<sec id="Sec12">
<title>Data availability</title>
<p id="Par20">Crystal structure data for the structures reported in this study have been deposited at the Cambridge Crystallographic Data Centre (CCDC). These data have been allocated deposition nos. CCDC 1501291, 1501292 and 1534111, and can be obtained free of charge from the CCDC (
<ext-link ext-link-type="uri" xlink:href="http://www.ccdc.cam.ac.uk/datarequest/cif">http://www.ccdc.cam.ac.uk/datarequest/cif</ext-link>
).</p>
<p id="Par21">Further data that support the findings of this study are available from the corresponding author upon reasonable request.</p>
</sec>
</sec>
<sec sec-type="supplementary-material">
<title>Electronic supplementary material</title>
<sec id="Sec13">
<p>
<supplementary-material content-type="local-data" id="MOESM1">
<media xlink:href="41467_2017_776_MOESM1_ESM.pdf">
<caption>
<p>Supplementary Information</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="MOESM2">
<media xlink:href="41467_2017_776_MOESM2_ESM.pdf">
<caption>
<p>Description of Additional Supplementary Files</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="MOESM3">
<media xlink:href="41467_2017_776_MOESM3_ESM.avi">
<caption>
<p>Supplementary Movie 1</p>
</caption>
</media>
</supplementary-material>
</p>
</sec>
</sec>
</body>
<back>
<fn-group>
<fn>
<p>Benjamin R. Mullaney and Laurence Goux-Capes contributed equally to this work.</p>
</fn>
<fn>
<p>
<bold>Electronic supplementary material</bold>
</p>
<p>
<bold>Supplementary Information</bold>
accompanies this paper at doi:10.1038/s41467-017-00776-1.</p>
</fn>
<fn>
<p>
<bold>Publisher's note:</bold>
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.</p>
</fn>
</fn-group>
<ack>
<title>Acknowledgements</title>
<p>C.J.K. acknowledges financial support from the Australian Research Council. The powder X-ray diffraction experiments were undertaken at the Powder Diffraction beamline at the Australian Synchrotron, and we thank Dr Kia Wallwork and the synchrotron staff for their assistance. We also thank Dr John Clements for collection and analysis of the calorimetry data.</p>
</ack>
<notes notes-type="author-contribution">
<title>Author contributions</title>
<p>B.R.M., L.G.-C. and C.J.K. designed and undertook the experiments. D.J.P. obtained and solved the single crystal data. G.C. and J.-F.L. conducted the magnetic studies. B.R.M., L.G.-C., D.J.P. and C.J.K. prepared the manuscript.</p>
</notes>
<notes notes-type="COI-statement">
<sec id="FPar1">
<title>Competing interests</title>
<p id="Par22">The authors declare no competing financial interests.</p>
</sec>
</notes>
<ref-list id="Bib1">
<title>References</title>
<ref id="CR1">
<label>1.</label>
<mixed-citation publication-type="other">Engdahl, G. (ed).
<italic>Handbook of Giant Magnetostrictive Materials</italic>
(Academic Press, 2000).</mixed-citation>
</ref>
<ref id="CR2">
<label>2.</label>
<mixed-citation publication-type="other">Uchino, K.
<italic>Ferroelectric Devices</italic>
. (CRC Press, 2009).</mixed-citation>
</ref>
<ref id="CR3">
<label>3.</label>
<mixed-citation publication-type="other">Bar-Cohen, Y. (ed).
<italic>Electroactive Polymer (EAP) Actuators as Artificial Muscles</italic>
: (The International Society for Optical Engineering, 2004).</mixed-citation>
</ref>
<ref id="CR4">
<label>4.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Du</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Moulin</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Jouault</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Buhler</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Giuseppone</surname>
<given-names>N</given-names>
</name>
</person-group>
<article-title>Muscle-like supramolecular polymers: integrated motion from thousands of molecular machines</article-title>
<source>Angew. Chem. Int. Ed.</source>
<year>2012</year>
<volume>51</volume>
<fpage>12504</fpage>
<lpage>12508</lpage>
<pub-id pub-id-type="doi">10.1002/anie.201206571</pub-id>
</element-citation>
</ref>
<ref id="CR5">
<label>5.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chen</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Hu</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Deng</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Xing</surname>
<given-names>X</given-names>
</name>
</person-group>
<article-title>Negative thermal expansion in functional materials: controllable thermal expansion by chemical modifications</article-title>
<source>Chem. Soc. Rev.</source>
<year>2015</year>
<volume>44</volume>
<fpage>3522</fpage>
<lpage>3567</lpage>
<pub-id pub-id-type="doi">10.1039/C4CS00461B</pub-id>
<pub-id pub-id-type="pmid">25864730</pub-id>
</element-citation>
</ref>
<ref id="CR6">
<label>6.</label>
<mixed-citation publication-type="other">Barron, T. H. K. & White, G. K.
<italic>Heat Capacity and Thermal Expansion at Low Temperatures</italic>
(Kluwer Academic, 1999).</mixed-citation>
</ref>
<ref id="CR7">
<label>7.</label>
<mixed-citation publication-type="other">Krishnan, R. S., Srinivasan, R. & Devanarayanan, S.
<italic>Thermal Expansion of Crystals</italic>
(Pergamon, 1979).</mixed-citation>
</ref>
<ref id="CR8">
<label>8.</label>
<mixed-citation publication-type="other">Wasserman, E. F.
<italic>Ferromagnetic Materials</italic>
vol. V. (North-Holland, 1990).</mixed-citation>
</ref>
<ref id="CR9">
<label>9.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Salvador</surname>
<given-names>JR</given-names>
</name>
<name>
<surname>Guo</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Hogan</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Kanatzidis</surname>
<given-names>MG</given-names>
</name>
</person-group>
<article-title>Zero thermal expansion in YbGaGe due to an electronic valence transition</article-title>
<source>Nature</source>
<year>2003</year>
<volume>425</volume>
<fpage>702</fpage>
<lpage>705</lpage>
<pub-id pub-id-type="doi">10.1038/nature02011</pub-id>
<pub-id pub-id-type="pmid">14562099</pub-id>
</element-citation>
</ref>
<ref id="CR10">
<label>10.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Margadonna</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Arvanitidis</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Papagelis</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Prassides</surname>
<given-names>K</given-names>
</name>
</person-group>
<article-title>Negative thermal expansion in the mixed valence ytterbium fulleride, Yb
<sub>2.75</sub>
C
<sub>60</sub>
</article-title>
<source>Chem. Mater.</source>
<year>2005</year>
<volume>17</volume>
<fpage>4474</fpage>
<lpage>4478</lpage>
<pub-id pub-id-type="doi">10.1021/cm051341k</pub-id>
</element-citation>
</ref>
<ref id="CR11">
<label>11.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mary</surname>
<given-names>TA</given-names>
</name>
<name>
<surname>Evans</surname>
<given-names>JSO</given-names>
</name>
<name>
<surname>Vogt</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Sleight</surname>
<given-names>AW</given-names>
</name>
</person-group>
<article-title>Negative thermal expansion from 0.3 to 1050 Kelvin in ZrW
<sub>2</sub>
O
<sub>8</sub>
</article-title>
<source>Science</source>
<year>1996</year>
<volume>272</volume>
<fpage>90</fpage>
<lpage>92</lpage>
<pub-id pub-id-type="doi">10.1126/science.272.5258.90</pub-id>
</element-citation>
</ref>
<ref id="CR12">
<label>12.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Goodwin</surname>
<given-names>AL</given-names>
</name>
<name>
<surname>Kepert</surname>
<given-names>CJ</given-names>
</name>
</person-group>
<article-title>Negative thermal expansion and low-frequency modes in cyanide-bridged framework materials</article-title>
<source>Phys. Rev. B</source>
<year>2005</year>
<volume>71</volume>
<fpage>1</fpage>
<lpage>4</lpage>
<pub-id pub-id-type="doi">10.1103/PhysRevB.71.140301</pub-id>
</element-citation>
</ref>
<ref id="CR13">
<label>13.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Goodwin</surname>
<given-names>AL</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Colossal positive and negative thermal expansion in the framework material Ag
<sub>3</sub>
[Co(CN)
<sub>6</sub>
]</article-title>
<source>Science</source>
<year>2008</year>
<volume>319</volume>
<fpage>754</fpage>
<lpage>757</lpage>
<pub-id pub-id-type="doi">10.1126/science.1151442</pub-id>
<pub-id pub-id-type="pmid">18258900</pub-id>
</element-citation>
</ref>
<ref id="CR14">
<label>14.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Das</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Jacobs</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Barbour</surname>
<given-names>LJ</given-names>
</name>
</person-group>
<article-title>Exceptionally large positive and negative anisotropic thermal expansion of an organic crystalline material</article-title>
<source>Nat. Mater.</source>
<year>2010</year>
<volume>9</volume>
<fpage>36</fpage>
<lpage>39</lpage>
<pub-id pub-id-type="doi">10.1038/nmat2583</pub-id>
<pub-id pub-id-type="pmid">19935666</pub-id>
</element-citation>
</ref>
<ref id="CR15">
<label>15.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Azuma</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Colossal negative thermal expansion in BiNiO
<sub>3</sub>
induced by intermetallic charge transfer</article-title>
<source>Nat. Commun.</source>
<year>2011</year>
<volume>2</volume>
<fpage>347</fpage>
<pub-id pub-id-type="doi">10.1038/ncomms1361</pub-id>
<pub-id pub-id-type="pmid">21673668</pub-id>
</element-citation>
</ref>
<ref id="CR16">
<label>16.</label>
<mixed-citation publication-type="other">Gütlich, P. & Goodwin, H. A. (eds).
<italic>Spin Crossover in Transition Metal Compounds, Topics in Current Chemistry</italic>
,
<bold>235</bold>
, (Springer-Verlag Berlin Heidelberg, 2004).</mixed-citation>
</ref>
<ref id="CR17">
<label>17.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kahn</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Martinez</surname>
<given-names>CJ</given-names>
</name>
</person-group>
<article-title>Spin-transition polymers: from molecular materials toward memory devices</article-title>
<source>Science</source>
<year>1998</year>
<volume>279</volume>
<fpage>44</fpage>
<lpage>48</lpage>
<pub-id pub-id-type="doi">10.1126/science.279.5347.44</pub-id>
</element-citation>
</ref>
<ref id="CR18">
<label>18.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Halder</surname>
<given-names>GJ</given-names>
</name>
<name>
<surname>Kepert</surname>
<given-names>CJ</given-names>
</name>
<name>
<surname>Moubaraki</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Murray</surname>
<given-names>KS</given-names>
</name>
<name>
<surname>Cashion</surname>
<given-names>JD</given-names>
</name>
</person-group>
<article-title>Guest-dependent spin crossover in a nanoporous molecular framework material</article-title>
<source>Science</source>
<year>2002</year>
<volume>298</volume>
<fpage>1762</fpage>
<lpage>1765</lpage>
<pub-id pub-id-type="doi">10.1126/science.1075948</pub-id>
<pub-id pub-id-type="pmid">12459583</pub-id>
</element-citation>
</ref>
<ref id="CR19">
<label>19.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Real</surname>
<given-names>JA</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Spin Crossover in a catenane Supramolecular System</article-title>
<source>Science</source>
<year>1995</year>
<volume>268</volume>
<fpage>265</fpage>
<lpage>267</lpage>
<pub-id pub-id-type="doi">10.1126/science.268.5208.265</pub-id>
<pub-id pub-id-type="pmid">17814788</pub-id>
</element-citation>
</ref>
<ref id="CR20">
<label>20.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liu</surname>
<given-names>T</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A light-induced spin crossover actuated single-chain magnet</article-title>
<source>Nat. Commun.</source>
<year>2013</year>
<volume>4</volume>
<fpage>2826</fpage>
</element-citation>
</ref>
<ref id="CR21">
<label>21.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shepherd</surname>
<given-names>HJ</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Molecular actuators driven by cooperative spin-state switching</article-title>
<source>Nat. Commun.</source>
<year>2013</year>
<volume>4</volume>
<fpage>2607</fpage>
<pub-id pub-id-type="doi">10.1038/ncomms3607</pub-id>
<pub-id pub-id-type="pmid">24153221</pub-id>
</element-citation>
</ref>
<ref id="CR22">
<label>22.</label>
<mixed-citation publication-type="other">Real, J. A.
<italic>Transition Metals in Supramolecular Chemistry</italic>
, vol. 53. (Wiley, Ltd, 1999).</mixed-citation>
</ref>
<ref id="CR23">
<label>23.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Southon</surname>
<given-names>PD</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Dynamic Interplay between spin-crossover and host–guest function in a nanoporous metal–organic framework material</article-title>
<source>J. Am. Chem. Soc.</source>
<year>2009</year>
<volume>131</volume>
<fpage>10998</fpage>
<lpage>11009</lpage>
<pub-id pub-id-type="doi">10.1021/ja902187d</pub-id>
<pub-id pub-id-type="pmid">19621892</pub-id>
</element-citation>
</ref>
<ref id="CR24">
<label>24.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bartual-Murgui</surname>
<given-names>C</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Synergetic effect of host–guest chemistry and spin crossover in 3D hofmann-like metal–organic frameworks [Fe(bpac)M(CN)
<sub>4</sub>
] (M = Pt, Pd, Ni)</article-title>
<source>Chem. Eur. J.</source>
<year>2012</year>
<volume>18</volume>
<fpage>507</fpage>
<lpage>516</lpage>
<pub-id pub-id-type="doi">10.1002/chem.201102357</pub-id>
<pub-id pub-id-type="pmid">22147670</pub-id>
</element-citation>
</ref>
<ref id="CR25">
<label>25.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Clements</surname>
<given-names>JE</given-names>
</name>
<name>
<surname>Price</surname>
<given-names>JR</given-names>
</name>
<name>
<surname>Neville</surname>
<given-names>SM</given-names>
</name>
<name>
<surname>Kepert</surname>
<given-names>CJ</given-names>
</name>
</person-group>
<article-title>Hysteretic four-step spin crossover within a three-dimensional porous hofmann-like material</article-title>
<source>Angew. Chem. Int. Ed.</source>
<year>2016</year>
<volume>55</volume>
<fpage>15105</fpage>
<lpage>15109</lpage>
<pub-id pub-id-type="doi">10.1002/anie.201605418</pub-id>
</element-citation>
</ref>
<ref id="CR26">
<label>26.</label>
<mixed-citation publication-type="other">Larson, A. C. & Von Dreele, R. B. General Structure Analysis System (GSAS). Los Alamos National Laboratory Report LAUR 86-748 (Los Alamos National Laboratory, 2000).</mixed-citation>
</ref>
<ref id="CR27">
<label>27.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Su</surname>
<given-names>S-Q</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Assembling an alkyl rotor to access abrupt and reversible crystalline deformation of a cobalt(II) complex</article-title>
<source>Nat. Commun.</source>
<year>2015</year>
<volume>6</volume>
<fpage>8810</fpage>
<pub-id pub-id-type="doi">10.1038/ncomms9810</pub-id>
<pub-id pub-id-type="pmid">26531811</pub-id>
</element-citation>
</ref>
<ref id="CR28">
<label>28.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Panda</surname>
<given-names>MK</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Colossal positive and negative thermal expansion and thermosalient effect in a pentamorphic organometallic martensite</article-title>
<source>Nat. Commun.</source>
<year>2014</year>
<volume>5</volume>
<fpage>4811</fpage>
<pub-id pub-id-type="doi">10.1038/ncomms5811</pub-id>
<pub-id pub-id-type="pmid">25185949</pub-id>
</element-citation>
</ref>
<ref id="CR29">
<label>29.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wharmby</surname>
<given-names>MT</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Extreme flexibility in a zeolitic imidazolate framework: porous to dense phase transition in desolvated ZIF-4</article-title>
<source>Angew. Chem. Int. Ed.</source>
<year>2015</year>
<volume>54</volume>
<fpage>6447</fpage>
<lpage>6451</lpage>
<pub-id pub-id-type="doi">10.1002/anie.201410167</pub-id>
</element-citation>
</ref>
<ref id="CR30">
<label>30.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liu</surname>
<given-names>Y</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Reversible structural transition in MIL-53 with large temperature hysteresis</article-title>
<source>J. Am. Chem. Soc.</source>
<year>2008</year>
<volume>130</volume>
<fpage>11813</fpage>
<lpage>11818</lpage>
<pub-id pub-id-type="doi">10.1021/ja803669w</pub-id>
<pub-id pub-id-type="pmid">18693731</pub-id>
</element-citation>
</ref>
<ref id="CR31">
<label>31.</label>
<mixed-citation publication-type="other">Spiering, H. in
<italic>Spin crossover in transition metal compounds III</italic>
(eds Gütlich, P. & Goodwin, H. A.) 171–195,
<bold>235</bold>
(Springer-Verlag Berlin Heidelberg, 2004).</mixed-citation>
</ref>
<ref id="CR32">
<label>32.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Willenbacher</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Spiering</surname>
<given-names>H</given-names>
</name>
</person-group>
<article-title>The elastic interaction of high-spin and low-spin complex molecules in spin-crossover compounds</article-title>
<source>J. Phys. C Solid State Phys</source>
<year>1988</year>
<volume>21</volume>
<fpage>1423</fpage>
<lpage>1439</lpage>
<pub-id pub-id-type="doi">10.1088/0022-3719/21/8/017</pub-id>
</element-citation>
</ref>
<ref id="CR33">
<label>33.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hauser</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Gütlich</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Spiering</surname>
<given-names>H</given-names>
</name>
</person-group>
<article-title>High-spin to low-spin relaxation kinetics and cooperative effects in the hexakis(1-propyltetrazole)iron bis(tetrafluoroborate) and [Zn
<sub>1-
<italic>x</italic>
</sub>
Fe
<sub>
<italic>x</italic>
</sub>
(ptz)
<sub>6</sub>
](BF
<sub>4</sub>
)
<sub>2</sub>
(ptz = 1-propyltetrazole) spin-crossover systems</article-title>
<source>Inorg. Chem.</source>
<year>1986</year>
<volume>25</volume>
<fpage>4245</fpage>
<lpage>4248</lpage>
<pub-id pub-id-type="doi">10.1021/ic00243a036</pub-id>
</element-citation>
</ref>
<ref id="CR34">
<label>34.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gütlich</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Ksenofontov</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Gaspar</surname>
<given-names>AB</given-names>
</name>
</person-group>
<article-title>Pressure effect studies on spin crossover systems</article-title>
<source>Coord. Chem. Rev.</source>
<year>2005</year>
<volume>249</volume>
<fpage>1811</fpage>
<lpage>1829</lpage>
<pub-id pub-id-type="doi">10.1016/j.ccr.2005.01.022</pub-id>
</element-citation>
</ref>
<ref id="CR35">
<label>35.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gütlich</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Hauser</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Thermal and light-induced spin crossover in iron(II) complexes</article-title>
<source>Coord. Chem. Rev.</source>
<year>1990</year>
<volume>97</volume>
<fpage>1</fpage>
<lpage>22</lpage>
<pub-id pub-id-type="doi">10.1016/0010-8545(90)80076-6</pub-id>
</element-citation>
</ref>
<ref id="CR36">
<label>36.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Toby</surname>
<given-names>BH</given-names>
</name>
</person-group>
<article-title>A graphical user interface for GSAS</article-title>
<source>J. Appl. Crystallogr.</source>
<year>2001</year>
<volume>34</volume>
<fpage>210</fpage>
<lpage>213</lpage>
<pub-id pub-id-type="doi">10.1107/S0021889801002242</pub-id>
</element-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000D89 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000D89 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:5648752
   |texte=   Spin crossover-induced colossal positive and negative thermal expansion in a nanoporous coordination framework material
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:29051479" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a AustralieFrV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024