Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Ferrotoroidic ground state in a heterometallic {CrIIIDyIII6} complex displaying slow magnetic relaxation

Identifieur interne : 000D88 ( Pmc/Corpus ); précédent : 000D87; suivant : 000D89

Ferrotoroidic ground state in a heterometallic {CrIIIDyIII6} complex displaying slow magnetic relaxation

Auteurs : Kuduva R. Vignesh ; Alessandro Soncini ; Stuart K. Langley ; Wolfgang Wernsdorfer ; Keith S. Murray ; Gopalan Rajaraman

Source :

RBID : PMC:5647347

Abstract

Toroidal quantum states are most promising for building quantum computing and information storage devices, as they are insensitive to homogeneous magnetic fields, but interact with charge and spin currents, allowing this moment to be manipulated purely by electrical means. Coupling molecular toroids into larger toroidal moments via ferrotoroidic interactions can be pivotal not only to enhance ground state toroidicity, but also to develop materials displaying ferrotoroidic ordered phases, which sustain linear magneto–electric coupling and multiferroic behavior. However, engineering ferrotoroidic coupling is known to be a challenging task. Here we have isolated a {CrIIIDyIII6} complex that exhibits the much sought-after ferrotoroidic ground state with an enhanced toroidal moment, solely arising from intramolecular dipolar interactions. Moreover, a theoretical analysis of the observed sub-Kelvin zero-field hysteretic spin dynamics of {CrIIIDyIII6} reveals the pivotal role played by ferrotoroidic states in slowing down the magnetic relaxation, in spite of large calculated single-ion quantum tunneling rates.


Url:
DOI: 10.1038/s41467-017-01102-5
PubMed: 29044098
PubMed Central: 5647347

Links to Exploration step

PMC:5647347

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Ferrotoroidic ground state in a heterometallic {Cr
<sup>III</sup>
Dy
<sup>III</sup>
<sub>6</sub>
} complex displaying slow magnetic relaxation</title>
<author>
<name sortKey="Vignesh, Kuduva R" sort="Vignesh, Kuduva R" uniqKey="Vignesh K" first="Kuduva R." last="Vignesh">Kuduva R. Vignesh</name>
<affiliation>
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0001 2198 7527</institution-id>
<institution-id institution-id-type="GRID">grid.417971.d</institution-id>
<institution>IITB-Monash Research Academy,</institution>
<institution>IIT Bombay,</institution>
</institution-wrap>
Mumbai, 400076 India</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Soncini, Alessandro" sort="Soncini, Alessandro" uniqKey="Soncini A" first="Alessandro" last="Soncini">Alessandro Soncini</name>
<affiliation>
<nlm:aff id="Aff2">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0001 2179 088X</institution-id>
<institution-id institution-id-type="GRID">grid.1008.9</institution-id>
<institution>School of Chemistry,</institution>
<institution>University of Melbourne,</institution>
</institution-wrap>
Melbourne, VIC 3010 Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Langley, Stuart K" sort="Langley, Stuart K" uniqKey="Langley S" first="Stuart K." last="Langley">Stuart K. Langley</name>
<affiliation>
<nlm:aff id="Aff3">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0001 0790 5329</institution-id>
<institution-id institution-id-type="GRID">grid.25627.34</institution-id>
<institution>School of Science and the Environment, Division of Chemistry,</institution>
<institution>Manchester Metropolitan University,</institution>
</institution-wrap>
Manchester, M15 6BH UK</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wernsdorfer, Wolfgang" sort="Wernsdorfer, Wolfgang" uniqKey="Wernsdorfer W" first="Wolfgang" last="Wernsdorfer">Wolfgang Wernsdorfer</name>
<affiliation>
<nlm:aff id="Aff4">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0001 0075 5874</institution-id>
<institution-id institution-id-type="GRID">grid.7892.4</institution-id>
<institution>Institute Neel, CNRS, F-38000 Grenoble, France and Institute of Nanotechnology,</institution>
<institution>Karlsruhe Institute of Technology,</institution>
</institution-wrap>
76344 Eggenstein-Leopoldshafen, Germany</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Murray, Keith S" sort="Murray, Keith S" uniqKey="Murray K" first="Keith S." last="Murray">Keith S. Murray</name>
<affiliation>
<nlm:aff id="Aff5">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 1936 7857</institution-id>
<institution-id institution-id-type="GRID">grid.1002.3</institution-id>
<institution>School of Chemistry, Monash University,</institution>
</institution-wrap>
Melbourne, VIC 3800 Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Rajaraman, Gopalan" sort="Rajaraman, Gopalan" uniqKey="Rajaraman G" first="Gopalan" last="Rajaraman">Gopalan Rajaraman</name>
<affiliation>
<nlm:aff id="Aff6">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0001 2198 7527</institution-id>
<institution-id institution-id-type="GRID">grid.417971.d</institution-id>
<institution>Department of Chemistry,</institution>
<institution>Indian Institute of Technology Bombay,</institution>
</institution-wrap>
Mumbai, 400076 India</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">29044098</idno>
<idno type="pmc">5647347</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5647347</idno>
<idno type="RBID">PMC:5647347</idno>
<idno type="doi">10.1038/s41467-017-01102-5</idno>
<date when="2017">2017</date>
<idno type="wicri:Area/Pmc/Corpus">000D88</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000D88</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Ferrotoroidic ground state in a heterometallic {Cr
<sup>III</sup>
Dy
<sup>III</sup>
<sub>6</sub>
} complex displaying slow magnetic relaxation</title>
<author>
<name sortKey="Vignesh, Kuduva R" sort="Vignesh, Kuduva R" uniqKey="Vignesh K" first="Kuduva R." last="Vignesh">Kuduva R. Vignesh</name>
<affiliation>
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0001 2198 7527</institution-id>
<institution-id institution-id-type="GRID">grid.417971.d</institution-id>
<institution>IITB-Monash Research Academy,</institution>
<institution>IIT Bombay,</institution>
</institution-wrap>
Mumbai, 400076 India</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Soncini, Alessandro" sort="Soncini, Alessandro" uniqKey="Soncini A" first="Alessandro" last="Soncini">Alessandro Soncini</name>
<affiliation>
<nlm:aff id="Aff2">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0001 2179 088X</institution-id>
<institution-id institution-id-type="GRID">grid.1008.9</institution-id>
<institution>School of Chemistry,</institution>
<institution>University of Melbourne,</institution>
</institution-wrap>
Melbourne, VIC 3010 Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Langley, Stuart K" sort="Langley, Stuart K" uniqKey="Langley S" first="Stuart K." last="Langley">Stuart K. Langley</name>
<affiliation>
<nlm:aff id="Aff3">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0001 0790 5329</institution-id>
<institution-id institution-id-type="GRID">grid.25627.34</institution-id>
<institution>School of Science and the Environment, Division of Chemistry,</institution>
<institution>Manchester Metropolitan University,</institution>
</institution-wrap>
Manchester, M15 6BH UK</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wernsdorfer, Wolfgang" sort="Wernsdorfer, Wolfgang" uniqKey="Wernsdorfer W" first="Wolfgang" last="Wernsdorfer">Wolfgang Wernsdorfer</name>
<affiliation>
<nlm:aff id="Aff4">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0001 0075 5874</institution-id>
<institution-id institution-id-type="GRID">grid.7892.4</institution-id>
<institution>Institute Neel, CNRS, F-38000 Grenoble, France and Institute of Nanotechnology,</institution>
<institution>Karlsruhe Institute of Technology,</institution>
</institution-wrap>
76344 Eggenstein-Leopoldshafen, Germany</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Murray, Keith S" sort="Murray, Keith S" uniqKey="Murray K" first="Keith S." last="Murray">Keith S. Murray</name>
<affiliation>
<nlm:aff id="Aff5">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 1936 7857</institution-id>
<institution-id institution-id-type="GRID">grid.1002.3</institution-id>
<institution>School of Chemistry, Monash University,</institution>
</institution-wrap>
Melbourne, VIC 3800 Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Rajaraman, Gopalan" sort="Rajaraman, Gopalan" uniqKey="Rajaraman G" first="Gopalan" last="Rajaraman">Gopalan Rajaraman</name>
<affiliation>
<nlm:aff id="Aff6">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0001 2198 7527</institution-id>
<institution-id institution-id-type="GRID">grid.417971.d</institution-id>
<institution>Department of Chemistry,</institution>
<institution>Indian Institute of Technology Bombay,</institution>
</institution-wrap>
Mumbai, 400076 India</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Nature Communications</title>
<idno type="eISSN">2041-1723</idno>
<imprint>
<date when="2017">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p id="Par1">Toroidal quantum states are most promising for building quantum computing and information storage devices, as they are insensitive to homogeneous magnetic fields, but interact with charge and spin currents, allowing this moment to be manipulated purely by electrical means. Coupling molecular toroids into larger toroidal moments via ferrotoroidic interactions can be pivotal not only to enhance ground state toroidicity, but also to develop materials displaying ferrotoroidic ordered phases, which sustain linear magneto–electric coupling and multiferroic behavior. However, engineering ferrotoroidic coupling is known to be a challenging task. Here we have isolated a {Cr
<sup>III</sup>
Dy
<sup>III</sup>
<sub>6</sub>
} complex that exhibits the much sought-after ferrotoroidic ground state with an enhanced toroidal moment, solely arising from intramolecular dipolar interactions. Moreover, a theoretical analysis of the observed sub-Kelvin zero-field hysteretic spin dynamics of {Cr
<sup>III</sup>
Dy
<sup>III</sup>
<sub>6</sub>
} reveals the pivotal role played by ferrotoroidic states in slowing down the magnetic relaxation, in spite of large calculated single-ion quantum tunneling rates.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Christou, G" uniqKey="Christou G">G Christou</name>
</author>
<author>
<name sortKey="Gatteschi, D" uniqKey="Gatteschi D">D Gatteschi</name>
</author>
<author>
<name sortKey="Hendrickson, Dn" uniqKey="Hendrickson D">DN Hendrickson</name>
</author>
<author>
<name sortKey="Sessoli, R" uniqKey="Sessoli R">R Sessoli</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gatteschi, D" uniqKey="Gatteschi D">D Gatteschi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gatteschi, D" uniqKey="Gatteschi D">D Gatteschi</name>
</author>
<author>
<name sortKey="Sessoli, R" uniqKey="Sessoli R">R Sessoli</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sessoli, R" uniqKey="Sessoli R">R Sessoli</name>
</author>
<author>
<name sortKey="Gatteschi, D" uniqKey="Gatteschi D">D Gatteschi</name>
</author>
<author>
<name sortKey="Caneschi, A" uniqKey="Caneschi A">A Caneschi</name>
</author>
<author>
<name sortKey="Novak, Ma" uniqKey="Novak M">MA Novak</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sessoli, R" uniqKey="Sessoli R">R Sessoli</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tang, J" uniqKey="Tang J">J Tang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chibotaru, Lf" uniqKey="Chibotaru L">LF Chibotaru</name>
</author>
<author>
<name sortKey="Ungur, L" uniqKey="Ungur L">L Ungur</name>
</author>
<author>
<name sortKey="Soncini, A" uniqKey="Soncini A">A Soncini</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lin, S Y" uniqKey="Lin S">S-Y Lin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Novitchi, G" uniqKey="Novitchi G">G Novitchi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Soncini, A" uniqKey="Soncini A">A Soncini</name>
</author>
<author>
<name sortKey="Chibotaru, Lf" uniqKey="Chibotaru L">LF Chibotaru</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ungur, L" uniqKey="Ungur L">L Ungur</name>
</author>
<author>
<name sortKey="Lin, S Y" uniqKey="Lin S">S-Y Lin</name>
</author>
<author>
<name sortKey="Tang, J" uniqKey="Tang J">J Tang</name>
</author>
<author>
<name sortKey="Chibotaru, Lf" uniqKey="Chibotaru L">LF Chibotaru</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ungur, L" uniqKey="Ungur L">L Ungur</name>
</author>
<author>
<name sortKey="Van Den Heuvel, W" uniqKey="Van Den Heuvel W">W Van den Heuvel</name>
</author>
<author>
<name sortKey="Chibotaru, Lf" uniqKey="Chibotaru L">LF Chibotaru</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gysler, M" uniqKey="Gysler M">M Gysler</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Luzon, J" uniqKey="Luzon J">J Luzon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hewitt, Ij" uniqKey="Hewitt I">IJ Hewitt</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Katsura, H" uniqKey="Katsura H">H Katsura</name>
</author>
<author>
<name sortKey="Nagaosa, N" uniqKey="Nagaosa N">N Nagaosa</name>
</author>
<author>
<name sortKey="Balatsky, Av" uniqKey="Balatsky A">AV Balatsky</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Soncini, A" uniqKey="Soncini A">A Soncini</name>
</author>
<author>
<name sortKey="Chibotaru, Lf" uniqKey="Chibotaru L">LF Chibotaru</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Trif, M" uniqKey="Trif M">M Trif</name>
</author>
<author>
<name sortKey="Troiani, F" uniqKey="Troiani F">F Troiani</name>
</author>
<author>
<name sortKey="Stepanenko, D" uniqKey="Stepanenko D">D Stepanenko</name>
</author>
<author>
<name sortKey="Loss, D" uniqKey="Loss D">D Loss</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Das, C" uniqKey="Das C">C Das</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Guo, P H" uniqKey="Guo P">P-H Guo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Popov, Ai" uniqKey="Popov A">AI Popov</name>
</author>
<author>
<name sortKey="Plokhov, Di" uniqKey="Plokhov D">DI Plokhov</name>
</author>
<author>
<name sortKey="Zvezdin, Ak" uniqKey="Zvezdin A">AK Zvezdin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ungur, L" uniqKey="Ungur L">L Ungur</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kaelberer, T" uniqKey="Kaelberer T">T Kaelberer</name>
</author>
<author>
<name sortKey="Fedotov, Va" uniqKey="Fedotov V">VA Fedotov</name>
</author>
<author>
<name sortKey="Papasimakis, N" uniqKey="Papasimakis N">N Papasimakis</name>
</author>
<author>
<name sortKey="Tsai, Dp" uniqKey="Tsai D">DP Tsai</name>
</author>
<author>
<name sortKey="Zheludev, Ni" uniqKey="Zheludev N">NI Zheludev</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chilton, Nf" uniqKey="Chilton N">NF Chilton</name>
</author>
<author>
<name sortKey="Langley, Sk" uniqKey="Langley S">SK Langley</name>
</author>
<author>
<name sortKey="Moubaraki, B" uniqKey="Moubaraki B">B Moubaraki</name>
</author>
<author>
<name sortKey="Murray, Ks" uniqKey="Murray K">KS Murray</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Langley, Sk" uniqKey="Langley S">SK Langley</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, M" uniqKey="Li M">M Li</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schray, D" uniqKey="Schray D">D Schray</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vignesh, Kr" uniqKey="Vignesh K">KR Vignesh</name>
</author>
<author>
<name sortKey="Langley, Sk" uniqKey="Langley S">SK Langley</name>
</author>
<author>
<name sortKey="Moubaraki, B" uniqKey="Moubaraki B">B Moubaraki</name>
</author>
<author>
<name sortKey="Murray, Ks" uniqKey="Murray K">KS Murray</name>
</author>
<author>
<name sortKey="Rajaraman, G" uniqKey="Rajaraman G">G Rajaraman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Langley, Sk" uniqKey="Langley S">SK Langley</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Langley, Sk" uniqKey="Langley S">SK Langley</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Langley, Sk" uniqKey="Langley S">SK Langley</name>
</author>
<author>
<name sortKey="Wielechowski, Dp" uniqKey="Wielechowski D">DP Wielechowski</name>
</author>
<author>
<name sortKey="Moubaraki, B" uniqKey="Moubaraki B">B Moubaraki</name>
</author>
<author>
<name sortKey="Murray, Ks" uniqKey="Murray K">KS Murray</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rinck, J" uniqKey="Rinck J">J Rinck</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cirera, J" uniqKey="Cirera J">J Cirera</name>
</author>
<author>
<name sortKey="Ruiz, E" uniqKey="Ruiz E">E Ruiz</name>
</author>
<author>
<name sortKey="Alvarez, S" uniqKey="Alvarez S">S Alvarez</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pinsky, M" uniqKey="Pinsky M">M Pinsky</name>
</author>
<author>
<name sortKey="Avnir, D" uniqKey="Avnir D">D Avnir</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cadiou, C" uniqKey="Cadiou C">C Cadiou</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, D" uniqKey="Wang D">D Wang</name>
</author>
<author>
<name sortKey="Hanson, Gr" uniqKey="Hanson G">GR Hanson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, D" uniqKey="Wang D">D Wang</name>
</author>
<author>
<name sortKey="Hanson, Gr" uniqKey="Hanson G">GR Hanson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Moreno Pineda, E" uniqKey="Moreno Pineda E">E Moreno Pineda</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Aquilante, F" uniqKey="Aquilante F">F Aquilante</name>
</author>
<author>
<name sortKey="Pedersen, Tb" uniqKey="Pedersen T">TB Pedersen</name>
</author>
<author>
<name sortKey="Veryazov, V" uniqKey="Veryazov V">V Veryazov</name>
</author>
<author>
<name sortKey="Lindh, R" uniqKey="Lindh R">R Lindh</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lines, Me" uniqKey="Lines M">ME Lines</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cowieson, Np" uniqKey="Cowieson N">NP Cowieson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mcphillips, Tm" uniqKey="Mcphillips T">TM McPhillips</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kabsch, W" uniqKey="Kabsch W">W Kabsch</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sheldrick, G" uniqKey="Sheldrick G">G Sheldrick</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dolomanov, Ov" uniqKey="Dolomanov O">OV Dolomanov</name>
</author>
<author>
<name sortKey="Bourhis, Lj" uniqKey="Bourhis L">LJ Bourhis</name>
</author>
<author>
<name sortKey="Gildea, Rj" uniqKey="Gildea R">RJ Gildea</name>
</author>
<author>
<name sortKey="Howard, Jak" uniqKey="Howard J">JAK Howard</name>
</author>
<author>
<name sortKey="Puschmann, H" uniqKey="Puschmann H">H Puschmann</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vignesh, Kr" uniqKey="Vignesh K">KR Vignesh</name>
</author>
<author>
<name sortKey="Langley, Sk" uniqKey="Langley S">SK Langley</name>
</author>
<author>
<name sortKey="Murray, Ks" uniqKey="Murray K">KS Murray</name>
</author>
<author>
<name sortKey="Rajaraman, G" uniqKey="Rajaraman G">G Rajaraman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Singh, Mk" uniqKey="Singh M">MK Singh</name>
</author>
<author>
<name sortKey="Yadav, N" uniqKey="Yadav N">N Yadav</name>
</author>
<author>
<name sortKey="Rajaraman, G" uniqKey="Rajaraman G">G Rajaraman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Singh, Sk" uniqKey="Singh S">SK Singh</name>
</author>
<author>
<name sortKey="Gupta, T" uniqKey="Gupta T">T Gupta</name>
</author>
<author>
<name sortKey="Rajaraman, G" uniqKey="Rajaraman G">G Rajaraman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Upadhyay, A" uniqKey="Upadhyay A">A Upadhyay</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hess, Ba" uniqKey="Hess B">BA Hess</name>
</author>
<author>
<name sortKey="Marian, Cm" uniqKey="Marian C">CM Marian</name>
</author>
<author>
<name sortKey="Wahlgren, U" uniqKey="Wahlgren U">U Wahlgren</name>
</author>
<author>
<name sortKey="Gropen, O" uniqKey="Gropen O">O Gropen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Roos, Bo" uniqKey="Roos B">BO Roos</name>
</author>
<author>
<name sortKey="Malmqvist, P A" uniqKey="Malmqvist P">P-A Malmqvist</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Roos, Bo" uniqKey="Roos B">BO Roos</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Malmqvist, Pa" uniqKey="Malmqvist P">PA Malmqvist</name>
</author>
<author>
<name sortKey="Roos, Bo" uniqKey="Roos B">BO Roos</name>
</author>
<author>
<name sortKey="Schimmelpfennig, B" uniqKey="Schimmelpfennig B">B Schimmelpfennig</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chibotaru, Lf" uniqKey="Chibotaru L">LF Chibotaru</name>
</author>
<author>
<name sortKey="Ungur, L" uniqKey="Ungur L">L Ungur</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Becke, Ad" uniqKey="Becke A">AD Becke</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hay, Pj" uniqKey="Hay P">PJ Hay</name>
</author>
<author>
<name sortKey="Wadt, Wr" uniqKey="Wadt W">WR Wadt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cundari, Tr" uniqKey="Cundari T">TR Cundari</name>
</author>
<author>
<name sortKey="Stevens, Wj" uniqKey="Stevens W">WJ Stevens</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Noodleman, L" uniqKey="Noodleman L">L Noodleman</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rousochatzakis, I" uniqKey="Rousochatzakis I">I Rousochatzakis</name>
</author>
<author>
<name sortKey="Luban, M" uniqKey="Luban M">M Luban</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Leuenberger, Mn" uniqKey="Leuenberger M">MN Leuenberger</name>
</author>
<author>
<name sortKey="Loss, D" uniqKey="Loss D">D Loss</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lascialfari, A" uniqKey="Lascialfari A">A Lascialfari</name>
</author>
<author>
<name sortKey="Jang, Zh" uniqKey="Jang Z">ZH Jang</name>
</author>
<author>
<name sortKey="Borsa, F" uniqKey="Borsa F">F Borsa</name>
</author>
<author>
<name sortKey="Carretta, P" uniqKey="Carretta P">P Carretta</name>
</author>
<author>
<name sortKey="Gatteschi, D" uniqKey="Gatteschi D">D Gatteschi</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Nat Commun</journal-id>
<journal-id journal-id-type="iso-abbrev">Nat Commun</journal-id>
<journal-title-group>
<journal-title>Nature Communications</journal-title>
</journal-title-group>
<issn pub-type="epub">2041-1723</issn>
<publisher>
<publisher-name>Nature Publishing Group UK</publisher-name>
<publisher-loc>London</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">29044098</article-id>
<article-id pub-id-type="pmc">5647347</article-id>
<article-id pub-id-type="publisher-id">1102</article-id>
<article-id pub-id-type="doi">10.1038/s41467-017-01102-5</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Ferrotoroidic ground state in a heterometallic {Cr
<sup>III</sup>
Dy
<sup>III</sup>
<sub>6</sub>
} complex displaying slow magnetic relaxation</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Vignesh</surname>
<given-names>Kuduva R.</given-names>
</name>
<xref ref-type="aff" rid="Aff1">1</xref>
</contrib>
<contrib contrib-type="author" corresp="yes">
<contrib-id contrib-id-type="orcid">http://orcid.org/0000-0002-6779-7304</contrib-id>
<name>
<surname>Soncini</surname>
<given-names>Alessandro</given-names>
</name>
<address>
<email>asoncini@unimelb.edu.au</email>
</address>
<xref ref-type="aff" rid="Aff2">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Langley</surname>
<given-names>Stuart K.</given-names>
</name>
<xref ref-type="aff" rid="Aff3">3</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Wernsdorfer</surname>
<given-names>Wolfgang</given-names>
</name>
<xref ref-type="aff" rid="Aff4">4</xref>
</contrib>
<contrib contrib-type="author" corresp="yes">
<name>
<surname>Murray</surname>
<given-names>Keith S.</given-names>
</name>
<address>
<email>keith.murray@monash.edu</email>
</address>
<xref ref-type="aff" rid="Aff5">5</xref>
</contrib>
<contrib contrib-type="author" corresp="yes">
<name>
<surname>Rajaraman</surname>
<given-names>Gopalan</given-names>
</name>
<address>
<email>rajaraman@chem.iitb.ac.in</email>
</address>
<xref ref-type="aff" rid="Aff6">6</xref>
</contrib>
<aff id="Aff1">
<label>1</label>
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0001 2198 7527</institution-id>
<institution-id institution-id-type="GRID">grid.417971.d</institution-id>
<institution>IITB-Monash Research Academy,</institution>
<institution>IIT Bombay,</institution>
</institution-wrap>
Mumbai, 400076 India</aff>
<aff id="Aff2">
<label>2</label>
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0001 2179 088X</institution-id>
<institution-id institution-id-type="GRID">grid.1008.9</institution-id>
<institution>School of Chemistry,</institution>
<institution>University of Melbourne,</institution>
</institution-wrap>
Melbourne, VIC 3010 Australia</aff>
<aff id="Aff3">
<label>3</label>
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0001 0790 5329</institution-id>
<institution-id institution-id-type="GRID">grid.25627.34</institution-id>
<institution>School of Science and the Environment, Division of Chemistry,</institution>
<institution>Manchester Metropolitan University,</institution>
</institution-wrap>
Manchester, M15 6BH UK</aff>
<aff id="Aff4">
<label>4</label>
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0001 0075 5874</institution-id>
<institution-id institution-id-type="GRID">grid.7892.4</institution-id>
<institution>Institute Neel, CNRS, F-38000 Grenoble, France and Institute of Nanotechnology,</institution>
<institution>Karlsruhe Institute of Technology,</institution>
</institution-wrap>
76344 Eggenstein-Leopoldshafen, Germany</aff>
<aff id="Aff5">
<label>5</label>
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0004 1936 7857</institution-id>
<institution-id institution-id-type="GRID">grid.1002.3</institution-id>
<institution>School of Chemistry, Monash University,</institution>
</institution-wrap>
Melbourne, VIC 3800 Australia</aff>
<aff id="Aff6">
<label>6</label>
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0001 2198 7527</institution-id>
<institution-id institution-id-type="GRID">grid.417971.d</institution-id>
<institution>Department of Chemistry,</institution>
<institution>Indian Institute of Technology Bombay,</institution>
</institution-wrap>
Mumbai, 400076 India</aff>
</contrib-group>
<pub-date pub-type="epub">
<day>18</day>
<month>10</month>
<year>2017</year>
</pub-date>
<pub-date pub-type="pmc-release">
<day>18</day>
<month>10</month>
<year>2017</year>
</pub-date>
<pub-date pub-type="collection">
<year>2017</year>
</pub-date>
<volume>8</volume>
<elocation-id>1023</elocation-id>
<history>
<date date-type="received">
<day>2</day>
<month>2</month>
<year>2017</year>
</date>
<date date-type="accepted">
<day>18</day>
<month>8</month>
<year>2017</year>
</date>
</history>
<permissions>
<copyright-statement>© The Author(s) 2017</copyright-statement>
<license license-type="OpenAccess">
<license-p>
<bold>Open Access</bold>
This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by/4.0/">http://creativecommons.org/licenses/by/4.0/</ext-link>
.</license-p>
</license>
</permissions>
<abstract id="Abs1">
<p id="Par1">Toroidal quantum states are most promising for building quantum computing and information storage devices, as they are insensitive to homogeneous magnetic fields, but interact with charge and spin currents, allowing this moment to be manipulated purely by electrical means. Coupling molecular toroids into larger toroidal moments via ferrotoroidic interactions can be pivotal not only to enhance ground state toroidicity, but also to develop materials displaying ferrotoroidic ordered phases, which sustain linear magneto–electric coupling and multiferroic behavior. However, engineering ferrotoroidic coupling is known to be a challenging task. Here we have isolated a {Cr
<sup>III</sup>
Dy
<sup>III</sup>
<sub>6</sub>
} complex that exhibits the much sought-after ferrotoroidic ground state with an enhanced toroidal moment, solely arising from intramolecular dipolar interactions. Moreover, a theoretical analysis of the observed sub-Kelvin zero-field hysteretic spin dynamics of {Cr
<sup>III</sup>
Dy
<sup>III</sup>
<sub>6</sub>
} reveals the pivotal role played by ferrotoroidic states in slowing down the magnetic relaxation, in spite of large calculated single-ion quantum tunneling rates.</p>
</abstract>
<abstract id="Abs2" abstract-type="web-summary">
<p id="Par2">Coupling molecular toroids via ferrotoroidic interactions represents an important opportunity to enhance ground state toroidicity, but is challenging to achieve. Here the authors isolate a {Cr
<sup>III</sup>
Dy
<sup>III</sup>
<sub>6</sub>
} complex with a ferrotoroidic ground state and an enhanced toroidal moment, arising solely from intramolecular dipolar interactions.</p>
</abstract>
<custom-meta-group>
<custom-meta>
<meta-name>issue-copyright-statement</meta-name>
<meta-value>© The Author(s) 2017</meta-value>
</custom-meta>
</custom-meta-group>
</article-meta>
</front>
<body>
<sec id="Sec1" sec-type="introduction">
<title>Introduction</title>
<p id="Par3">The magnetic behavior of molecular coordination complexes continues to intrigue scientists around the world, revealing many interesting physical properties and offering many potential applications such as new storage and information processing technologies
<sup>
<xref ref-type="bibr" rid="CR1">1</xref>
<xref ref-type="bibr" rid="CR3">3</xref>
</sup>
. Fundamental research into, e.g., single-molecule magnets (SMMs)
<sup>
<xref ref-type="bibr" rid="CR4">4</xref>
<xref ref-type="bibr" rid="CR6">6</xref>
</sup>
, spin-crossover
<sup>
<xref ref-type="bibr" rid="CR7">7</xref>
</sup>
, and magnetic systems with toroidal moments
<sup>
<xref ref-type="bibr" rid="CR8">8</xref>
<xref ref-type="bibr" rid="CR19">19</xref>
</sup>
are recognized as important areas of molecular magnetism. SMMs exhibit slow relaxation of the magnetization, acting as nano-magnets below their blocking temperature
<sup>
<xref ref-type="bibr" rid="CR2">2</xref>
,
<xref ref-type="bibr" rid="CR4">4</xref>
<xref ref-type="bibr" rid="CR6">6</xref>
</sup>
. Molecular coordination complexes with a toroidal arrangement of local magnetic moments are rare, but are of great interest as they have several potential applications such as quantum computation, molecular spintronics devices, and the development of magneto–electric coupling for multiferroic materials
<sup>
<xref ref-type="bibr" rid="CR20">20</xref>
<xref ref-type="bibr" rid="CR22">22</xref>
</sup>
. Toroidal moments at a molecular level were first predicted
<sup>
<xref ref-type="bibr" rid="CR12">12</xref>
</sup>
and observed
<sup>
<xref ref-type="bibr" rid="CR9">9</xref>
,
<xref ref-type="bibr" rid="CR17">17</xref>
</sup>
in 2008, in strongly anisotropic metal complexes with a ring topology, having in-plane magnetic axes tangential to the ring, and weak nearest neighbor exchange coupling of the appropriate sign. In particular, the observation of a toroidal texture
<sup>
<xref ref-type="bibr" rid="CR9">9</xref>
,
<xref ref-type="bibr" rid="CR17">17</xref>
</sup>
in the ground state of the {Dy
<sup>III</sup>
<sub>3</sub>
} triangular system
<sup>
<xref ref-type="bibr" rid="CR8">8</xref>
</sup>
, generated great interest in this area, with state-of-the-art theoretical
<sup>
<xref ref-type="bibr" rid="CR9">9</xref>
,
<xref ref-type="bibr" rid="CR14">14</xref>
</sup>
and experimental
<sup>
<xref ref-type="bibr" rid="CR10">10</xref>
,
<xref ref-type="bibr" rid="CR17">17</xref>
,
<xref ref-type="bibr" rid="CR18">18</xref>
</sup>
techniques being employed to probe toroidal states of this prototype and subsequent related molecules. Other than triangular {Dy
<sub>3</sub>
} complexes, the toroidal moments have been reported as well for rhombus {Dy
<sub>4</sub>
}
<sup>
<xref ref-type="bibr" rid="CR23">23</xref>
<xref ref-type="bibr" rid="CR25">25</xref>
</sup>
and {Dy
<sub>6</sub>
} wheel
<sup>
<xref ref-type="bibr" rid="CR26">26</xref>
</sup>
complexes.</p>
<p id="Par4">If two molecular rings exhibiting toroidal states are connected, e.g., via a 3d ion, then coupling between the two toroidal moments leading to an enhancement of the collective toroidal moment may occur, which is a prerequisite to achieve a molecular ferrotoroidically ordered phase and the development of molecule-based multiferroics
<sup>
<xref ref-type="bibr" rid="CR11">11</xref>
,
<xref ref-type="bibr" rid="CR13">13</xref>
,
<xref ref-type="bibr" rid="CR18">18</xref>
,
<xref ref-type="bibr" rid="CR27">27</xref>
</sup>
. In order to isolate materials with the above mentioned properties, we target coordination complexes containing anisotropic 4f ions. In contrast to the great deal of work on the synthesis of 3d–4f coordination complexes using 3d ions such as Mn
<sup>III</sup>
, Fe
<sup>III</sup>
, and Co
<sup>II</sup>
<sup>
<xref ref-type="bibr" rid="CR28">28</xref>
<xref ref-type="bibr" rid="CR32">32</xref>
</sup>
, there have been few reports of studies, both structurally and magnetically, on mixed Cr(III)–Ln(III) systems. We have recently shown, however, that the combination of the isotropic Cr
<sup>III</sup>
ion and the anisotropic Dy
<sup>III</sup>
ion resulted in a family of SMMs with long relaxation times, relative to other lanthanide-based SMMs
<sup>
<xref ref-type="bibr" rid="CR33">33</xref>
<xref ref-type="bibr" rid="CR36">36</xref>
</sup>
. With this in mind, we have chosen to expand our studies, utilizing chromium(III) nitrate, with various lanthanide(III) ions, with carboxylic acid pro-ligands.</p>
<p id="Par5">Herein, we describe the synthesis, structural characterization, and magnetic properties of a heterometallic complex of formula [Cr
<sup>III</sup>
Dy
<sup>III</sup>
<sub>6</sub>
(OH)
<sub>8</sub>
(
<italic>ortho</italic>
-tol)
<sub>12</sub>
(NO
<sub>3</sub>
)(MeOH)
<sub>5</sub>
]∙3MeOH (
<bold>1</bold>
), where
<italic>ortho</italic>
-tol = 
<italic>ortho</italic>
-toluate. Complex
<bold>1</bold>
displays slow magnetic relaxation and SMM behavior at temperatures below 2 K. Furthermore, in {Cr
<sup>III</sup>
Dy
<sup>III</sup>
<sub>6</sub>
} we find, for the first time, a ferrotoroidically coupled ground state fully determined by dipolar coupling between the two con-rotating toroidal triangles. Our observations on
<bold>1</bold>
have been compared to earlier reported studies on coupled molecular {Dy
<sup>III</sup>
<sub>3</sub>
} toroids
<sup>
<xref ref-type="bibr" rid="CR10">10</xref>
,
<xref ref-type="bibr" rid="CR11">11</xref>
,
<xref ref-type="bibr" rid="CR18">18</xref>
</sup>
. The ferrotoroidically coupled ground state thus leads to an enhanced toroidal moment in the ground state for the {Cr
<sup>III</sup>
Dy
<sup>III</sup>
<sub>6</sub>
} complex, which is shown to play a central role in the observed magnetization dynamics featuring zero-field hysteresis.</p>
</sec>
<sec id="Sec2" sec-type="results">
<title>Results</title>
<sec id="Sec3">
<title>Synthesis and magnetic properties</title>
<p id="Par6">Compound
<bold>1</bold>
was synthesized by the reaction of Cr(NO
<sub>3</sub>
)
<sub>3</sub>
∙9H
<sub>2</sub>
O and Dy(NO
<sub>3</sub>
)
<sub>3</sub>
·6H
<sub>2</sub>
O, with
<italic>ortho</italic>
-toluic acid in acetonitrile at ambient temperature. The solvent was then removed and re-dissolved in MeOH/
<sup>i</sup>
PrOH (Supplementary Methods). Suitable single crystals (pale purple color) for X-ray analysis were isolated after allowing the solvent to slowly evaporate.</p>
<p id="Par7">Single-crystal X-ray analysis reveals that compound
<bold>1</bold>
crystallizes in the triclinic space group,
<italic>P-</italic>
1 (see Supplementary Table 
<xref rid="MOESM1" ref-type="media">1</xref>
for full crystallographic details). The asymmetric unit contains half the complex, (three Dy
<sup>III</sup>
ions and one half of the Cr
<sup>III</sup>
ion) which lies upon an inversion center. Compound
<bold>1</bold>
is a heterometallic heptanuclear complex consisting of a single Cr
<sup>III</sup>
ion and six Dy
<sup>III</sup>
ions (Fig. 
<xref rid="Fig1" ref-type="fig">1</xref>
). The low Cr
<sup>III</sup>
to Dy
<sup>III</sup>
ratio of 1:6 in
<bold>1</bold>
is likely a consequence of the limited solubility of Cr(NO
<sub>3</sub>
)
<sub>3</sub>
∙9H
<sub>2</sub>
O in MeCN. The metallic core is based on two triangular Dy
<sup>III</sup>
units that lie above and below a single central Cr
<sup>III</sup>
ion, revealing two vertex sharing trigonal pyramids or tetrahedra. The metallic core is stabilized by 8 μ
<sub>3</sub>
-hydroxide, 12
<italic>ortho</italic>
-toluate, with MeOH and [NO
<sub>3</sub>
]
<sup></sup>
ligands. Six of the μ
<sub>3</sub>
hydroxide ligands bridge two Dy
<sup>III</sup>
ions to the central Cr
<sup>III</sup>
ion, while the remaining two bridge the three Dy
<sup>III</sup>
ions that make up each triangle. Six of the
<italic>ortho</italic>
-toluate ligands each bridge a Dy
<sup>III</sup>
–Dy
<sup>III</sup>
triangular edge, while six are found to chelate, each to a single Dy
<sup>III</sup>
ion. Terminal MeOH ligands coordinate to all six Dy
<sup>III</sup>
ions. It is found, however, that, at two of the Dy
<sup>III</sup>
sites, disordered MeOH and nitrate ions (50:50 occupancy) are present. The Cr
<sup>III</sup>
ion is six coordinate with an octahedral geometry, while the six Dy
<sup>III</sup>
ions are eight coordinate.
<fig id="Fig1">
<label>Fig. 1</label>
<caption>
<p>Molecular structure and exchange pathways.
<bold>a</bold>
The molecular structure of complex
<bold>1</bold>
. The solvent and H atoms are omitted for clarity. Color scheme; Cr
<sup>III</sup>
, pink; Dy
<sup>III</sup>
, green; O, red; N, blue; C, light gray;
<bold>b</bold>
Top view of the molecular structure of
<bold>1</bold>
;
<bold>c</bold>
Metal topology found in
<bold>1</bold>
with
<bold>d</bold>
magnetic exchange pathways
<italic>J</italic>
<sub>1</sub>
, and
<italic>J</italic>
<sub>2</sub>
highlighted</p>
</caption>
<graphic xlink:href="41467_2017_1102_Fig1_HTML" id="d29e765"></graphic>
</fig>
</p>
<p id="Par8">We have examined the structural distortions at individual Dy
<sup>III</sup>
sites using SHAPE software
<sup>
<xref ref-type="bibr" rid="CR37">37</xref>
,
<xref ref-type="bibr" rid="CR38">38</xref>
</sup>
. The geometry of each Dy
<sup>III</sup>
ion is best described by a triangular dodecahedron. The deviation of 2.7 for Dy1 and Dy1′, 1.2 for Dy2 and Dy2′, 1.5 for Dy3 and Dy3′ are observed with respect to the ideal triangular dodecahedron. Selected bond lengths and Dy
<sup>III</sup>
–O–Dy
<sup>III</sup>
and Cr
<sup>III</sup>
–O–Dy
<sup>III</sup>
bond angles are given in Supplementary Table 
<xref rid="MOESM1" ref-type="media">2</xref>
. The Dy
<sup>III</sup>
–O bond lengths are in the range, 2.391–2.492 Å. In the {Dy
<sup>III</sup>
<sub>3</sub>
} triangular unit, the bond distance between Dy1–Dy2, Dy1–Dy3, and Dy2–Dy3 is found to be 3.749, 3.767, and 3.780 Å, respectively and the Dy3–Dy1–Dy2, Dy1–Dy2–Dy3, and Dy2–Dy3–Dy1 bond angles are 55.99°, 60.52°, and 59.49°, respectively. The average Dy-(μ
<sub>3</sub>
-OH)-Dy angle is 106.0
<sup>o</sup>
, while the average Dy-(μ
<sub>3</sub>
-OH)-Dy angle also bridging to the Cr
<sup>III</sup>
ion is slightly smaller at 103.4
<sup>o</sup>
. The centroid to centroid distance between the two triangular units is found to be 5.38 Å. A shorter distance, compared to other linked {Dy
<sup>III</sup>
<sub>3</sub>
} triangles
<sup>
<xref ref-type="bibr" rid="CR11">11</xref>
</sup>
(5.64 Å) is likely to yield stronger dipolar coupling between the two {Dy
<sup>III</sup>
<sub>3</sub>
} units. Packing diagrams of
<bold>1</bold>
, viewed along the
<italic>a</italic>
,
<italic>b</italic>
, and
<italic>c</italic>
axes and of a neighboring pair are shown in Supplementary Fig. 
<xref rid="MOESM1" ref-type="media">1</xref>
. There are H-bonds linking adjacent {Cr
<sup>III</sup>
Dy
<sup>III</sup>
<sub>6</sub>
} complexes via MeOH···MeOH(solv)···O(carb) groups, combined with edge to face π–π interactions.</p>
<p id="Par9">Dc (direct current) magnetic susceptibility data were collected for
<bold>1</bold>
and the variation of
<italic>χ</italic>
<sub>M</sub>
<italic>T</italic>
with temperature is shown in Fig. 
<xref rid="Fig2" ref-type="fig">2a</xref>
. The room temperature
<italic>χ</italic>
<sub>M</sub>
<italic>T</italic>
product of 87.16 cm
<sup>3</sup>
 K mol
<sup>−1</sup>
is in agreement with the value expected (86.9 cm
<sup>3</sup>
 K mol
<sup>−1</sup>
) for one Cr
<sup>III</sup>
(
<italic>S</italic>
 = 3/2,
<italic>g</italic>
 = 2,
<italic>C</italic>
 = 1.875 cm
<sup>3</sup>
 K mol
<sup>−1</sup>
) and six Dy
<sup>III</sup>
(
<italic>S</italic>
 = 5/2,
<italic>L</italic>
 = 5,
<sup>6</sup>
H
<sub>15/2</sub>
,
<italic>g</italic>
 = 4/3,
<italic>C</italic>
 = 14.17 cm
<sup>3</sup>
 K mol
<sup>−1</sup>
) ions that are non-interacting. As the temperature is reduced the
<italic>χ</italic>
<sub>M</sub>
<italic>T</italic>
product (
<italic>H</italic>
 = 1 T) decreases gradually between room temperature and 50 K, before a more rapid decrease below this temperature, reaching a value of 14.37 cm
<sup>3</sup>
 K mol
<sup>−1</sup>
at 1.8 K. The decrease in
<italic>χ</italic>
<sub>M</sub>
<italic>T</italic>
at higher temperatures is attributed to the depopulation of the excited
<italic>m</italic>
<sub>
<italic>J</italic>
</sub>
Stark states of the Dy
<sup>III</sup>
ions, while the more rapid decrease at low temperatures is indicative of the presence of dominant antiferromagnetic exchange interactions. The low temperature
<italic>χ</italic>
<sub>M</sub>
<italic>T</italic>
value of 14.37 cm
<sup>3</sup>
 K mol
<sup>−1</sup>
at 2 K is higher than that expected for a single paramagnetic Cr(III) ion suggest that there are several close lying excited states including that of Dy
<sup>III</sup>
ion, which possess significant magnetic moment.
<fig id="Fig2">
<label>Fig. 2</label>
<caption>
<p>Susceptibility and magnetization plots. The measured (blue circles) and simulated (via the ab initio-parameterized model, orange solid line) plot of
<bold>a</bold>
<italic>χ</italic>
<sub>M</sub>
<italic>T</italic>
vs.
<italic>T</italic>
at 1 T and
<bold>b</bold>
<italic>M</italic>
vs.
<italic>H</italic>
isotherms at 2 K for complex
<bold>1</bold>
. (inset)
<italic>M</italic>
vs.
<italic>H</italic>
isotherms for complex
<bold>1</bold>
at 2, 3, 4, 5.5, 10, and 20 K (solid lines just join the points here)</p>
</caption>
<graphic xlink:href="41467_2017_1102_Fig2_HTML" id="d29e1056"></graphic>
</fig>
</p>
<p id="Par10">The isothermal
<italic>M</italic>
vs.
<italic>H</italic>
plots (Fig. 
<xref rid="Fig2" ref-type="fig">2b</xref>
; Supplementary Fig. 
<xref rid="MOESM1" ref-type="media">2</xref>
) at low fields reveal a non-linear, S-shaped curve at 2 and 3 K, which suggests the presence of a toroidal moment
<sup>
<xref ref-type="bibr" rid="CR8">8</xref>
<xref ref-type="bibr" rid="CR14">14</xref>
</sup>
and/or possible blockage of the magnetization vector and therefore slow magnetic relaxation. Above 4 K, the plots display a rapid increase in magnetization up to ~2 T followed by a steady increase and almost saturating at 5 T (Fig. 
<xref rid="Fig2" ref-type="fig">2b</xref>
). The simulation of the plots in Fig. 
<xref rid="Fig2" ref-type="fig">2</xref>
are discussed later.</p>
<p id="Par11">To probe for SMM behavior, the magnetization dynamics were investigated via alternating current (ac) susceptibility measurements as a function of both temperature and frequency. A 3.5 Oe ac field was employed, utilizing both a 0 and a 2000 Oe static dc field. A non-zero out-of-phase magnetic susceptibility component (
<italic>χ</italic>
″) is observed, at
<italic>H</italic>
<sub>dc</sub>
 = 0 Oe, however, no maxima are found upon reducing the temperature down to 1.8 K (Supplementary Fig. 
<xref rid="MOESM1" ref-type="media">3</xref>
). This is also the case for when
<italic>H</italic>
<sub>dc</sub>
 = 2000 Oe (Supplementary Fig. 
<xref rid="MOESM1" ref-type="media">3</xref>
). This does not prove SMM behavior, but suggests the possibility of such, with a small energy barrier to magnetic reorientation and fast relaxation times, even at 1.8 K. As a consequence of the fast magnetic relaxation times, even at temperatures below 2 K, it is suggested that the low-field magnetization behavior points to the presence of a toroidal magnetic moment.</p>
<p id="Par12">Single crystals of
<bold>1</bold>
were studied using the micro-SQUID technique at various temperatures and sweep rates for two different orientations of the molecule
<sup>
<xref ref-type="bibr" rid="CR39">39</xref>
</sup>
. The curve displays a stepped shape of the magnetization (Fig. 
<xref rid="Fig3" ref-type="fig">3</xref>
; Supplementary Fig. 
<xref rid="MOESM1" ref-type="media">4</xref>
), similar to that observed by the archetypal triangular toroidal system
<sup>
<xref ref-type="bibr" rid="CR8">8</xref>
</sup>
. The position of the step (
<italic>H</italic>
<sub>
<italic>s</italic>
</sub>
) depends on the orientation of the magnetic field with respect to the plane of the triangles, as expected on the basis of the in-plane anisotropy predicted by our model (vide infra). Thus, when the field is parallel to two inversion-related tangential Dy magnetic axes, and perpendicular to none, this leads to an in-plane easy axis, while a magnetic field perpendicular to that direction, thus perpendicular to two Dy easy axes and parallel to none, leads to an in-plane hard axis. In particular, when the field is applied along any Dy–Dy bond vector as in Fig. 
<xref rid="Fig3" ref-type="fig">3a</xref>
, i.e., along the y-axis in Fig.
<xref rid="Fig6" ref-type="fig">6</xref>
, hysteresis is observed below 0.8 K, with the coercive field widening on cooling (
<italic>H</italic>
<sub>
<italic>c</italic>
</sub>
 = 0.6 T at 0.03 K, with a sweep rate of 0.28 T s
<sup>−1</sup>
). This behavior is characteristic of an SMM, with slow zero-field relaxation. We then observe a large step in the magnetization at about
<italic>H</italic>
<sub>
<italic>s</italic>
</sub>
 = 0.7 T. Application of the magnetic field perpendicular to the Dy–Dy bond vector results in a reduction of coercivity (
<italic>H</italic>
<sub>
<italic>c</italic>
</sub>
 = 0.5 T at 0.03 K, with a sweep rate of 0.28 T s
<sup>−1</sup>
, Supplementary Fig. 
<xref rid="MOESM1" ref-type="media">4</xref>
). Upon comparison of the hysteresis profile of complex
<bold>1</bold>
with the archetypal {Dy
<sub>3</sub>
} toroidal complex
<sup>
<xref ref-type="bibr" rid="CR8">8</xref>
</sup>
, we find that profile for
<bold>1</bold>
appears to be superior comparing the coercitivity. This suggests that coupling between the two {Dy
<sup>III</sup>
<sub>3</sub>
} triangles in
<bold>1</bold>
enhances the zero-field slow relaxation properties of the system. A theoretical model explaining this behavior is developed later in the paper.
<fig id="Fig3">
<label>Fig. 3</label>
<caption>
<p>Single-crystal studies. Single-crystal magnetization (
<italic>M</italic>
) vs. applied field measurements (μ-SQUID) for complex
<bold>1</bold>
at
<bold>a</bold>
0.03–0.8 K with the scan rate of 0.14 T s
<sup>−1</sup>
;
<bold>b</bold>
with different field sweep rates at 0.03 K</p>
</caption>
<graphic xlink:href="41467_2017_1102_Fig3_HTML" id="d29e1221"></graphic>
</fig>
</p>
<p id="Par13">We have also recorded EPR spectra at the X-band frequency at 5, 10, and 20 K (Fig. 
<xref rid="Fig4" ref-type="fig">4</xref>
). The EPR spectrum recorded at 5 K reveals distinct features at very large
<italic>g</italic>
-values (
<italic>g</italic>
 ~ 14.2). When we increased the temperature we found that the intensity of this signal decreases. There are also weak features at
<italic>g</italic>
 ~ 2.05,
<italic>g</italic>
 ~ 1.2, and
<italic>g</italic>
 ~ 1.03 and the intensities of these features also decrease upon increasing the temperature. To gain an understanding on the nature of these EPR spectra, we have simulated the EPR spectrum by means of the XSOPHE simulation suite
<sup>
<xref ref-type="bibr" rid="CR40">40</xref>
,
<xref ref-type="bibr" rid="CR41">41</xref>
</sup>
, using a {Cr
<sup>III</sup>
Dy
<sup>III</sup>
<sub>3</sub>
} model employing a pseudo
<italic>S</italic>
 = 1/2 state for each Dy
<sup>III</sup>
ion and a
<italic>S</italic>
 = 3/2 state for the Cr
<sup>III</sup>
ion. Ab initio computed
<italic>g</italic>
-anisotropies, directions, and
<italic>J</italic>
values are given as inputs (see below for details) along with the Dy···Dy and Dy···Cr distances from the X-ray structure. A small perturbation to the Euler angles without altering any other parameters yield reasonable fit to the experimental spectrum recorded at 5 K (Fig. 
<xref rid="Fig4" ref-type="fig">4</xref>
; The further details of simulation are given in Supplementary Note 
<xref rid="MOESM1" ref-type="media">1</xref>
), offering confidence on the estimated parameters. However, the lines appearing at
<italic>g</italic>
 ~ 1.23 and
<italic>g</italic>
 ~ 1.03 are much broader than they appear in the simulation and this may be attributed to a fact that only {Cr
<sup>III</sup>
Dy
<sup>III</sup>
<sub>3</sub>
} has been employed in the simulation and not the full {Cr
<sup>III</sup>
Dy
<sup>III</sup>
<sub>6</sub>
} Hamiltonian. Multi-frequency EPR including HF-EPR spectra are required, in future, to independently obtain the spin Hamiltonian parameters
<sup>
<xref ref-type="bibr" rid="CR42">42</xref>
</sup>
.
<fig id="Fig4">
<label>Fig. 4</label>
<caption>
<p>EPR spectroscopy. Powder EPR spectra of
<bold>1</bold>
at X-band frequency at 5, 10, and 20 K and the simulated curve</p>
</caption>
<graphic xlink:href="41467_2017_1102_Fig4_HTML" id="d29e1326"></graphic>
</fig>
</p>
</sec>
<sec id="Sec4">
<title>Theoretical analysis and characterization of a ferrotoroidic ground state</title>
<p id="Par14">To explain the experimental observations, we performed ab initio calculations of electronic structure and magnetic properties, using MOLCAS 7.8
<sup>
<xref ref-type="bibr" rid="CR43">43</xref>
</sup>
, on individual Dy
<sup>III</sup>
and Cr
<sup>III</sup>
centers. The computed orientation of the anisotropy axes is shown in Fig. 
<xref rid="Fig5" ref-type="fig">5</xref>
. In particular, we employed the ab initio
<italic>M</italic>
<sub>
<italic>J</italic>
</sub>
decomposition of the single-ion thermally isolated ground Kramers doublet (KD) wavefunctions along the ab initio
<italic>g</italic>
-tensor principal axis, to set up a model Hamiltonian for intramolecular magnetic coupling including dipolar coupling between all pairs of ions, which is parameters-free, intra-ring Dy
<sup>III</sup>
–Dy
<sup>III</sup>
superexchange interactions parameterized by a single coupling constant
<italic>J</italic>
<sub>2,</sub>
and Dy
<sup>III</sup>
–Cr
<sup>III</sup>
superexchange interactions parameterized by a single coupling constant
<italic>J</italic>
<sub>1</sub>
. The coupling parameters
<italic>J</italic>
<sub>1</sub>
and
<italic>J</italic>
<sub>2</sub>
were evaluated via DFT calculations. The well-known dipolar Hamiltonian reads:
<disp-formula id="Equ1">
<label>1</label>
<alternatives>
<tex-math id="M1">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${H_{{\rm{dip}}}} = \frac{{{\mu _0}}}{{4\pi }}\mathop {\sum }\limits_{p,q} \left( {\frac{{{{\bf M}_p} \cdot {{\bf M}_q}}}{{{{\left| {{{\bf R}_{pq}}} \right|}^3}}} - 3\frac{{\left( {{{\bf M}_p} \cdot {{\bf R}_{pq}}} \right)\left( {{{\bf M}_q} \cdot {{\bf R}_{pq}}} \right)}}{{{{\left| {{{\bf R}_{pq}}} \right|}^5}}}} \right),$$\end{document}</tex-math>
<mml:math id="M2" display="block">
<mml:msub>
<mml:mrow>
<mml:mi>H</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi mathvariant="normal">dip</mml:mi>
</mml:mrow>
</mml:msub>
<mml:mo>=</mml:mo>
<mml:mfrac>
<mml:mrow>
<mml:msub>
<mml:mrow>
<mml:mi>μ</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mn>0</mml:mn>
</mml:mrow>
</mml:msub>
</mml:mrow>
<mml:mrow>
<mml:mn>4</mml:mn>
<mml:mi>π</mml:mi>
</mml:mrow>
</mml:mfrac>
<mml:munder>
<mml:mrow>
<mml:mo></mml:mo>
</mml:mrow>
<mml:mrow>
<mml:mi>p</mml:mi>
<mml:mo>,</mml:mo>
<mml:mi>q</mml:mi>
</mml:mrow>
</mml:munder>
<mml:mfenced close=")" open="(" separators="">
<mml:mrow>
<mml:mfrac>
<mml:mrow>
<mml:msub>
<mml:mrow>
<mml:mi mathvariant="bold">M</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>p</mml:mi>
</mml:mrow>
</mml:msub>
<mml:mo></mml:mo>
<mml:msub>
<mml:mrow>
<mml:mi mathvariant="bold">M</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>q</mml:mi>
</mml:mrow>
</mml:msub>
</mml:mrow>
<mml:mrow>
<mml:msup>
<mml:mrow>
<mml:mfenced close="∣" open="∣" separators="">
<mml:mrow>
<mml:msub>
<mml:mrow>
<mml:mi mathvariant="bold">R</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>p</mml:mi>
<mml:mi>q</mml:mi>
</mml:mrow>
</mml:msub>
</mml:mrow>
</mml:mfenced>
</mml:mrow>
<mml:mrow>
<mml:mn>3</mml:mn>
</mml:mrow>
</mml:msup>
</mml:mrow>
</mml:mfrac>
<mml:mo>-</mml:mo>
<mml:mn>3</mml:mn>
<mml:mfrac>
<mml:mrow>
<mml:mfenced close=")" open="(" separators="">
<mml:mrow>
<mml:msub>
<mml:mrow>
<mml:mi mathvariant="bold">M</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>p</mml:mi>
</mml:mrow>
</mml:msub>
<mml:mo></mml:mo>
<mml:msub>
<mml:mrow>
<mml:mi mathvariant="bold">R</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>p</mml:mi>
<mml:mi>q</mml:mi>
</mml:mrow>
</mml:msub>
</mml:mrow>
</mml:mfenced>
<mml:mfenced close=")" open="(" separators="">
<mml:mrow>
<mml:msub>
<mml:mrow>
<mml:mi mathvariant="bold">M</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>q</mml:mi>
</mml:mrow>
</mml:msub>
<mml:mo></mml:mo>
<mml:msub>
<mml:mrow>
<mml:mi mathvariant="bold">R</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>p</mml:mi>
<mml:mi>q</mml:mi>
</mml:mrow>
</mml:msub>
</mml:mrow>
</mml:mfenced>
</mml:mrow>
<mml:mrow>
<mml:msup>
<mml:mrow>
<mml:mfenced close="∣" open="∣" separators="">
<mml:mrow>
<mml:msub>
<mml:mrow>
<mml:mi mathvariant="bold">R</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>p</mml:mi>
<mml:mi>q</mml:mi>
</mml:mrow>
</mml:msub>
</mml:mrow>
</mml:mfenced>
</mml:mrow>
<mml:mrow>
<mml:mn>5</mml:mn>
</mml:mrow>
</mml:msup>
</mml:mrow>
</mml:mfrac>
</mml:mrow>
</mml:mfenced>
<mml:mo>,</mml:mo>
</mml:math>
<graphic xlink:href="41467_2017_1102_Article_Equ1.gif" position="anchor"></graphic>
</alternatives>
</disp-formula>
where
<bold>M</bold>
<sub>
<italic>p</italic>
</sub>
is the magnetic moment of the
<italic>p</italic>
th ion, and
<bold>R</bold>
<sub>
<italic>pq</italic>
</sub>
the distance between ions
<italic>p</italic>
and
<italic>q</italic>
. The superexchange contribution is modeled by an isotropic Heisenberg Hamiltonian
<sup>
<xref ref-type="bibr" rid="CR44">44</xref>
</sup>
:
<disp-formula id="Equ2">
<label>2</label>
<alternatives>
<tex-math id="M3">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${H_{{\rm{exch}}}} = - {J_2}\mathop {\sum }\limits_{p,q} \left( {{{\rm S}_p} \cdot {{\rm S}_q} + {{\rm S}_{{p^\prime }}} \cdot {{\rm S}_{{q^\prime }}}} \right) - {J_1}\mathop {\sum }\limits_q \left( {{{\rm S}_q} + {{\rm S}_{{q^\prime }}}} \right) \cdot {{\rm S}_{{\rm{Cr}}}},$$\end{document}</tex-math>
<mml:math id="M4" display="block">
<mml:msub>
<mml:mrow>
<mml:mi>H</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi mathvariant="normal">exch</mml:mi>
</mml:mrow>
</mml:msub>
<mml:mo>=</mml:mo>
<mml:mo>-</mml:mo>
<mml:msub>
<mml:mrow>
<mml:mi>J</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mn>2</mml:mn>
</mml:mrow>
</mml:msub>
<mml:munder>
<mml:mrow>
<mml:mo></mml:mo>
</mml:mrow>
<mml:mrow>
<mml:mi>p</mml:mi>
<mml:mo>,</mml:mo>
<mml:mi>q</mml:mi>
</mml:mrow>
</mml:munder>
<mml:mfenced close=")" open="(" separators="">
<mml:mrow>
<mml:msub>
<mml:mrow>
<mml:mi mathvariant="normal">S</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>p</mml:mi>
</mml:mrow>
</mml:msub>
<mml:mo></mml:mo>
<mml:msub>
<mml:mrow>
<mml:mi mathvariant="normal">S</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>q</mml:mi>
</mml:mrow>
</mml:msub>
<mml:mo>+</mml:mo>
<mml:msub>
<mml:mrow>
<mml:mi mathvariant="normal">S</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:msup>
<mml:mrow>
<mml:mi>p</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi></mml:mi>
</mml:mrow>
</mml:msup>
</mml:mrow>
</mml:msub>
<mml:mo></mml:mo>
<mml:msub>
<mml:mrow>
<mml:mi mathvariant="normal">S</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:msup>
<mml:mrow>
<mml:mi>q</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi></mml:mi>
</mml:mrow>
</mml:msup>
</mml:mrow>
</mml:msub>
</mml:mrow>
</mml:mfenced>
<mml:mo>-</mml:mo>
<mml:msub>
<mml:mrow>
<mml:mi>J</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mn>1</mml:mn>
</mml:mrow>
</mml:msub>
<mml:munder>
<mml:mrow>
<mml:mo></mml:mo>
</mml:mrow>
<mml:mrow>
<mml:mi>q</mml:mi>
</mml:mrow>
</mml:munder>
<mml:mfenced close=")" open="(" separators="">
<mml:mrow>
<mml:msub>
<mml:mrow>
<mml:mi mathvariant="normal">S</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>q</mml:mi>
</mml:mrow>
</mml:msub>
<mml:mo>+</mml:mo>
<mml:msub>
<mml:mrow>
<mml:mi mathvariant="normal">S</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:msup>
<mml:mrow>
<mml:mi>q</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi></mml:mi>
</mml:mrow>
</mml:msup>
</mml:mrow>
</mml:msub>
</mml:mrow>
</mml:mfenced>
<mml:mo></mml:mo>
<mml:msub>
<mml:mrow>
<mml:mi mathvariant="normal">S</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi mathvariant="normal">Cr</mml:mi>
</mml:mrow>
</mml:msub>
<mml:mo>,</mml:mo>
</mml:math>
<graphic xlink:href="41467_2017_1102_Article_Equ2.gif" position="anchor"></graphic>
</alternatives>
</disp-formula>
where
<bold>S</bold>
<sub>
<italic>q</italic>
</sub>
(
<bold>S</bold>
<sub>Cr</sub>
) are the true spin moments of the Dy (Cr) ions, with the primed and unprimed subscripts labeling Dy ions belonging to different triangles. We note here that when the simple isotropic exchange Hamiltonian is projected on the thermally isolated ground KDs, it becomes a strongly anisotropic non-collinear Ising Hamiltonian, a widely employed protocol for {3d–4f} systems.
<fig id="Fig5">
<label>Fig. 5</label>
<caption>
<p>Orientation of the magnetic anisotropy axes. The directions of the local anisotropy axes in the ground Kramers doublet on each Dy site (dotted lines) in
<bold>1</bold>
. Blue arrows are the local magnetic moment in the ground exchange doublet. Black arrows show the con rotation of the toroidal magnetic moment and the yellow arrow is the S
<sub>6</sub>
symmetry axis</p>
</caption>
<graphic xlink:href="41467_2017_1102_Fig5_HTML" id="d29e1733"></graphic>
</fig>
</p>
<p id="Par15">To estimate the low-energy wavefunctions and magnetic anisotropy for each of the seven ions in
<bold>1</bold>
, we have undertaken CASSCF+RASSI-SO calculations on the individual Dy
<sup>III</sup>
centers
<sup>
<xref ref-type="bibr" rid="CR43">43</xref>
</sup>
. The calculations yielded the following
<italic>g</italic>
-tensor principal values: (Dy1;
<italic>g</italic>
<sub>
<italic>x</italic>
</sub>
 = 0.0523,
<italic>g</italic>
<sub>
<italic>y</italic>
</sub>
 = 0.0927, and
<italic>g</italic>
<sub>
<italic>z</italic>
</sub>
 = 19.5707); (Dy2;
<italic>g</italic>
<sub>
<italic>x</italic>
</sub>
 = 0.0737,
<italic>g</italic>
<sub>
<italic>y</italic>
</sub>
 = 0.0979, and
<italic>g</italic>
<sub>
<italic>z</italic>
</sub>
 = 19.4723); (Dy3;
<italic>g</italic>
<sub>
<italic>x</italic>
</sub>
 = 0.0233,
<italic>g</italic>
<sub>
<italic>y</italic>
</sub>
 = 0.0361, and
<italic>g</italic>
<sub>
<italic>z</italic>
</sub>
 = 19.6059) and (Cr;
<italic>g</italic>
<sub>
<italic>x</italic>
</sub>
 = 
<italic>g</italic>
<sub>
<italic>y</italic>
</sub>
 = 
<italic>g</italic>
<sub>
<italic>z</italic>
</sub>
 = 2.002) (Supplementary Tables 
<xref rid="MOESM1" ref-type="media">3</xref>
,
<xref rid="MOESM1" ref-type="media">6</xref>
). The symmetry-related Dy1′, Dy2′, and Dy3′ ions possess essentially the same
<italic>g</italic>
-tensor. Although the two triangles are equivalent, Dy1 and Dy1′ slightly differs due to coordination of methanol in Dy1 and nitrate in Dy1′. These data, along with the
<italic>J</italic>
value are found to yield a good fit to the experimental susceptibility data (Fig. 
<xref rid="Fig2" ref-type="fig">2</xref>
, vide supra). A qualitative mechanism developed based on single-ion Dy(III) is discussed in detail in the ESI (Supplementary Fig. 
<xref rid="MOESM1" ref-type="media">6</xref>
; Supplementary Note 
<xref rid="MOESM1" ref-type="media">2</xref>
).</p>
<p id="Par16">The core structure of the molecule has a pseudo S
<sub>6</sub>
axis passing through the Cr
<sup>III</sup>
ion and the center of both of the {Dy
<sup>III</sup>
<sub>3</sub>
} triangular units (Fig. 
<xref rid="Fig5" ref-type="fig">5</xref>
). The local principal anisotropy axes are found from the calculations to lie in the {Dy
<sup>III</sup>
<sub>3</sub>
} plane with an out-of-plane angle of 0.29, 4.5, and 4.7° for Dy1, Dy2, and Dy3, respectively. The Dy
<sup>III</sup>
magnetic axes are also found to be almost perfectly aligned with the tangents to an ideal circumference enclosing the triangles (the angle of the anisotropy axis with these tangential directions are in the range of 1.1–7.9°). The computed energies of the eight low-lying KDs reflect that there are three types of Dy
<sup>III</sup>
ions in the complex (Supplementary Tables 
<xref rid="MOESM1" ref-type="media">4</xref>
,
<xref rid="MOESM1" ref-type="media">5</xref>
), although the ground states of all Dy
<sup>III</sup>
ions consist of almost pure atomic | ± 15/2 > KDs. The energy gap between the ground and the first excited state KDs are found to be 142.8, 121.9, and 152.7 cm
<sup>−1</sup>
for Dy1, Dy2, and Dy3, respectively. For the Cr
<sup>III</sup>
ion calculations yield isotropic
<italic>g</italic>
-tensors (Supplementary Table 
<xref rid="MOESM1" ref-type="media">3</xref>
) and an axial zero-field splitting of ~1.0 × 10
<sup>−4</sup>
 cm
<sup>−1</sup>
.</p>
<p id="Par17">Thus the ab initio calculations suggest that magnetic coupling can be well described by projecting Hamiltonians Eqs. (1) and (2) on the basis of the ground KDs (Dy) and quartet (Cr) only, leading to a 256-dimensional product space with basis
<inline-formula id="IEq1">
<alternatives>
<tex-math id="M5">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left| {{\bf m},{M_{{\rm{Cr}}}}} \right\rangle $$\end{document}</tex-math>
<mml:math id="M6">
<mml:mfenced close="⟩" open="∣" separators="">
<mml:mrow>
<mml:mi mathvariant="bold">m</mml:mi>
<mml:mo>,</mml:mo>
<mml:msub>
<mml:mrow>
<mml:mi>M</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi mathvariant="normal">Cr</mml:mi>
</mml:mrow>
</mml:msub>
</mml:mrow>
</mml:mfenced>
</mml:math>
<inline-graphic xlink:href="41467_2017_1102_Article_IEq1.gif"></inline-graphic>
</alternatives>
</inline-formula>
, where
<bold>m</bold>
 = [
<italic>m</italic>
<sub>1</sub>
,
<italic>m</italic>
<sub>2</sub>
,
<italic>m</italic>
<sub>3</sub>
,
<italic>m</italic>
<sub>1′</sub>
,
<italic>m</italic>
<sub>2′</sub>
,
<italic>m</italic>
<sub>3′</sub>
] with
<italic>m</italic>
<sub>
<italic>q</italic>
</sub>
 = ±1. We further assume that such KDs are pure | ± 15/2 > atomic states quantized along the local anisotropy axis, which is assumed to be exactly in the triangle’s plane and along the tangential direction, so that
<inline-formula id="IEq2">
<alternatives>
<tex-math id="M7">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\hat S_{t,q}}\left| {{m_q}} \right\rangle = {m_q}\left( {5/2} \right)\left| {{m_q}} \right\rangle $$\end{document}</tex-math>
<mml:math id="M8">
<mml:msub>
<mml:mrow>
<mml:mi>Ŝ</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>t</mml:mi>
<mml:mo>,</mml:mo>
<mml:mi>q</mml:mi>
</mml:mrow>
</mml:msub>
<mml:mfenced close="⟩" open="∣" separators="">
<mml:mrow>
<mml:msub>
<mml:mrow>
<mml:mi>m</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>q</mml:mi>
</mml:mrow>
</mml:msub>
</mml:mrow>
</mml:mfenced>
<mml:mo>=</mml:mo>
<mml:msub>
<mml:mrow>
<mml:mi>m</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>q</mml:mi>
</mml:mrow>
</mml:msub>
<mml:mfenced close=")" open="(" separators="">
<mml:mrow>
<mml:mn>5</mml:mn>
<mml:mo></mml:mo>
<mml:mn>2</mml:mn>
</mml:mrow>
</mml:mfenced>
<mml:mfenced close="⟩" open="∣" separators="">
<mml:mrow>
<mml:msub>
<mml:mrow>
<mml:mi>m</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>q</mml:mi>
</mml:mrow>
</mml:msub>
</mml:mrow>
</mml:mfenced>
</mml:math>
<inline-graphic xlink:href="41467_2017_1102_Article_IEq2.gif"></inline-graphic>
</alternatives>
</inline-formula>
, and
<inline-formula id="IEq3">
<alternatives>
<tex-math id="M9">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\hat J_{t,q}}\left| {{{{m}}_q}} \right\rangle = {{{m}}_q}\left( {15/2} \right)\left| {{{{m}}_q}} \right\rangle $$\end{document}</tex-math>
<mml:math id="M10">
<mml:msub>
<mml:mrow>
<mml:mi>Ĵ</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>t</mml:mi>
<mml:mo>,</mml:mo>
<mml:mi>q</mml:mi>
</mml:mrow>
</mml:msub>
<mml:mfenced close="⟩" open="∣" separators="">
<mml:mrow>
<mml:msub>
<mml:mrow>
<mml:mi>m</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>q</mml:mi>
</mml:mrow>
</mml:msub>
</mml:mrow>
</mml:mfenced>
<mml:mo>=</mml:mo>
<mml:msub>
<mml:mrow>
<mml:mi>m</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>q</mml:mi>
</mml:mrow>
</mml:msub>
<mml:mfenced close=")" open="(" separators="">
<mml:mrow>
<mml:mn>15</mml:mn>
<mml:mo></mml:mo>
<mml:mn>2</mml:mn>
</mml:mrow>
</mml:mfenced>
<mml:mfenced close="⟩" open="∣" separators="">
<mml:mrow>
<mml:msub>
<mml:mrow>
<mml:mi>m</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>q</mml:mi>
</mml:mrow>
</mml:msub>
</mml:mrow>
</mml:mfenced>
</mml:math>
<inline-graphic xlink:href="41467_2017_1102_Article_IEq3.gif"></inline-graphic>
</alternatives>
</inline-formula>
(
<inline-formula id="IEq4">
<alternatives>
<tex-math id="M11">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\hat S_{t,q}}$$\end{document}</tex-math>
<mml:math id="M12">
<mml:msub>
<mml:mrow>
<mml:mi>Ŝ</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>t</mml:mi>
<mml:mo>,</mml:mo>
<mml:mi>q</mml:mi>
</mml:mrow>
</mml:msub>
</mml:math>
<inline-graphic xlink:href="41467_2017_1102_Article_IEq4.gif"></inline-graphic>
</alternatives>
</inline-formula>
and
<inline-formula id="IEq5">
<alternatives>
<tex-math id="M13">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\hat J_{t,q}}$$\end{document}</tex-math>
<mml:math id="M14">
<mml:msub>
<mml:mrow>
<mml:mi>Ĵ</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>t</mml:mi>
<mml:mo>,</mml:mo>
<mml:mi>q</mml:mi>
</mml:mrow>
</mml:msub>
</mml:math>
<inline-graphic xlink:href="41467_2017_1102_Article_IEq5.gif"></inline-graphic>
</alternatives>
</inline-formula>
are the spin and total angular momenta operators along the tangential direction for the
<italic>q</italic>
th Dy
<sup>III</sup>
ion), and a seventh quantum number
<italic>M</italic>
<sub>Cr</sub>
 = ±3/2, ±1/2 labeling the spin state for the Cr ion. Finally, given the quasi S
<sub>6</sub>
symmetry, in our model we assume two equilateral triangles with radius
<italic>r</italic>
 = 2.17 Å, their planes being at distance
<italic>h</italic>
 = 5.38 Å (Fig. 
<xref rid="Fig6" ref-type="fig">6</xref>
,
<italic>r</italic>
and
<italic>h</italic>
are average experimental values). Thus a ferrotoroidic (FT) state (con-rotating toroidal moments ± 
<italic>τ</italic>
<sub>1</sub>
, ± 
<italic>τ</italic>
<sub>2</sub>
on the two triangles) correspond to
<inline-formula id="IEq6">
<alternatives>
<tex-math id="M15">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left| { \pm 1, \pm 1, \pm 1, \pm 1, \pm 1, \pm 1,{M_{{\rm{Cr}}}}} \right\rangle \equiv \left| { \pm {\tau _1}, \pm {\tau _2},{M_{{\rm{Cr}}}}} \right\rangle $$\end{document}</tex-math>
<mml:math id="M16">
<mml:mfenced close="⟩" open="∣" separators="">
<mml:mrow>
<mml:mo>±</mml:mo>
<mml:mn>1</mml:mn>
<mml:mo>,</mml:mo>
<mml:mo>±</mml:mo>
<mml:mn>1</mml:mn>
<mml:mo>,</mml:mo>
<mml:mo>±</mml:mo>
<mml:mn>1</mml:mn>
<mml:mo>,</mml:mo>
<mml:mo>±</mml:mo>
<mml:mn>1</mml:mn>
<mml:mo>,</mml:mo>
<mml:mo>±</mml:mo>
<mml:mn>1</mml:mn>
<mml:mo>,</mml:mo>
<mml:mo>±</mml:mo>
<mml:mn>1</mml:mn>
<mml:mo>,</mml:mo>
<mml:msub>
<mml:mrow>
<mml:mi>M</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi mathvariant="normal">Cr</mml:mi>
</mml:mrow>
</mml:msub>
</mml:mrow>
</mml:mfenced>
<mml:mo></mml:mo>
<mml:mfenced close="⟩" open="∣" separators="">
<mml:mrow>
<mml:mo>±</mml:mo>
<mml:msub>
<mml:mrow>
<mml:mi>τ</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mn>1</mml:mn>
</mml:mrow>
</mml:msub>
<mml:mo>,</mml:mo>
<mml:mo>±</mml:mo>
<mml:msub>
<mml:mrow>
<mml:mi>τ</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mn>2</mml:mn>
</mml:mrow>
</mml:msub>
<mml:mo>,</mml:mo>
<mml:msub>
<mml:mrow>
<mml:mi>M</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi mathvariant="normal">Cr</mml:mi>
</mml:mrow>
</mml:msub>
</mml:mrow>
</mml:mfenced>
</mml:math>
<inline-graphic xlink:href="41467_2017_1102_Article_IEq6.gif"></inline-graphic>
</alternatives>
</inline-formula>
, while antiferrotoroidic (AFT) states (counter-rotating toroidal moments) correspond to
<inline-formula id="IEq7">
<alternatives>
<tex-math id="M17">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left| { \pm 1, \pm 1, \pm 1, \mp 1, \mp 1, \mp 1,{M_{{\rm{Cr}}}}} \right\rangle \equiv \left| { \pm {\tau _1}, \mp {\tau _2},{M_{{\rm{Cr}}}}} \right\rangle $$\end{document}</tex-math>
<mml:math id="M18">
<mml:mfenced close="⟩" open="∣" separators="">
<mml:mrow>
<mml:mo>±</mml:mo>
<mml:mn>1</mml:mn>
<mml:mo>,</mml:mo>
<mml:mo>±</mml:mo>
<mml:mn>1</mml:mn>
<mml:mo>,</mml:mo>
<mml:mo>±</mml:mo>
<mml:mn>1</mml:mn>
<mml:mo>,</mml:mo>
<mml:mo></mml:mo>
<mml:mn>1</mml:mn>
<mml:mo>,</mml:mo>
<mml:mo></mml:mo>
<mml:mn>1</mml:mn>
<mml:mo>,</mml:mo>
<mml:mo></mml:mo>
<mml:mn>1</mml:mn>
<mml:mo>,</mml:mo>
<mml:msub>
<mml:mrow>
<mml:mi>M</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi mathvariant="normal">Cr</mml:mi>
</mml:mrow>
</mml:msub>
</mml:mrow>
</mml:mfenced>
<mml:mo></mml:mo>
<mml:mfenced close="⟩" open="∣" separators="">
<mml:mrow>
<mml:mo>±</mml:mo>
<mml:msub>
<mml:mrow>
<mml:mi>τ</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mn>1</mml:mn>
</mml:mrow>
</mml:msub>
<mml:mo>,</mml:mo>
<mml:mo></mml:mo>
<mml:msub>
<mml:mrow>
<mml:mi>τ</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mn>2</mml:mn>
</mml:mrow>
</mml:msub>
<mml:mo>,</mml:mo>
<mml:msub>
<mml:mrow>
<mml:mi>M</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi mathvariant="normal">Cr</mml:mi>
</mml:mrow>
</mml:msub>
</mml:mrow>
</mml:mfenced>
</mml:math>
<inline-graphic xlink:href="41467_2017_1102_Article_IEq7.gif"></inline-graphic>
</alternatives>
</inline-formula>
.
<fig id="Fig6">
<label>Fig. 6</label>
<caption>
<p>Schematic diagram to describe exchange coupling. Schematic representation of the idealized geometry used to describe magnetic coupling in {Dy
<sub>6</sub>
Cr} via Hamiltonians Eqs. (
<xref rid="Equ1" ref-type="">1</xref>
) and (
<xref rid="Equ2" ref-type="">2</xref>
)</p>
</caption>
<graphic xlink:href="41467_2017_1102_Fig6_HTML" id="d29e2373"></graphic>
</fig>
</p>
<p id="Par18">Due to the large value of the ground KDs, angular momenta projections in
<inline-formula id="IEq8">
<alternatives>
<tex-math id="M19">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left| {{\bf m},{M_{{\rm{Cr}}}}} \right\rangle $$\end{document}</tex-math>
<mml:math id="M20">
<mml:mfenced close="⟩" open="∣" separators="">
<mml:mrow>
<mml:mi mathvariant="bold">m</mml:mi>
<mml:mo>,</mml:mo>
<mml:msub>
<mml:mrow>
<mml:mi>M</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi mathvariant="normal">Cr</mml:mi>
</mml:mrow>
</mml:msub>
</mml:mrow>
</mml:mfenced>
</mml:math>
<inline-graphic xlink:href="41467_2017_1102_Article_IEq8.gif"></inline-graphic>
</alternatives>
</inline-formula>
, Hamiltonians Eqs. (
<xref rid="Equ1" ref-type="">1</xref>
) and (
<xref rid="Equ2" ref-type="">2</xref>
) are both diagonal on such basis, and
<inline-formula id="IEq9">
<alternatives>
<tex-math id="M21">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left| {{\bf m},{M_{{\rm{Cr}}}}} \right\rangle $$\end{document}</tex-math>
<mml:math id="M22">
<mml:mfenced close="⟩" open="∣" separators="">
<mml:mrow>
<mml:mi mathvariant="bold">m</mml:mi>
<mml:mo>,</mml:mo>
<mml:msub>
<mml:mrow>
<mml:mi>M</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi mathvariant="normal">Cr</mml:mi>
</mml:mrow>
</mml:msub>
</mml:mrow>
</mml:mfenced>
</mml:math>
<inline-graphic xlink:href="41467_2017_1102_Article_IEq9.gif"></inline-graphic>
</alternatives>
</inline-formula>
represent the low-energy exchange-coupled states of
<bold>1</bold>
. The corresponding energies can be written as a sum of a superexchange contribution, an intra-ring dipolar contribution, an inter-ring dipolar contribution, and Dy
<sup>III</sup>
–Cr
<sup>III</sup>
dipolar contribution.</p>
<p id="Par19">For the exchange energies we get (sum over
<italic>q</italic>
is understood modulus 3, so that
<italic>m</italic>
<sub>3+1</sub>
 = 
<italic>m</italic>
<sub>1</sub>
):
<disp-formula id="Equ3">
<label>3</label>
<alternatives>
<tex-math id="M23">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${E_{{\rm{exch,}}{\bf m}}} = \frac{{25}}{8}{J_2}\mathop {\sum }\limits_{q = 1}^3 \left( {{m_q}{m_{q + 1}} + {m_{q'}}{m_{q' + 1}}} \right) - {J_1}{M_{{\rm{Cr}}}}{{\cal M}_{\bf m}},$$\end{document}</tex-math>
<mml:math id="M24" display="block">
<mml:msub>
<mml:mrow>
<mml:mi>E</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi mathvariant="normal">exch,</mml:mi>
<mml:mi mathvariant="bold">m</mml:mi>
</mml:mrow>
</mml:msub>
<mml:mo>=</mml:mo>
<mml:mfrac>
<mml:mrow>
<mml:mn>25</mml:mn>
</mml:mrow>
<mml:mrow>
<mml:mn>8</mml:mn>
</mml:mrow>
</mml:mfrac>
<mml:msub>
<mml:mrow>
<mml:mi>J</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mn>2</mml:mn>
</mml:mrow>
</mml:msub>
<mml:munderover accent="false" accentunder="false">
<mml:mrow>
<mml:mo></mml:mo>
</mml:mrow>
<mml:mrow>
<mml:mi>q</mml:mi>
<mml:mo>=</mml:mo>
<mml:mn>1</mml:mn>
</mml:mrow>
<mml:mrow>
<mml:mn>3</mml:mn>
</mml:mrow>
</mml:munderover>
<mml:mfenced close=")" open="(" separators="">
<mml:mrow>
<mml:msub>
<mml:mrow>
<mml:mi>m</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>q</mml:mi>
</mml:mrow>
</mml:msub>
<mml:msub>
<mml:mrow>
<mml:mi>m</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>q</mml:mi>
<mml:mo>+</mml:mo>
<mml:mn>1</mml:mn>
</mml:mrow>
</mml:msub>
<mml:mo>+</mml:mo>
<mml:msub>
<mml:mrow>
<mml:mi>m</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:msup>
<mml:mrow>
<mml:mi>q</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi></mml:mi>
</mml:mrow>
</mml:msup>
</mml:mrow>
</mml:msub>
<mml:msub>
<mml:mrow>
<mml:mi>m</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:msup>
<mml:mrow>
<mml:mi>q</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi></mml:mi>
</mml:mrow>
</mml:msup>
<mml:mo>+</mml:mo>
<mml:mn>1</mml:mn>
</mml:mrow>
</mml:msub>
</mml:mrow>
</mml:mfenced>
<mml:mo>-</mml:mo>
<mml:msub>
<mml:mrow>
<mml:mi>J</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mn>1</mml:mn>
</mml:mrow>
</mml:msub>
<mml:msub>
<mml:mrow>
<mml:mi>M</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi mathvariant="normal">Cr</mml:mi>
</mml:mrow>
</mml:msub>
<mml:msub>
<mml:mrow>
<mml:mi mathvariant="script">M</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi mathvariant="bold">m</mml:mi>
</mml:mrow>
</mml:msub>
<mml:mo>,</mml:mo>
</mml:math>
<graphic xlink:href="41467_2017_1102_Article_Equ3.gif" position="anchor"></graphic>
</alternatives>
</disp-formula>
where defining the angular coordinates of the six Dy
<sup>III</sup>
ions as in Fig. 
<xref rid="Fig6" ref-type="fig">6</xref>
(
<italic>α</italic>
<sub>1</sub>
 = 0,
<italic>α</italic>
<sub>2</sub>
 = 2π/3,
<italic>α</italic>
<sub>3</sub>
 = 4π/3,
<italic>α</italic>
<sub>1′</sub>
 = π,
<italic>α</italic>
<sub>2′</sub>
 = −π/3,
<italic>α</italic>
<sub>3′</sub>
 = π/3), the total spin projection (
<inline-formula id="IEq10">
<alternatives>
<tex-math id="M25">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\cal M}_{\bf m}}$$\end{document}</tex-math>
<mml:math id="M26">
<mml:msub>
<mml:mrow>
<mml:mi mathvariant="script">M</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi mathvariant="bold">m</mml:mi>
</mml:mrow>
</mml:msub>
</mml:math>
<inline-graphic xlink:href="41467_2017_1102_Article_IEq10.gif"></inline-graphic>
</alternatives>
</inline-formula>
) of the six Dy
<sup>III</sup>
ions in
<inline-formula id="IEq11">
<alternatives>
<tex-math id="M27">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left| {{\bf m},{M_{{\rm{Cr}}}}} \right\rangle $$\end{document}</tex-math>
<mml:math id="M28">
<mml:mfenced close="⟩" open="∣" separators="">
<mml:mrow>
<mml:mi mathvariant="bold">m</mml:mi>
<mml:mo>,</mml:mo>
<mml:msub>
<mml:mrow>
<mml:mi>M</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi mathvariant="normal">Cr</mml:mi>
</mml:mrow>
</mml:msub>
</mml:mrow>
</mml:mfenced>
</mml:math>
<inline-graphic xlink:href="41467_2017_1102_Article_IEq11.gif"></inline-graphic>
</alternatives>
</inline-formula>
is given by Eq. (
<xref rid="Equ4" ref-type="">4</xref>
) (sum is over all Dy
<sup>III</sup>
centers):
<disp-formula id="Equ4">
<label>4</label>
<alternatives>
<tex-math id="M29">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\cal M}_m} = \pm \frac{5}{2}\sqrt {{{\left( {\mathop {\sum }\limits_q {m_q}\sin {\alpha _q}} \right)}^{\!\!\!2}} + {{\left( {\mathop {\sum }\limits_q {m_q}\cos {\alpha _q}} \right)}^{\!\!\!2}}} $$\end{document}</tex-math>
<mml:math id="M30" display="block">
<mml:msub>
<mml:mrow>
<mml:mi mathvariant="script">M</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>m</mml:mi>
</mml:mrow>
</mml:msub>
<mml:mo>=</mml:mo>
<mml:mo>±</mml:mo>
<mml:mfrac>
<mml:mrow>
<mml:mn>5</mml:mn>
</mml:mrow>
<mml:mrow>
<mml:mn>2</mml:mn>
</mml:mrow>
</mml:mfrac>
<mml:msqrt>
<mml:msup>
<mml:mrow>
<mml:mfenced close=")" open="(" separators="">
<mml:mrow>
<mml:munder>
<mml:mrow>
<mml:mo></mml:mo>
</mml:mrow>
<mml:mrow>
<mml:mi>q</mml:mi>
</mml:mrow>
</mml:munder>
<mml:msub>
<mml:mrow>
<mml:mi>m</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>q</mml:mi>
</mml:mrow>
</mml:msub>
<mml:mo> sin</mml:mo>
<mml:msub>
<mml:mrow>
<mml:mi>α</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>q</mml:mi>
</mml:mrow>
</mml:msub>
</mml:mrow>
</mml:mfenced>
</mml:mrow>
<mml:mrow>
<mml:mspace width="0.3em"></mml:mspace>
<mml:mspace width="0.3em"></mml:mspace>
<mml:mspace width="0.3em"></mml:mspace>
<mml:mn>2</mml:mn>
</mml:mrow>
</mml:msup>
<mml:mo>+</mml:mo>
<mml:msup>
<mml:mrow>
<mml:mfenced close=")" open="(" separators="">
<mml:mrow>
<mml:munder>
<mml:mrow>
<mml:mo></mml:mo>
</mml:mrow>
<mml:mrow>
<mml:mi>q</mml:mi>
</mml:mrow>
</mml:munder>
<mml:msub>
<mml:mrow>
<mml:mi>m</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>q</mml:mi>
</mml:mrow>
</mml:msub>
<mml:mo> cos</mml:mo>
<mml:msub>
<mml:mrow>
<mml:mi>α</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>q</mml:mi>
</mml:mrow>
</mml:msub>
</mml:mrow>
</mml:mfenced>
</mml:mrow>
<mml:mrow>
<mml:mspace width="0.3em"></mml:mspace>
<mml:mspace width="0.3em"></mml:mspace>
<mml:mspace width="0.3em"></mml:mspace>
<mml:mn>2</mml:mn>
</mml:mrow>
</mml:msup>
</mml:msqrt>
</mml:math>
<graphic xlink:href="41467_2017_1102_Article_Equ4.gif" position="anchor"></graphic>
</alternatives>
</disp-formula>
along the direction given by the vector
<inline-formula id="IEq12">
<alternatives>
<tex-math id="M31">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\bf u}_m} = ( { - \mathop {\sum }\limits_q {m_q}\sin {\alpha _q},\mathop {\sum }\limits_q {m_q}\cos {\alpha _q},0} )$$\end{document}</tex-math>
<mml:math id="M32">
<mml:msub>
<mml:mrow>
<mml:mi mathvariant="bold">u</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>m</mml:mi>
</mml:mrow>
</mml:msub>
<mml:mo>=</mml:mo>
<mml:mrow>
<mml:mo>(</mml:mo>
<mml:mrow>
<mml:mo>-</mml:mo>
<mml:munder>
<mml:mrow>
<mml:mo></mml:mo>
</mml:mrow>
<mml:mrow>
<mml:mi>q</mml:mi>
</mml:mrow>
</mml:munder>
<mml:msub>
<mml:mrow>
<mml:mi>m</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>q</mml:mi>
</mml:mrow>
</mml:msub>
<mml:mo> sin</mml:mo>
<mml:msub>
<mml:mrow>
<mml:mi>α</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>q</mml:mi>
</mml:mrow>
</mml:msub>
<mml:mo>,</mml:mo>
<mml:munder>
<mml:mrow>
<mml:mo></mml:mo>
</mml:mrow>
<mml:mrow>
<mml:mi>q</mml:mi>
</mml:mrow>
</mml:munder>
<mml:msub>
<mml:mrow>
<mml:mi>m</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>q</mml:mi>
</mml:mrow>
</mml:msub>
<mml:mo> cos</mml:mo>
<mml:msub>
<mml:mrow>
<mml:mi>α</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>q</mml:mi>
</mml:mrow>
</mml:msub>
<mml:mo>,</mml:mo>
<mml:mn>0</mml:mn>
</mml:mrow>
<mml:mo>)</mml:mo>
</mml:mrow>
</mml:math>
<inline-graphic xlink:href="41467_2017_1102_Article_IEq12.gif"></inline-graphic>
</alternatives>
</inline-formula>
(i.e., lying in the triangle’s planes).</p>
<p id="Par20">Intra-ring (Eq. (
<xref rid="Equ5" ref-type="">5</xref>
)) and inter-ring (Eq. (
<xref rid="Equ6" ref-type="">6</xref>
)) dipolar coupling energies for the state
<inline-formula id="IEq13">
<alternatives>
<tex-math id="M33">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left| {{\bf m},{M_{{\rm{Cr}}}}} \right\rangle $$\end{document}</tex-math>
<mml:math id="M34">
<mml:mfenced close="⟩" open="∣" separators="">
<mml:mrow>
<mml:mi mathvariant="bold">m</mml:mi>
<mml:mo>,</mml:mo>
<mml:msub>
<mml:mrow>
<mml:mi>M</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi mathvariant="normal">Cr</mml:mi>
</mml:mrow>
</mml:msub>
</mml:mrow>
</mml:mfenced>
</mml:math>
<inline-graphic xlink:href="41467_2017_1102_Article_IEq13.gif"></inline-graphic>
</alternatives>
</inline-formula>
are (
<italic>µ</italic>
<sub>
<italic>B</italic>
</sub>
is the Bohr magneton):
<disp-formula id="Equ5">
<label>5</label>
<alternatives>
<tex-math id="M35">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_{{\rm{dip}},{\bf m}}^{{\rm{intra}}} = - \frac{{{\mu _0}\mu _B^2}}{{4\pi }}\frac{{125{\eta ^2}}}{{3\sqrt 3 {r^3}}}\mathop {\sum }\limits_{q = 1}^3 \left( {{m_q}{m_{q + 1}} + {m_{q'}}{m_{q' + 1}}} \right),$$\end{document}</tex-math>
<mml:math id="M36" display="block">
<mml:msubsup>
<mml:mrow>
<mml:mi>E</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi mathvariant="normal">dip</mml:mi>
<mml:mo>,</mml:mo>
<mml:mi mathvariant="bold">m</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi mathvariant="normal">intra</mml:mi>
</mml:mrow>
</mml:msubsup>
<mml:mo>=</mml:mo>
<mml:mo>-</mml:mo>
<mml:mfrac>
<mml:mrow>
<mml:msub>
<mml:mrow>
<mml:mi>μ</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mn>0</mml:mn>
</mml:mrow>
</mml:msub>
<mml:msubsup>
<mml:mrow>
<mml:mi>μ</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>B</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mn>2</mml:mn>
</mml:mrow>
</mml:msubsup>
</mml:mrow>
<mml:mrow>
<mml:mn>4</mml:mn>
<mml:mi>π</mml:mi>
</mml:mrow>
</mml:mfrac>
<mml:mfrac>
<mml:mrow>
<mml:mn>125</mml:mn>
<mml:msup>
<mml:mrow>
<mml:mi>η</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mn>2</mml:mn>
</mml:mrow>
</mml:msup>
</mml:mrow>
<mml:mrow>
<mml:mn>3</mml:mn>
<mml:msqrt>
<mml:mn>3</mml:mn>
</mml:msqrt>
<mml:msup>
<mml:mrow>
<mml:mi>r</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mn>3</mml:mn>
</mml:mrow>
</mml:msup>
</mml:mrow>
</mml:mfrac>
<mml:munderover accent="false" accentunder="false">
<mml:mrow>
<mml:mo></mml:mo>
</mml:mrow>
<mml:mrow>
<mml:mi>q</mml:mi>
<mml:mo>=</mml:mo>
<mml:mn>1</mml:mn>
</mml:mrow>
<mml:mrow>
<mml:mn>3</mml:mn>
</mml:mrow>
</mml:munderover>
<mml:mfenced close=")" open="(" separators="">
<mml:mrow>
<mml:msub>
<mml:mrow>
<mml:mi>m</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>q</mml:mi>
</mml:mrow>
</mml:msub>
<mml:msub>
<mml:mrow>
<mml:mi>m</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>q</mml:mi>
<mml:mo>+</mml:mo>
<mml:mn>1</mml:mn>
</mml:mrow>
</mml:msub>
<mml:mo>+</mml:mo>
<mml:msub>
<mml:mrow>
<mml:mi>m</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:msup>
<mml:mrow>
<mml:mi>q</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi></mml:mi>
</mml:mrow>
</mml:msup>
</mml:mrow>
</mml:msub>
<mml:msub>
<mml:mrow>
<mml:mi>m</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:msup>
<mml:mrow>
<mml:mi>q</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi></mml:mi>
</mml:mrow>
</mml:msup>
<mml:mo>+</mml:mo>
<mml:mn>1</mml:mn>
</mml:mrow>
</mml:msub>
</mml:mrow>
</mml:mfenced>
<mml:mo>,</mml:mo>
</mml:math>
<graphic xlink:href="41467_2017_1102_Article_Equ5.gif" position="anchor"></graphic>
</alternatives>
</disp-formula>
<disp-formula id="Equ6">
<label>6</label>
<alternatives>
<tex-math id="M37">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_{{\rm{dip}},{\bf m}}^{{\rm{inter}}} = \frac{{{\mu _0}\mu _B^2}}{{4\pi }}\frac{{25{\eta ^2}}}{{{{\left( {{r^2} + {h^2}} \right)}^{\frac{3}{2}}}}}\left[ {2 - \frac{{9{r^2}}}{{{r^2} + {h^2}}}} \right]\mathop {\sum }\limits_{q = 1}^3 {m_q}\left( {{m_{q + 1}} + {m_{q' - 1}}} \right) \\ - \frac{{{\mu _0}\mu _B^2}}{{4\pi }}\frac{{100{\eta ^2}}}{{{{\left( {4{r^2} + {h^2}} \right)}^{3/2}}}}\mathop {\sum }\limits_{q = 1}^3 {m_q}{m_{q'}}.$$\end{document}</tex-math>
<mml:math id="M38" display="block">
<mml:msubsup>
<mml:mrow>
<mml:mi>E</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi mathvariant="normal">dip</mml:mi>
<mml:mo>,</mml:mo>
<mml:mi mathvariant="bold">m</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi mathvariant="normal">inter</mml:mi>
</mml:mrow>
</mml:msubsup>
<mml:mo>=</mml:mo>
<mml:mfrac>
<mml:mrow>
<mml:msub>
<mml:mrow>
<mml:mi>μ</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mn>0</mml:mn>
</mml:mrow>
</mml:msub>
<mml:msubsup>
<mml:mrow>
<mml:mi>μ</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>B</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mn>2</mml:mn>
</mml:mrow>
</mml:msubsup>
</mml:mrow>
<mml:mrow>
<mml:mn>4</mml:mn>
<mml:mi>π</mml:mi>
</mml:mrow>
</mml:mfrac>
<mml:mfrac>
<mml:mrow>
<mml:mn>25</mml:mn>
<mml:msup>
<mml:mrow>
<mml:mi>η</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mn>2</mml:mn>
</mml:mrow>
</mml:msup>
</mml:mrow>
<mml:mrow>
<mml:msup>
<mml:mrow>
<mml:mfenced close=")" open="(" separators="">
<mml:mrow>
<mml:msup>
<mml:mrow>
<mml:mi>r</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mn>2</mml:mn>
</mml:mrow>
</mml:msup>
<mml:mo>+</mml:mo>
<mml:msup>
<mml:mrow>
<mml:mi>h</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mn>2</mml:mn>
</mml:mrow>
</mml:msup>
</mml:mrow>
</mml:mfenced>
</mml:mrow>
<mml:mrow>
<mml:mfrac>
<mml:mrow>
<mml:mn>3</mml:mn>
</mml:mrow>
<mml:mrow>
<mml:mn>2</mml:mn>
</mml:mrow>
</mml:mfrac>
</mml:mrow>
</mml:msup>
</mml:mrow>
</mml:mfrac>
<mml:mfenced close="]" open="[" separators="">
<mml:mrow>
<mml:mn>2</mml:mn>
<mml:mo>-</mml:mo>
<mml:mfrac>
<mml:mrow>
<mml:mn>9</mml:mn>
<mml:msup>
<mml:mrow>
<mml:mi>r</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mn>2</mml:mn>
</mml:mrow>
</mml:msup>
</mml:mrow>
<mml:mrow>
<mml:msup>
<mml:mrow>
<mml:mi>r</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mn>2</mml:mn>
</mml:mrow>
</mml:msup>
<mml:mo>+</mml:mo>
<mml:msup>
<mml:mrow>
<mml:mi>h</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mn>2</mml:mn>
</mml:mrow>
</mml:msup>
</mml:mrow>
</mml:mfrac>
</mml:mrow>
</mml:mfenced>
<mml:munderover accent="false" accentunder="false">
<mml:mrow>
<mml:mo></mml:mo>
</mml:mrow>
<mml:mrow>
<mml:mi>q</mml:mi>
<mml:mo>=</mml:mo>
<mml:mn>1</mml:mn>
</mml:mrow>
<mml:mrow>
<mml:mn>3</mml:mn>
</mml:mrow>
</mml:munderover>
<mml:msub>
<mml:mrow>
<mml:mi>m</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>q</mml:mi>
</mml:mrow>
</mml:msub>
<mml:mfenced close=")" open="(" separators="">
<mml:mrow>
<mml:msub>
<mml:mrow>
<mml:mi>m</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>q</mml:mi>
<mml:mo>+</mml:mo>
<mml:mn>1</mml:mn>
</mml:mrow>
</mml:msub>
<mml:mo>+</mml:mo>
<mml:msub>
<mml:mrow>
<mml:mi>m</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:msup>
<mml:mrow>
<mml:mi>q</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi></mml:mi>
</mml:mrow>
</mml:msup>
<mml:mo>-</mml:mo>
<mml:mn>1</mml:mn>
</mml:mrow>
</mml:msub>
</mml:mrow>
</mml:mfenced>
<mml:mo>-</mml:mo>
<mml:mfrac>
<mml:mrow>
<mml:msub>
<mml:mrow>
<mml:mi>μ</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mn>0</mml:mn>
</mml:mrow>
</mml:msub>
<mml:msubsup>
<mml:mrow>
<mml:mi>μ</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>B</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mn>2</mml:mn>
</mml:mrow>
</mml:msubsup>
</mml:mrow>
<mml:mrow>
<mml:mn>4</mml:mn>
<mml:mi>π</mml:mi>
</mml:mrow>
</mml:mfrac>
<mml:mfrac>
<mml:mrow>
<mml:mn>100</mml:mn>
<mml:msup>
<mml:mrow>
<mml:mi>η</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mn>2</mml:mn>
</mml:mrow>
</mml:msup>
</mml:mrow>
<mml:mrow>
<mml:msup>
<mml:mrow>
<mml:mfenced close=")" open="(" separators="">
<mml:mrow>
<mml:mn>4</mml:mn>
<mml:msup>
<mml:mrow>
<mml:mi>r</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mn>2</mml:mn>
</mml:mrow>
</mml:msup>
<mml:mo>+</mml:mo>
<mml:msup>
<mml:mrow>
<mml:mi>h</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mn>2</mml:mn>
</mml:mrow>
</mml:msup>
</mml:mrow>
</mml:mfenced>
</mml:mrow>
<mml:mrow>
<mml:mn>3</mml:mn>
<mml:mo></mml:mo>
<mml:mn>2</mml:mn>
</mml:mrow>
</mml:msup>
</mml:mrow>
</mml:mfrac>
<mml:munderover accent="false" accentunder="false">
<mml:mrow>
<mml:mo></mml:mo>
</mml:mrow>
<mml:mrow>
<mml:mi>q</mml:mi>
<mml:mo>=</mml:mo>
<mml:mn>1</mml:mn>
</mml:mrow>
<mml:mrow>
<mml:mn>3</mml:mn>
</mml:mrow>
</mml:munderover>
<mml:msub>
<mml:mrow>
<mml:mi>m</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>q</mml:mi>
</mml:mrow>
</mml:msub>
<mml:msub>
<mml:mrow>
<mml:mi>m</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:msup>
<mml:mrow>
<mml:mi>q</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi></mml:mi>
</mml:mrow>
</mml:msup>
</mml:mrow>
</mml:msub>
<mml:mo>.</mml:mo>
</mml:math>
<graphic xlink:href="41467_2017_1102_Article_Equ6.gif" position="anchor"></graphic>
</alternatives>
</disp-formula>
</p>
<p id="Par21">Finally, Dy
<sup>III</sup>
–Cr
<sup>III</sup>
dipolar coupling energy for
<inline-formula id="IEq14">
<alternatives>
<tex-math id="M39">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left| {{\bf m},{M_{{\rm{Cr}}}}} \right\rangle $$\end{document}</tex-math>
<mml:math id="M40">
<mml:mfenced close="⟩" open="∣" separators="">
<mml:mrow>
<mml:mi mathvariant="bold">m</mml:mi>
<mml:mo>,</mml:mo>
<mml:msub>
<mml:mrow>
<mml:mi>M</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi mathvariant="normal">Cr</mml:mi>
</mml:mrow>
</mml:msub>
</mml:mrow>
</mml:mfenced>
</mml:math>
<inline-graphic xlink:href="41467_2017_1102_Article_IEq14.gif"></inline-graphic>
</alternatives>
</inline-formula>
reads:
<disp-formula id="Equ7">
<label>7</label>
<alternatives>
<tex-math id="M41">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_{{\rm{dip}},{\bf m}}^{{\rm{Dy - Cr}}} = - \frac{{{\mu _0}\mu _B^2}}{{4\pi }}\frac{{40\eta }}{{{{\left( {{r^2} + {h^2}/4} \right)}^{3/2}}}}{M_{{\rm{Cr}}}}{{\cal M}_m}.$$\end{document}</tex-math>
<mml:math id="M42" display="block">
<mml:msubsup>
<mml:mrow>
<mml:mi>E</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi mathvariant="normal">dip</mml:mi>
<mml:mo>,</mml:mo>
<mml:mi mathvariant="bold">m</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi mathvariant="normal">Dy-Cr</mml:mi>
</mml:mrow>
</mml:msubsup>
<mml:mo>=</mml:mo>
<mml:mo>-</mml:mo>
<mml:mfrac>
<mml:mrow>
<mml:msub>
<mml:mrow>
<mml:mi>μ</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mn>0</mml:mn>
</mml:mrow>
</mml:msub>
<mml:msubsup>
<mml:mrow>
<mml:mi>μ</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>B</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mn>2</mml:mn>
</mml:mrow>
</mml:msubsup>
</mml:mrow>
<mml:mrow>
<mml:mn>4</mml:mn>
<mml:mi>π</mml:mi>
</mml:mrow>
</mml:mfrac>
<mml:mfrac>
<mml:mrow>
<mml:mn>40</mml:mn>
<mml:mi>η</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:msup>
<mml:mrow>
<mml:mfenced close=")" open="(" separators="">
<mml:mrow>
<mml:msup>
<mml:mrow>
<mml:mi>r</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mn>2</mml:mn>
</mml:mrow>
</mml:msup>
<mml:mo>+</mml:mo>
<mml:msup>
<mml:mrow>
<mml:mi>h</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mn>2</mml:mn>
</mml:mrow>
</mml:msup>
<mml:mo></mml:mo>
<mml:mn>4</mml:mn>
</mml:mrow>
</mml:mfenced>
</mml:mrow>
<mml:mrow>
<mml:mn>3</mml:mn>
<mml:mo></mml:mo>
<mml:mn>2</mml:mn>
</mml:mrow>
</mml:msup>
</mml:mrow>
</mml:mfrac>
<mml:msub>
<mml:mrow>
<mml:mi>M</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi mathvariant="normal">Cr</mml:mi>
</mml:mrow>
</mml:msub>
<mml:msub>
<mml:mrow>
<mml:mi mathvariant="script">M</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>m</mml:mi>
</mml:mrow>
</mml:msub>
<mml:mo>.</mml:mo>
</mml:math>
<graphic xlink:href="41467_2017_1102_Article_Equ7.gif" position="anchor"></graphic>
</alternatives>
</disp-formula>
</p>
<p id="Par22">The energy spectrum resulting from magnetic coupling can now be evaluated summing up Eqs. (
<xref rid="Equ3" ref-type="">3</xref>
)–(
<xref rid="Equ7" ref-type="">7</xref>
), and is reported in Fig. 
<xref rid="Fig7" ref-type="fig">7</xref>
.
<fig id="Fig7">
<label>Fig. 7</label>
<caption>
<p>Energy spectrum describes magnetic relaxation and toroidal states. The energy spectrum of {Dy
<sub>6</sub>
Cr} calculated using the energy expressions Eqs. (3)–(7). Energies are in cm
<sup>−1</sup>
. The number of dashes for each degenerate energy level indicates the number of degenerate states associated to that level. Besides a few energy levels, it provides a graphical representation of one of the corresponding non-collinear Ising quantum states
<inline-formula id="IEq15">
<alternatives>
<tex-math id="M43">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left| {{\bf m},{M_{{\rm{Cr}}}}} \right\rangle $$\end{document}</tex-math>
<mml:math id="M44">
<mml:mfenced close="⟩" open="∣" separators="">
<mml:mrow>
<mml:mi mathvariant="bold">m</mml:mi>
<mml:mo>,</mml:mo>
<mml:msub>
<mml:mrow>
<mml:mi>M</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi mathvariant="normal">Cr</mml:mi>
</mml:mrow>
</mml:msub>
</mml:mrow>
</mml:mfenced>
</mml:math>
<inline-graphic xlink:href="41467_2017_1102_Article_IEq15.gif"></inline-graphic>
</alternatives>
</inline-formula>
, where the red (blue) thick arrows at the Dy
<sup>III</sup>
sites indicate a +15/2 or −15/2 quantum number along the tangent direction in the lower (upper) triangular ring, a yellow thick arrow at the center indicates the spin projection of the Cr
<sup>III</sup>
ion relative to that of the Dy
<sup>III</sup>
ions, and a resulting magnetic moment in the upper (lower) ring is indicated with thin blue (red) arrow. Gap between the ground FT state
<inline-formula id="IEq16">
<alternatives>
<tex-math id="M45">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left| { \pm {\tau _1}, \pm {\tau _2},{M_{{\rm{Cr}}}}} \right\rangle $$\end{document}</tex-math>
<mml:math id="M46">
<mml:mfenced close="⟩" open="∣" separators="">
<mml:mrow>
<mml:mo>±</mml:mo>
<mml:msub>
<mml:mrow>
<mml:mi>τ</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mn>1</mml:mn>
</mml:mrow>
</mml:msub>
<mml:mo>,</mml:mo>
<mml:mo>±</mml:mo>
<mml:msub>
<mml:mrow>
<mml:mi>τ</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mn>2</mml:mn>
</mml:mrow>
</mml:msub>
<mml:mo>,</mml:mo>
<mml:msub>
<mml:mrow>
<mml:mi>M</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi mathvariant="normal">Cr</mml:mi>
</mml:mrow>
</mml:msub>
</mml:mrow>
</mml:mfenced>
</mml:math>
<inline-graphic xlink:href="41467_2017_1102_Article_IEq16.gif"></inline-graphic>
</alternatives>
</inline-formula>
, and the first (AFT)
<inline-formula id="IEq17">
<alternatives>
<tex-math id="M47">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left| { \pm {\tau _1}, \mp {\tau _2},{M_{{\rm{Cr}}}}} \right\rangle $$\end{document}</tex-math>
<mml:math id="M48">
<mml:mfenced close="⟩" open="∣" separators="">
<mml:mrow>
<mml:mo>±</mml:mo>
<mml:msub>
<mml:mrow>
<mml:mi>τ</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mn>1</mml:mn>
</mml:mrow>
</mml:msub>
<mml:mo>,</mml:mo>
<mml:mo></mml:mo>
<mml:msub>
<mml:mrow>
<mml:mi>τ</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mn>2</mml:mn>
</mml:mrow>
</mml:msub>
<mml:mo>,</mml:mo>
<mml:msub>
<mml:mrow>
<mml:mi>M</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi mathvariant="normal">Cr</mml:mi>
</mml:mrow>
</mml:msub>
</mml:mrow>
</mml:mfenced>
</mml:math>
<inline-graphic xlink:href="41467_2017_1102_Article_IEq17.gif"></inline-graphic>
</alternatives>
</inline-formula>
excited state are indicated</p>
</caption>
<graphic xlink:href="41467_2017_1102_Fig7_HTML" id="d29e3569"></graphic>
</fig>
</p>
<p id="Par23">The dipolar coupling energies, Eqs. (
<xref rid="Equ5" ref-type="">5</xref>
)–(
<xref rid="Equ7" ref-type="">7</xref>
), contain no free parameter, as they only depend on the specific set of quantum numbers
<inline-formula id="IEq18">
<alternatives>
<tex-math id="M49">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left| {{\bf m},{M_{{\rm{Cr}}}}} \right\rangle $$\end{document}</tex-math>
<mml:math id="M50">
<mml:mfenced close="⟩" open="∣" separators="">
<mml:mrow>
<mml:mi mathvariant="bold">m</mml:mi>
<mml:mo>,</mml:mo>
<mml:msub>
<mml:mrow>
<mml:mi>M</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi mathvariant="normal">Cr</mml:mi>
</mml:mrow>
</mml:msub>
</mml:mrow>
</mml:mfenced>
</mml:math>
<inline-graphic xlink:href="41467_2017_1102_Article_IEq18.gif"></inline-graphic>
</alternatives>
</inline-formula>
, on the experimental geometrical parameters
<italic>r</italic>
and
<italic>h</italic>
(Fig. 
<xref rid="Fig6" ref-type="fig">6</xref>
), and on the average ground state ab initio magnetic moment given by 10
<italic>ημ</italic>
<sub>
<italic>B</italic>
</sub>
, with
<italic>η</italic>
 = 0.975. Interestingly, from Eq. (
<xref rid="Equ5" ref-type="">5</xref>
) it follows that intra-ring dipolar interactions always favor a toroidal texture on each triangle, penalizing the formation of a magnetic moment by an energy gap of ~4 cm
<sup>−1</sup>
.</p>
<p id="Par24">While inter-ring dipolar coupling is smaller than intra-ring coupling, due to larger separation between Dy
<sup>III</sup>
ions, from Eq. (
<xref rid="Equ6" ref-type="">6</xref>
) we learn that in fact this interaction splits FT and AFT states. In particular, the first term in Eq. (
<xref rid="Equ6" ref-type="">6</xref>
) stabilizes a FT (AFT) ground state if
<inline-formula id="IEq19">
<alternatives>
<tex-math id="M51">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h < r\sqrt {7/2} $$\end{document}</tex-math>
<mml:math id="M52">
<mml:mi>h</mml:mi>
<mml:mo><</mml:mo>
<mml:mi>r</mml:mi>
<mml:msqrt>
<mml:mn>7</mml:mn>
<mml:mo></mml:mo>
<mml:mn>2</mml:mn>
</mml:msqrt>
</mml:math>
<inline-graphic xlink:href="41467_2017_1102_Article_IEq19.gif"></inline-graphic>
</alternatives>
</inline-formula>
(
<inline-formula id="IEq20">
<alternatives>
<tex-math id="M53">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h >r\sqrt {7/2} $$\end{document}</tex-math>
<mml:math id="M54">
<mml:mi>h</mml:mi>
<mml:mo>></mml:mo>
<mml:mi>r</mml:mi>
<mml:msqrt>
<mml:mn>7</mml:mn>
<mml:mo></mml:mo>
<mml:mn>2</mml:mn>
</mml:msqrt>
</mml:math>
<inline-graphic xlink:href="41467_2017_1102_Article_IEq20.gif"></inline-graphic>
</alternatives>
</inline-formula>
), while the second term (describing interactions between inversion-related centers) always favors FT coupling, and is stronger than the first term. In {Cr
<sup>III</sup>
Dy
<sup>III</sup>
<sub>6</sub>
},
<inline-formula id="IEq21">
<alternatives>
<tex-math id="M55">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h >r\sqrt {7/2} $$\end{document}</tex-math>
<mml:math id="M56">
<mml:mi>h</mml:mi>
<mml:mo>></mml:mo>
<mml:mi>r</mml:mi>
<mml:msqrt>
<mml:mn>7</mml:mn>
<mml:mo></mml:mo>
<mml:mn>2</mml:mn>
</mml:msqrt>
</mml:math>
<inline-graphic xlink:href="41467_2017_1102_Article_IEq21.gif"></inline-graphic>
</alternatives>
</inline-formula>
, hence the two terms are in competition, the first (second) favoring AFT (FT) coupling. Since the second term is larger, we find here that dipolar interactions stabilize a FT ground state in {Cr
<sup>III</sup>
Dy
<sup>III</sup>
<sub>6</sub>
} (Fig. 
<xref rid="Fig5" ref-type="fig">5</xref>
).</p>
<p id="Par25">Moreover, from Eq. (
<xref rid="Equ6" ref-type="">6</xref>
), we note that a structural design aimed at reducing the distance
<italic>h</italic>
between the two triangles will enhance FT coupling. We estimate the dipolar-induced FT/AFT splitting to be ~0.28 cm
<sup>−1</sup>
. Note that, in our symmetric model, Dy–Cr dipolar interactions within FT and AFT states (Eq. (
<xref rid="Equ7" ref-type="">7</xref>
)) are exactly zero (since
<inline-formula id="IEq22">
<alternatives>
<tex-math id="M57">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\cal M}_{\bf m}} = 0$$\end{document}</tex-math>
<mml:math id="M58">
<mml:msub>
<mml:mrow>
<mml:mi mathvariant="script">M</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi mathvariant="bold">m</mml:mi>
</mml:mrow>
</mml:msub>
<mml:mo>=</mml:mo>
<mml:mn>0</mml:mn>
</mml:math>
<inline-graphic xlink:href="41467_2017_1102_Article_IEq22.gif"></inline-graphic>
</alternatives>
</inline-formula>
in FT and AFT states), leading to eight-fold degenerate FT and AFT manifolds. Thus in FT and AFT states, the spin of Cr(III) is freely fluctuating, and FT/AFT toroidal excitations, involving the collective flipping of three Dy
<sup>III</sup>
spins, are fully determined by dipolar coupling. The energy gap of 3.3 cm
<sup>−1</sup>
reported in Fig. 
<xref rid="Fig7" ref-type="fig">7</xref>
corresponds instead to the lowest magnetic excitation, obtained upon flipping a single Dy
<sup>III</sup>
spin. In the excited states, the Cr(III) spin is blocked in the direction of the in-plane Dy
<sub>6</sub>
magnetic moment.</p>
<p id="Par26">Considering now superexchange interactions in Eq. (
<xref rid="Equ3" ref-type="">3</xref>
), we note that the dipolar-induced FT ground state will survive provided that the intra-ring Dy–Dy coupling is antiferromagnetic (i.e.,
<italic>J</italic>
<sub>2</sub>
 < 0), or ferromagnetic but smaller than dipolar coupling. To estimate the two exchange coupling constants
<italic>J</italic>
<sub>1</sub>
and
<italic>J</italic>
<sub>2</sub>
appearing in Eq. (
<xref rid="Equ3" ref-type="">3</xref>
), we have employed DFT calculations, replacing the Dy
<sup>III</sup>
with Gd
<sup>III</sup>
ions in the X-ray structure. The computed coupling constants for the Cr
<sup>III</sup>
–Gd
<sup>III</sup>
pairs were then rescaled by the ratio between the spin of Dy
<sup>III</sup>
(
<italic>S</italic>
 = 5/2) and that of Gd
<sup>III</sup>
(
<italic>S</italic>
 = 7/2), while Gd
<sup>III</sup>
–Gd
<sup>III</sup>
were rescaled by the ratio between the square of
<italic>S</italic>
 = 5/2 and the square of
<italic>S</italic>
 = 7/2
<sup>
<xref ref-type="bibr" rid="CR33">33</xref>
,
<xref ref-type="bibr" rid="CR34">34</xref>
</sup>
We obtained
<italic>J</italic>
<sub>1</sub>
 = –0.08 cm
<sup>−1</sup>
(Cr
<sup>III</sup>
–Dy
<sup>III</sup>
coupling) and
<italic>J</italic>
<sub>2</sub>
 = –0.043 cm
<sup>−1</sup>
(intra-ring Dy
<sup>III</sup>
–Dy
<sup>III</sup>
coupling), indicating antiferromagnetic coupling. The estimated antiferromagnetic interaction within the {Dy
<sup>III</sup>
<sub>3</sub>
} triangles reinforces the effect of the intra-ring dipolar coupling, leading to a toroidal moment on each isolated triangle.</p>
<p id="Par27">While a degenerate FT quantum ground state is compatible with the inversion symmetry of the molecule, such symmetry is not compatible with a ferrotoroidically ordered phase. Thus upon FT ordering, a concomitant structural phase transition should occur to rid the crystal of the inversion center, which, in turn, would allow the appearance of linear magneto–electric coupling.</p>
<p id="Par28">We now use the developed theoretical model to simulate the experimental molar susceptibility, and magnetization. We report the results in Figs. 
<xref rid="Fig2" ref-type="fig">2</xref>
and
<xref rid="Fig8" ref-type="fig">8</xref>
. While the magnetization at 2 K and for fields up to 5 T is expected to be dominated by the low-energy states described by our model (Eqs. (
<xref rid="Equ1" ref-type="">1</xref>
) and (
<xref rid="Equ2" ref-type="">2</xref>
)), the molar susceptibility will be dominated by these states only at low temperatures, while at temperatures much higher than the coupling strength it will be dominated by the single-ion response, including the population of excited KDs. To reproduce the correct temperature dependence of
<italic>χ</italic>
<sub>M</sub>
<italic>T</italic>
within our non-empirical model, we, therefore, evaluated the molar susceptibility as
<italic>χT</italic>
 = (
<italic>χT</italic>
)
<sub>LT</sub>
 + (
<italic>χT</italic>
)
<sub>HT</sub>
 − (
<italic>χ</italic>
<sub>0</sub>
<italic>T</italic>
), where (
<italic>χT</italic>
)
<sub>LT</sub>
is computed from our model Eqs. (
<xref rid="Equ1" ref-type="">1</xref>
) and (
<xref rid="Equ2" ref-type="">2</xref>
), (
<italic>χT</italic>
)
<sub>HT</sub>
is computed as a sum of the ab initio susceptibilities of the six Dy
<sup>III</sup>
ions and the central Cr
<sup>III</sup>
ion, while (
<italic>χ</italic>
<sub>0</sub>
<italic>T</italic>
) = 0.125 × (6
<italic>M</italic>
(Dy)
<sup>2</sup>
 + 4 × 3/2 (3/2 + 1)) is the uncoupled contribution to the Curie molar susceptibility (cm
<sup>3</sup>
 K mol
<sup>−1</sup>
) arising from the six Dy
<sup>III</sup>
ground KD’s using the ab initio magnetic moment
<italic>M</italic>
(Dy) = 9.75
<italic>μ</italic>
<sub>
<italic>B</italic>
</sub>
and the ground quartet on Cr
<sup>III</sup>
. The results of the calculations of
<italic>χT</italic>
compared with the experimental data are reported in Fig. 
<xref rid="Fig2" ref-type="fig">2a</xref>
(orange line), which shows an excellent agreement between theory and experiment.
<fig id="Fig8">
<label>Fig. 8</label>
<caption>
<p>Interpretation of single-crystal magnetization experiments.
<bold>a</bold>
Single-crystal magnetization experiment (blue curve) measured at
<italic>T</italic>
 = 0.03 K and a sweep rate of 0.1 T s
<sup>−1</sup>
for a magnetic field oriented along the in-plane easy axis (
<italic>y</italic>
-axis in Fig. 
<xref rid="Fig6" ref-type="fig">6</xref>
), superimposed on the theoretical equilibrium magnetization (orange curve) computed for the same temperature and field direction;
<bold>b</bold>
Energy levels as function of magnetic field (Zeeman spectrum) computed using the model presented in the text. The magenta (green) arrows connecting
<bold>a</bold>
and
<bold>b</bold>
associate the steep (smooth) raise of the theoretical (experimental) magnetization with slow/quasi-forbidden (fast/allowed) transition mechanisms occurring at level crossing between the two ground states (involving excited states) encircled in magenta (green).
<bold>c</bold>
Magnification of the low-field region of the Zeeman spectrum, highlighting degeneracy points (level crossings) of states between which faster 1-flip and 2-flip tunneling transitions are allowed (green circles and hexagons), and also highlighting 3-flip or higher-flip processes that are essentially forbidden (magenta circles). Some of the allowed phonon emission processes are also indicated with dashed green arrows;
<bold>d</bold>
High-field region of the Zeeman spectrum, where the four onion states antiferromagnetically coupled to Cr spin states become isolated from excited states, leading the system’s magnetization to saturate</p>
</caption>
<graphic xlink:href="41467_2017_1102_Fig8_HTML" id="d29e4044"></graphic>
</fig>
</p>
<p id="Par29">Note also that despite the absence of fitting parameters in our model, the theoretically calculated magnetization curve reported in Fig. 
<xref rid="Fig2" ref-type="fig">2b</xref>
and Supplementary Fig. 
<xref rid="MOESM1" ref-type="media">7</xref>
(orange curve) reproduces very well the experimentally measured
<italic>M</italic>
vs.
<italic>H</italic>
curve at 2 K and higher temperatures (blue data points). In particular, the predicted FT and AFT low-energy states display a strongly reduced magnetic response, as is evident from the S-shape behavior of the
<italic>M</italic>
vs.
<italic>H</italic>
curve. A uniform magnetic field does not interact with a toroidal moment, so that only the Cr
<sup>III</sup>
ion responds to the field for low
<italic>H</italic>
. As the Zeeman energy increases, at
<italic>H</italic>
 ~ 0.4–0.5 T, a level crossing occurs (vide infra), corresponding to a magnetic excited state becoming the ground state, explaining the S-shape of the
<italic>M</italic>
vs.
<italic>H</italic>
curve. Finally we present a detailed comparison in the Supplementary Note 
<xref rid="MOESM1" ref-type="media">3</xref>
and
<xref rid="MOESM1" ref-type="media">4</xref>
where various possible models are discussed and our findings are compared with previous studies of coupled molecular {Dy
<sup>III</sup>
<sub>3</sub>
} toroids (Supplementary Fig. 
<xref rid="MOESM1" ref-type="media">9</xref>
)
<sup>
<xref ref-type="bibr" rid="CR10">10</xref>
,
<xref ref-type="bibr" rid="CR11">11</xref>
,
<xref ref-type="bibr" rid="CR18">18</xref>
</sup>
.</p>
</sec>
<sec id="Sec5">
<title>Theoretical analysis of the zero-field hysteretic spin dynamics</title>
<p id="Par30">As a first attempt to interpret the single-crystal magnetization reported in Fig. 
<xref rid="Fig8" ref-type="fig">8a</xref>
(blue curve), measured at
<italic>T</italic>
 = 0.03 K and a field sweep rate of 0.1 T s
<sup>−1</sup>
, we calculated the equilibrium magnetization at the same temperature and magnetic field orientation (along the easy axis,
<italic>y</italic>
-direction in Fig. 
<xref rid="Fig6" ref-type="fig">6</xref>
), also reported in Fig. 
<xref rid="Fig8" ref-type="fig">8a</xref>
(orange curve). Experimental and theoretical curves share a few common features, both displaying a rise of the magnetization for intermediate fields, separating two magnetization plateaus corresponding to low- and high-field regions. Theoretical and experimental plateaus are seen to coincide, with the theoretical low-field plateau corresponding to saturation of the free fluctuating Cr spin (
<italic>M</italic>
<sub>SAT</sub>
 ~ 3
<italic>µ</italic>
<sub>
<italic>B</italic>
</sub>
) within the FT ground state. According to the Zeeman spectrum in Fig. 
<xref rid="Fig8" ref-type="fig">8b, c</xref>
, the steep magnetization step observed in the theoretical magnetization at the level crossing field
<italic>B</italic>
<sub>LC</sub>
 ~ 0.4 T can be identified with the switching of the ground state from the low-field weakly magnetic FT Zeeman state
<inline-formula id="IEq23">
<alternatives>
<tex-math id="M59">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left| { \pm \tau , \pm \tau } \right\rangle \equiv \left| { \pm 1 \pm 1 \pm 1 \pm 1 \pm 1 \pm 1, - 3/2} \right\rangle $$\end{document}</tex-math>
<mml:math id="M60">
<mml:mfenced close="⟩" open="∣" separators="">
<mml:mrow>
<mml:mo>±</mml:mo>
<mml:mi>τ</mml:mi>
<mml:mo>,</mml:mo>
<mml:mo>±</mml:mo>
<mml:mi>τ</mml:mi>
</mml:mrow>
</mml:mfenced>
<mml:mo></mml:mo>
<mml:mfenced close="⟩" open="∣" separators="">
<mml:mrow>
<mml:mo>±</mml:mo>
<mml:mn>1</mml:mn>
<mml:mo>±</mml:mo>
<mml:mn>1</mml:mn>
<mml:mo>±</mml:mo>
<mml:mn>1</mml:mn>
<mml:mo>±</mml:mo>
<mml:mn>1</mml:mn>
<mml:mo>±</mml:mo>
<mml:mn>1</mml:mn>
<mml:mo>±</mml:mo>
<mml:mn>1</mml:mn>
<mml:mo>,</mml:mo>
<mml:mo>-</mml:mo>
<mml:mn>3</mml:mn>
<mml:mo></mml:mo>
<mml:mn>2</mml:mn>
</mml:mrow>
</mml:mfenced>
</mml:math>
<inline-graphic xlink:href="41467_2017_1102_Article_IEq23.gif"></inline-graphic>
</alternatives>
</inline-formula>
(Supplementary Fig. 
<xref rid="MOESM1" ref-type="media">8a</xref>
), to the high-field onion magnetic state
<inline-formula id="IEq24">
<alternatives>
<tex-math id="M61">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left| { + m, + m} \right\rangle \equiv \left| { + 1 + 1 - 1 - 1 + 1 + 1, + 3/2} \right\rangle $$\end{document}</tex-math>
<mml:math id="M62">
<mml:mfenced close="⟩" open="∣" separators="">
<mml:mrow>
<mml:mo>+</mml:mo>
<mml:mi>m</mml:mi>
<mml:mo>,</mml:mo>
<mml:mo>+</mml:mo>
<mml:mi>m</mml:mi>
</mml:mrow>
</mml:mfenced>
<mml:mo></mml:mo>
<mml:mfenced close="⟩" open="∣" separators="">
<mml:mrow>
<mml:mo>+</mml:mo>
<mml:mn>1</mml:mn>
<mml:mo>+</mml:mo>
<mml:mn>1</mml:mn>
<mml:mo>-</mml:mo>
<mml:mn>1</mml:mn>
<mml:mo>-</mml:mo>
<mml:mn>1</mml:mn>
<mml:mo>+</mml:mo>
<mml:mn>1</mml:mn>
<mml:mo>+</mml:mo>
<mml:mn>1</mml:mn>
<mml:mo>,</mml:mo>
<mml:mo>+</mml:mo>
<mml:mn>3</mml:mn>
<mml:mo></mml:mo>
<mml:mn>2</mml:mn>
</mml:mrow>
</mml:mfenced>
</mml:math>
<inline-graphic xlink:href="41467_2017_1102_Article_IEq24.gif"></inline-graphic>
</alternatives>
</inline-formula>
, in which half of the Dy spins circulate clockwise, the other half anticlockwise (Supplementary Fig. 
<xref rid="MOESM1" ref-type="media">8d</xref>
), adding up to a magnetic moment
<italic>M</italic>
 ~ 40
<italic>µ</italic>
<sub>
<italic>B</italic>
</sub>
polarized along the field.</p>
<p id="Par31">As expected, the calculated equilibrium magnetization cannot reproduce inherently dynamical features observed in the experiments, as in the calculations transitions between energy levels are instantaneous on the timescale of the experiment. There are, in particular, two important differences between theory and experiment displayed in Fig. 
<xref rid="Fig8" ref-type="fig">8a</xref>
: in the experiment, a hysteresis loop opens up around the zero-field region between –
<italic>B</italic>
<sub>LC</sub>
and
<italic>B</italic>
<sub>LC</sub>
, and the experimental magnetization step separating low- and high-field plateaus is not abrupt, but occurs within ~0.5 T field range starting at
<italic>B</italic>
<sub>LC</sub>
.</p>
<p id="Par32">Thus, to further analyze the measured magnetization dynamics, we explicitly consider finite-rate transitions between Zeeman states. We are not interested in the microscopic details of such transitions, other than these are driven by terms in the Hamiltonian that have so far been neglected (either because small, or because describing coupling with the surroundings), and other than broadly separating such processes in tunneling transitions characterized by coupling constants
<italic>Γ</italic>
<sub>
<italic>i</italic>
</sub>
, active between degenerate energy levels, and phonon-induced transitions characterized by coupling constants
<italic>Γ</italic>
<sub>
<italic>i</italic>
</sub>
, from higher to lower-energy states, with a probability that grows as the cube of the energy gap. The coupling constants
<italic>γ</italic>
<sub>
<italic>i</italic>
</sub>
and
<italic>Γ</italic>
<sub>
<italic>i</italic>
</sub>
are related to the matrix elements of the relevant Hamiltonian between initial and final states.</p>
<p id="Par33">Crucially, we propose that a hierarchy should exist in the magnitude of
<italic>γ</italic>
<sub>
<italic>i</italic>
</sub>
and
<italic>Γ</italic>
<sub>
<italic>i</italic>
</sub>
, based on the number of Dy
<sup>3+</sup>
spins that need to be flipped to change initial to final Zeeman states. We only consider in our model the 56 (out of 256) most relevant low-energy states involved in the relaxation dynamics, which are represented in Supplementary Fig. 
<xref rid="MOESM1" ref-type="media">8</xref>
. Particularly relevant are the low-field ground FT states
<inline-formula id="IEq25">
<alternatives>
<tex-math id="M63">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left| { \pm \tau , \pm \tau } \right\rangle $$\end{document}</tex-math>
<mml:math id="M64">
<mml:mfenced close="⟩" open="∣" separators="">
<mml:mrow>
<mml:mo>±</mml:mo>
<mml:mi>τ</mml:mi>
<mml:mo>,</mml:mo>
<mml:mo>±</mml:mo>
<mml:mi>τ</mml:mi>
</mml:mrow>
</mml:mfenced>
</mml:math>
<inline-graphic xlink:href="41467_2017_1102_Article_IEq25.gif"></inline-graphic>
</alternatives>
</inline-formula>
, the high-field ground onion state
<inline-formula id="IEq26">
<alternatives>
<tex-math id="M65">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left| { + m, + m} \right\rangle $$\end{document}</tex-math>
<mml:math id="M66">
<mml:mfenced close="⟩" open="∣" separators="">
<mml:mrow>
<mml:mo>+</mml:mo>
<mml:mi>m</mml:mi>
<mml:mo>,</mml:mo>
<mml:mo>+</mml:mo>
<mml:mi>m</mml:mi>
</mml:mrow>
</mml:mfenced>
</mml:math>
<inline-graphic xlink:href="41467_2017_1102_Article_IEq26.gif"></inline-graphic>
</alternatives>
</inline-formula>
, and the excited intermediate magnetic states
<inline-formula id="IEq27">
<alternatives>
<tex-math id="M67">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left| { \pm \tau , + m} \right\rangle $$\end{document}</tex-math>
<mml:math id="M68">
<mml:mfenced close="⟩" open="∣" separators="">
<mml:mrow>
<mml:mo>±</mml:mo>
<mml:mi>τ</mml:mi>
<mml:mo>,</mml:mo>
<mml:mo>+</mml:mo>
<mml:mi>m</mml:mi>
</mml:mrow>
</mml:mfenced>
</mml:math>
<inline-graphic xlink:href="41467_2017_1102_Article_IEq27.gif"></inline-graphic>
</alternatives>
</inline-formula>
and
<inline-formula id="IEq28">
<alternatives>
<tex-math id="M69">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left| { + m, \pm \tau } \right\rangle $$\end{document}</tex-math>
<mml:math id="M70">
<mml:mfenced close="⟩" open="∣" separators="">
<mml:mrow>
<mml:mo>+</mml:mo>
<mml:mi>m</mml:mi>
<mml:mo>,</mml:mo>
<mml:mo>±</mml:mo>
<mml:mi>τ</mml:mi>
</mml:mrow>
</mml:mfenced>
</mml:math>
<inline-graphic xlink:href="41467_2017_1102_Article_IEq28.gif"></inline-graphic>
</alternatives>
</inline-formula>
(Supplementary Fig. 
<xref rid="MOESM1" ref-type="media">8c</xref>
). Let us label the coupling constants
<italic>γ</italic>
<sub>
<italic>i</italic>
</sub>
(
<italic>Γ</italic>
<sub>
<italic>i</italic>
</sub>
) as:
<italic>γ</italic>
<sub>Cr</sub>
(
<italic>Γ</italic>
<sub>Cr</sub>
) for transitions that only flip the Cr
<sup>3+</sup>
spin;
<italic>γ</italic>
<sub>1</sub>
(
<italic>Γ</italic>
<sub>1</sub>
) for transitions flipping only one Dy
<sup>3+</sup>
spin;
<italic>γ</italic>
<sub>2</sub>
(
<italic>Γ</italic>
<sub>2</sub>
) for transitions involving two simultaneous spin-flipping events;
<italic>γ</italic>
<sub>3</sub>
(
<italic>Γ</italic>
<sub>3</sub>
) for transitions involving three or more spin-flipping events. Thus the hierarchy we invoke here reads:
<italic>γ</italic>
<sub>Cr</sub>
 ≫ 
<italic>γ</italic>
<sub>1</sub>
 > 
<italic>γ</italic>
<sub>2</sub>
 > 
<italic>γ</italic>
<sub>3</sub>
 ~ 0, and
<italic>Γ</italic>
<sub>Cr</sub>
<italic>Γ</italic>
<sub>1</sub>
 > 
<italic>Γ</italic>
<sub>2</sub>
 > 
<italic>Γ</italic>
<sub>3</sub>
 ~ 0.</p>
<p id="Par34">Under such assumptions, we argue that both the zero-field hysteresis, and the smooth magnetization step observed in the experiment, can be explained by the fact that the direct
<inline-formula id="IEq29">
<alternatives>
<tex-math id="M71">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left| { \pm \tau , \pm \tau } \right\rangle $$\end{document}</tex-math>
<mml:math id="M72">
<mml:mfenced close="⟩" open="∣" separators="">
<mml:mrow>
<mml:mo>±</mml:mo>
<mml:mi>τ</mml:mi>
<mml:mo>,</mml:mo>
<mml:mo>±</mml:mo>
<mml:mi>τ</mml:mi>
</mml:mrow>
</mml:mfenced>
</mml:math>
<inline-graphic xlink:href="41467_2017_1102_Article_IEq29.gif"></inline-graphic>
</alternatives>
</inline-formula>
 ↔ 
<inline-formula id="IEq30">
<alternatives>
<tex-math id="M73">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left| { + m, + m} \right\rangle $$\end{document}</tex-math>
<mml:math id="M74">
<mml:mfenced close="⟩" open="∣" separators="">
<mml:mrow>
<mml:mo>+</mml:mo>
<mml:mi>m</mml:mi>
<mml:mo>,</mml:mo>
<mml:mo>+</mml:mo>
<mml:mi>m</mml:mi>
</mml:mrow>
</mml:mfenced>
</mml:math>
<inline-graphic xlink:href="41467_2017_1102_Article_IEq30.gif"></inline-graphic>
</alternatives>
</inline-formula>
transition between the Zeeman ground states at level crossing
<italic>B</italic>
<sub>LC</sub>
 ~ 0.4 T is essentially forbidden, as it involves at least the simultaneous flipping of three Dy
<sup>3+</sup>
spins (
<italic>γ</italic>
<sub>3,</sub>
<italic>Γ</italic>
<sub>3</sub>
 ~ 0). Hence, on the timescale of field sweeping, exchange of population between
<inline-formula id="IEq31">
<alternatives>
<tex-math id="M75">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left| { \pm \tau , \pm \tau } \right\rangle $$\end{document}</tex-math>
<mml:math id="M76">
<mml:mfenced close="⟩" open="∣" separators="">
<mml:mrow>
<mml:mo>±</mml:mo>
<mml:mi>τ</mml:mi>
<mml:mo>,</mml:mo>
<mml:mo>±</mml:mo>
<mml:mi>τ</mml:mi>
</mml:mrow>
</mml:mfenced>
</mml:math>
<inline-graphic xlink:href="41467_2017_1102_Article_IEq31.gif"></inline-graphic>
</alternatives>
</inline-formula>
and
<inline-formula id="IEq32">
<alternatives>
<tex-math id="M77">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left| { + m, + m} \right\rangle $$\end{document}</tex-math>
<mml:math id="M78">
<mml:mfenced close="⟩" open="∣" separators="">
<mml:mrow>
<mml:mo>+</mml:mo>
<mml:mi>m</mml:mi>
<mml:mo>,</mml:mo>
<mml:mo>+</mml:mo>
<mml:mi>m</mml:mi>
</mml:mrow>
</mml:mfenced>
</mml:math>
<inline-graphic xlink:href="41467_2017_1102_Article_IEq32.gif"></inline-graphic>
</alternatives>
</inline-formula>
can only be indirect, occurring via multi-step processes involving the excited intermediate states
<inline-formula id="IEq33">
<alternatives>
<tex-math id="M79">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left| { + m, \pm \tau } \right\rangle $$\end{document}</tex-math>
<mml:math id="M80">
<mml:mfenced close="⟩" open="∣" separators="">
<mml:mrow>
<mml:mo>+</mml:mo>
<mml:mi>m</mml:mi>
<mml:mo>,</mml:mo>
<mml:mo>±</mml:mo>
<mml:mi>τ</mml:mi>
</mml:mrow>
</mml:mfenced>
</mml:math>
<inline-graphic xlink:href="41467_2017_1102_Article_IEq33.gif"></inline-graphic>
</alternatives>
</inline-formula>
and
<inline-formula id="IEq34">
<alternatives>
<tex-math id="M81">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left| { \pm \tau , + m} \right\rangle $$\end{document}</tex-math>
<mml:math id="M82">
<mml:mfenced close="⟩" open="∣" separators="">
<mml:mrow>
<mml:mo>±</mml:mo>
<mml:mi>τ</mml:mi>
<mml:mo>,</mml:mo>
<mml:mo>+</mml:mo>
<mml:mi>m</mml:mi>
</mml:mrow>
</mml:mfenced>
</mml:math>
<inline-graphic xlink:href="41467_2017_1102_Article_IEq34.gif"></inline-graphic>
</alternatives>
</inline-formula>
, also via the excited AFT states
<inline-formula id="IEq35">
<alternatives>
<tex-math id="M83">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left| { \pm \tau , \mp \tau } \right\rangle $$\end{document}</tex-math>
<mml:math id="M84">
<mml:mfenced close="⟩" open="∣" separators="">
<mml:mrow>
<mml:mo>±</mml:mo>
<mml:mi>τ</mml:mi>
<mml:mo>,</mml:mo>
<mml:mo></mml:mo>
<mml:mi>τ</mml:mi>
</mml:mrow>
</mml:mfenced>
</mml:math>
<inline-graphic xlink:href="41467_2017_1102_Article_IEq35.gif"></inline-graphic>
</alternatives>
</inline-formula>
(Supplementary Fig. 
<xref rid="MOESM1" ref-type="media">8b</xref>
). This microscopic scenario is visualized in Fig. 
<xref rid="Fig8" ref-type="fig">8c</xref>
, where a multitude of level crossings of states between which faster 1-flip and 2-flip transitions can occur are highlighted with green circles (tunneling) or green dashed arrows (phonon-mediated) (
<inline-formula id="IEq36">
<alternatives>
<tex-math id="M85">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left| { \pm \tau , \pm \tau } \right\rangle \leftrightarrow \left| { \pm \tau , + m} \right\rangle $$\end{document}</tex-math>
<mml:math id="M86">
<mml:mfenced close="⟩" open="∣" separators="">
<mml:mrow>
<mml:mo>±</mml:mo>
<mml:mi>τ</mml:mi>
<mml:mo>,</mml:mo>
<mml:mo>±</mml:mo>
<mml:mi>τ</mml:mi>
</mml:mrow>
</mml:mfenced>
<mml:mo></mml:mo>
<mml:mfenced close="⟩" open="∣" separators="">
<mml:mrow>
<mml:mo>±</mml:mo>
<mml:mi>τ</mml:mi>
<mml:mo>,</mml:mo>
<mml:mo>+</mml:mo>
<mml:mi>m</mml:mi>
</mml:mrow>
</mml:mfenced>
</mml:math>
<inline-graphic xlink:href="41467_2017_1102_Article_IEq36.gif"></inline-graphic>
</alternatives>
</inline-formula>
or
<inline-formula id="IEq37">
<alternatives>
<tex-math id="M87">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left| { \pm \tau , \pm \tau } \right\rangle \leftrightarrow \left| { + m, \pm \tau } \right\rangle $$\end{document}</tex-math>
<mml:math id="M88">
<mml:mfenced close="⟩" open="∣" separators="">
<mml:mrow>
<mml:mo>±</mml:mo>
<mml:mi>τ</mml:mi>
<mml:mo>,</mml:mo>
<mml:mo>±</mml:mo>
<mml:mi>τ</mml:mi>
</mml:mrow>
</mml:mfenced>
<mml:mo></mml:mo>
<mml:mfenced close="⟩" open="∣" separators="">
<mml:mrow>
<mml:mo>+</mml:mo>
<mml:mi>m</mml:mi>
<mml:mo>,</mml:mo>
<mml:mo>±</mml:mo>
<mml:mi>τ</mml:mi>
</mml:mrow>
</mml:mfenced>
</mml:math>
<inline-graphic xlink:href="41467_2017_1102_Article_IEq37.gif"></inline-graphic>
</alternatives>
</inline-formula>
), or highlighted with green hexagons (tunneling) and broad green arrows with a dashed contour (phonon-mediated) (
<inline-formula id="IEq38">
<alternatives>
<tex-math id="M89">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left| { \pm \tau , + m} \right\rangle \leftrightarrow \left| { + m, + m} \right\rangle $$\end{document}</tex-math>
<mml:math id="M90">
<mml:mfenced close="⟩" open="∣" separators="">
<mml:mrow>
<mml:mo>±</mml:mo>
<mml:mi>τ</mml:mi>
<mml:mo>,</mml:mo>
<mml:mo>+</mml:mo>
<mml:mi>m</mml:mi>
</mml:mrow>
</mml:mfenced>
<mml:mo></mml:mo>
<mml:mfenced close="⟩" open="∣" separators="">
<mml:mrow>
<mml:mo>+</mml:mo>
<mml:mi>m</mml:mi>
<mml:mo>,</mml:mo>
<mml:mo>+</mml:mo>
<mml:mi>m</mml:mi>
</mml:mrow>
</mml:mfenced>
</mml:math>
<inline-graphic xlink:href="41467_2017_1102_Article_IEq38.gif"></inline-graphic>
</alternatives>
</inline-formula>
or
<inline-formula id="IEq39">
<alternatives>
<tex-math id="M91">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left| { + m, \pm \tau } \right\rangle \leftrightarrow \left| { + m, + m} \right\rangle $$\end{document}</tex-math>
<mml:math id="M92">
<mml:mfenced close="⟩" open="∣" separators="">
<mml:mrow>
<mml:mo>+</mml:mo>
<mml:mi>m</mml:mi>
<mml:mo>,</mml:mo>
<mml:mo>±</mml:mo>
<mml:mi>τ</mml:mi>
</mml:mrow>
</mml:mfenced>
<mml:mo></mml:mo>
<mml:mfenced close="⟩" open="∣" separators="">
<mml:mrow>
<mml:mo>+</mml:mo>
<mml:mi>m</mml:mi>
<mml:mo>,</mml:mo>
<mml:mo>+</mml:mo>
<mml:mi>m</mml:mi>
</mml:mrow>
</mml:mfenced>
</mml:math>
<inline-graphic xlink:href="41467_2017_1102_Article_IEq39.gif"></inline-graphic>
</alternatives>
</inline-formula>
). As illustrated in Fig. 
<xref rid="Fig8" ref-type="fig">8b, c</xref>
, the existence of a broad range of magnetic fields around
<italic>B</italic>
<sub>LC</sub>
 ~ 0.4 T for which fast transitions
<inline-formula id="IEq40">
<alternatives>
<tex-math id="M93">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left| { \pm \tau , \pm \tau } \right\rangle \leftrightarrow \left| { \pm \tau , + m} \right\rangle $$\end{document}</tex-math>
<mml:math id="M94">
<mml:mfenced close="⟩" open="∣" separators="">
<mml:mrow>
<mml:mo>±</mml:mo>
<mml:mi>τ</mml:mi>
<mml:mo>,</mml:mo>
<mml:mo>±</mml:mo>
<mml:mi>τ</mml:mi>
</mml:mrow>
</mml:mfenced>
<mml:mo></mml:mo>
<mml:mfenced close="⟩" open="∣" separators="">
<mml:mrow>
<mml:mo>±</mml:mo>
<mml:mi>τ</mml:mi>
<mml:mo>,</mml:mo>
<mml:mo>+</mml:mo>
<mml:mi>m</mml:mi>
</mml:mrow>
</mml:mfenced>
</mml:math>
<inline-graphic xlink:href="41467_2017_1102_Article_IEq40.gif"></inline-graphic>
</alternatives>
</inline-formula>
can occur, followed, in higher fields, by fast phonon relaxation from higher-energy intermediate to lower-energy onion states (Fig. 
<xref rid="Fig8" ref-type="fig">8d</xref>
), provides a rationalization for the gradual rise of the experimental dynamical magnetization.</p>
<p id="Par35">Moreover, to quantitatively investigate the origin of the observed zero-field hysteresis loop, we implement these ideas in a dynamical model based on generalized Pauli master equations describing the dissipative dynamics of the non-equilibrium thermal populations of the CrDy
<sub>6</sub>
states, coupled to an equilibrium reservoir of acoustic phonons at
<italic>T</italic>
 = 0.03 K, and a source of random stray fields inducing incoherent tunneling between resonant energy levels. The states are obtained from our model Hamiltonians Eqs. (
<xref rid="Equ1" ref-type="">1</xref>
) and (
<xref rid="Equ2" ref-type="">2</xref>
), also including a time-dependent Zeeman term describing the interaction with the sweeping magnetic field-oriented along the easy axis, at sweeping rate 0.1 T s
<sup>−1</sup>
, varying between
<italic>B</italic>
 = ± 1.4 T (a triangle wave signal is used). As outlined in the methods section, the relevant dissipative equations of motion for diagonal elements
<italic>σ</italic>
<sub>
<italic>ii</italic>
</sub>
(populations) of the reduced density matrix
<italic>σ</italic>
, in the adiabatic approximation, are:
<disp-formula id="Equ8">
<label>8</label>
<alternatives>
<tex-math id="M95">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\dot \sigma _{ii}}(t) = \mathop {\sum }\limits_k \left\{ {W_{k \to i}^{{\rm{ph}}}\left( t \right) + {\rm{\Omega }}_{k \leftrightarrow i}^{{\rm{tun}}}(t)} \right\}{\sigma _{kk}}\left( t \right) \\ - {\sigma _{ii}}(t)\mathop {\sum }\limits_k \left\{ {W_{i \to k}^{{\rm{ph}}}\left( t \right) + {\rm{\Omega }}_{k \leftrightarrow i}^{{\rm{tun}}}(t)} \right\},$$\end{document}</tex-math>
<mml:math id="M96" display="block">
<mml:msub>
<mml:mrow>
<mml:mover accent="true">
<mml:mrow>
<mml:mi>σ</mml:mi>
</mml:mrow>
<mml:mo>°</mml:mo>
</mml:mover>
</mml:mrow>
<mml:mrow>
<mml:mi>i</mml:mi>
<mml:mi>i</mml:mi>
</mml:mrow>
</mml:msub>
<mml:mrow>
<mml:mo>(</mml:mo>
<mml:mrow>
<mml:mi>t</mml:mi>
</mml:mrow>
<mml:mo>)</mml:mo>
</mml:mrow>
<mml:mo>=</mml:mo>
<mml:munder>
<mml:mrow>
<mml:mo></mml:mo>
</mml:mrow>
<mml:mrow>
<mml:mi>k</mml:mi>
</mml:mrow>
</mml:munder>
<mml:mfenced close="}" open="{" separators="">
<mml:mrow>
<mml:msubsup>
<mml:mrow>
<mml:mi>W</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>k</mml:mi>
<mml:mo></mml:mo>
<mml:mi>i</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi mathvariant="normal">ph</mml:mi>
</mml:mrow>
</mml:msubsup>
<mml:mfenced close=")" open="(" separators="">
<mml:mrow>
<mml:mi>t</mml:mi>
</mml:mrow>
</mml:mfenced>
<mml:mo>+</mml:mo>
<mml:msubsup>
<mml:mrow>
<mml:mi mathvariant="normal">Ω</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>k</mml:mi>
<mml:mo></mml:mo>
<mml:mi>i</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi mathvariant="normal">tun</mml:mi>
</mml:mrow>
</mml:msubsup>
<mml:mrow>
<mml:mo>(</mml:mo>
<mml:mrow>
<mml:mi>t</mml:mi>
</mml:mrow>
<mml:mo>)</mml:mo>
</mml:mrow>
</mml:mrow>
</mml:mfenced>
<mml:msub>
<mml:mrow>
<mml:mi>σ</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>k</mml:mi>
<mml:mi>k</mml:mi>
</mml:mrow>
</mml:msub>
<mml:mfenced close=")" open="(" separators="">
<mml:mrow>
<mml:mi>t</mml:mi>
</mml:mrow>
</mml:mfenced>
<mml:mo>-</mml:mo>
<mml:msub>
<mml:mrow>
<mml:mi>σ</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>i</mml:mi>
<mml:mi>i</mml:mi>
</mml:mrow>
</mml:msub>
<mml:mrow>
<mml:mo>(</mml:mo>
<mml:mrow>
<mml:mi>t</mml:mi>
</mml:mrow>
<mml:mo>)</mml:mo>
</mml:mrow>
<mml:munder>
<mml:mrow>
<mml:mo></mml:mo>
</mml:mrow>
<mml:mrow>
<mml:mi>k</mml:mi>
</mml:mrow>
</mml:munder>
<mml:mfenced close="}" open="{" separators="">
<mml:mrow>
<mml:msubsup>
<mml:mrow>
<mml:mi>W</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>i</mml:mi>
<mml:mo></mml:mo>
<mml:mi>k</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi mathvariant="normal">ph</mml:mi>
</mml:mrow>
</mml:msubsup>
<mml:mfenced close=")" open="(" separators="">
<mml:mrow>
<mml:mi>t</mml:mi>
</mml:mrow>
</mml:mfenced>
<mml:mo>+</mml:mo>
<mml:msubsup>
<mml:mrow>
<mml:mi mathvariant="normal">Ω</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>k</mml:mi>
<mml:mo></mml:mo>
<mml:mi>i</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi mathvariant="normal">tun</mml:mi>
</mml:mrow>
</mml:msubsup>
<mml:mrow>
<mml:mo>(</mml:mo>
<mml:mrow>
<mml:mi>t</mml:mi>
</mml:mrow>
<mml:mo>)</mml:mo>
</mml:mrow>
</mml:mrow>
</mml:mfenced>
<mml:mo>,</mml:mo>
</mml:math>
<graphic xlink:href="41467_2017_1102_Article_Equ8.gif" position="anchor"></graphic>
</alternatives>
</disp-formula>
where
<inline-formula id="IEq41">
<alternatives>
<tex-math id="M97">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rm{\Omega }}_{k \leftrightarrow i}^{{\rm{tun}}}\left( t \right)$$\end{document}</tex-math>
<mml:math id="M98">
<mml:msubsup>
<mml:mrow>
<mml:mi mathvariant="normal">Ω</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>k</mml:mi>
<mml:mo></mml:mo>
<mml:mi>i</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi mathvariant="normal">tun</mml:mi>
</mml:mrow>
</mml:msubsup>
<mml:mfenced close=")" open="(" separators="">
<mml:mrow>
<mml:mi>t</mml:mi>
</mml:mrow>
</mml:mfenced>
</mml:math>
<inline-graphic xlink:href="41467_2017_1102_Article_IEq41.gif"></inline-graphic>
</alternatives>
</inline-formula>
and
<inline-formula id="IEq42">
<alternatives>
<tex-math id="M99">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W_{i \to j}^{{\rm{ph}}}\left( t \right)$$\end{document}</tex-math>
<mml:math id="M100">
<mml:msubsup>
<mml:mrow>
<mml:mi>W</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>i</mml:mi>
<mml:mo></mml:mo>
<mml:mi>j</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi mathvariant="normal">ph</mml:mi>
</mml:mrow>
</mml:msubsup>
<mml:mfenced close=")" open="(" separators="">
<mml:mrow>
<mml:mi>t</mml:mi>
</mml:mrow>
</mml:mfenced>
</mml:math>
<inline-graphic xlink:href="41467_2017_1102_Article_IEq42.gif"></inline-graphic>
</alternatives>
</inline-formula>
are the time-dependent tunneling and phonon-induced transition rates given by Eqs. (
<xref rid="Equ12" ref-type="">12</xref>
) and (
<xref rid="Equ10" ref-type="">10</xref>
), respectively, proportional to the coupling constants
<italic>γ</italic>
<sub>
<italic>i</italic>
</sub>
and
<italic>Γ</italic>
<sub>
<italic>i</italic>
</sub>
fulfilling our proposed hierarchy
<italic>γ</italic>
<sub>Cr</sub>
 ≫ 
<italic>γ</italic>
<sub>1</sub>
 > 
<italic>γ</italic>
<sub>2</sub>
 > 
<italic>γ</italic>
<sub>3</sub>
 ~ 0, and
<italic>Γ</italic>
<sub>Cr</sub>
<italic>Γ</italic>
<sub>1</sub>
 > 
<italic>Γ</italic>
<sub>2</sub>
 > 
<italic>Γ</italic>
<sub>3</sub>
 ~ 0. See methods section for a detailed discussion of the numerical choice of the parameters
<italic>γ</italic>
<sub>
<italic>i</italic>
</sub>
and
<italic>Γ</italic>
<sub>
<italic>i</italic>
</sub>
.</p>
<p id="Par36">We numerically solved Eq. (
<xref rid="Equ8" ref-type="">8</xref>
) for the time-dependent populations
<italic>σ</italic>
(
<italic>t</italic>
) of the 56 CrDy
<sub>6</sub>
states considered here (Supplementary Figs. 
<xref rid="MOESM1" ref-type="media">8</xref>
,
<xref rid="MOESM1" ref-type="media">10</xref>
). The magnetization curve
<inline-formula id="IEq43">
<alternatives>
<tex-math id="M101">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M\left( t \right) = {\rm{Tr}}\left[ {\sigma (t)M} \right]$$\end{document}</tex-math>
<mml:math id="M102">
<mml:mi>M</mml:mi>
<mml:mfenced close=")" open="(" separators="">
<mml:mrow>
<mml:mi>t</mml:mi>
</mml:mrow>
</mml:mfenced>
<mml:mo>=</mml:mo>
<mml:mi mathvariant="normal">Tr</mml:mi>
<mml:mfenced close="]" open="[" separators="">
<mml:mrow>
<mml:mi>σ</mml:mi>
<mml:mrow>
<mml:mo>(</mml:mo>
<mml:mrow>
<mml:mi>t</mml:mi>
</mml:mrow>
<mml:mo>)</mml:mo>
</mml:mrow>
<mml:mi>M</mml:mi>
</mml:mrow>
</mml:mfenced>
</mml:math>
<inline-graphic xlink:href="41467_2017_1102_Article_IEq43.gif"></inline-graphic>
</alternatives>
</inline-formula>
is then computed (
<italic>M</italic>
is the magnetic moment operator along the field), parametrically plotted vs. the sweeping field, and reported in Fig. 
<xref rid="Fig9" ref-type="fig">9</xref>
with the experimental magnetization.
<fig id="Fig9">
<label>Fig. 9</label>
<caption>
<p>Simulation of single-crystal magnetization. Single-crystal experimental magnetization (blue curve) measured at
<italic>T</italic>
 = 0.03 K and a sweep rate of 0.1 T s
<sup>−1</sup>
for a magnetic field oriented parallel to the triangle’s planes and along the easy axis (
<italic>y</italic>
-axis in Fig. 
<xref rid="Fig6" ref-type="fig">6</xref>
), superimposed on the simulated dynamical magnetization at the same temperature, sweep rate, and field orientation, by solving Eq. (
<xref rid="Equ8" ref-type="">8</xref>
) on the basis of 56 out of the 256 states obtained from our model and reported in Supplementary Fig. 
<xref rid="MOESM1" ref-type="media">8</xref>
, for the following numerical values of the transition rates appearing in the equations:
<italic>Γ</italic>
<sub>Cr</sub>
 = 10
<sup>5</sup>
 Hz/(cm
<sup>−1</sup>
)
<sup>3</sup>
 ≫ 
<italic>Γ</italic>
<sub>1</sub>
 = 10
<sup>−7</sup>
 × 
<italic>Γ</italic>
<sub>Cr</sub>
 > 
<italic>Γ</italic>
<sub>2</sub>
 = 10
<sup>−3</sup>
 × 
<italic>Γ</italic>
<sub>1</sub>
, and
<italic>γ</italic>
<sub>Cr</sub>
 = 10
<sup>16</sup>
 Hz
<sup>2</sup>
 ≫ 
<italic>γ</italic>
<sub>1</sub>
 = 10
<sup>12</sup>
 Hz
<sup>2</sup>
 > 
<italic>γ</italic>
<sub>2</sub>
 = 10
<sup>−3</sup>
 × 
<italic>γ</italic>
<sub>1</sub>
</p>
</caption>
<graphic xlink:href="41467_2017_1102_Fig9_HTML" id="d29e5443"></graphic>
</fig>
</p>
<p id="Par37">Quite remarkably, the opening of the hysteresis in the field region between +
<italic>B</italic>
<sub>LC</sub>
and –
<italic>B</italic>
<sub>LC</sub>
is captured by our model, together with the narrowing and closing of the hysteresis loop at fields ~
<italic>B</italic>
<sub>LC</sub>
. Also, the simulated dynamical magnetization now displays a smooth increase between the low- and high-field “plateaus”, despite the low temperature, on account of the cascade of indirect transitions between the low-field (FT) and high-field (onion) ground states mediated by intermediate excited magnetic states.</p>
<p id="Par38">There are, of course, shortcomings in our simulation. For instance, the zero-field hysteresis loop, after closing down as in the experiment, opens up again at larger fields, a feature that is only marginally present in the experiment. Also, the theoretical magnetization step covers a smaller field range than the experimental one. While we cannot exclude that a more thorough exploration of the parameter space might improve the fitting, we expect that these shortcomings will be partially overcome if all 256 states are included in the simulation, as the additional excited states would participate to the multi-step magnetization relaxation, further widening the field range covered by the magnetization step. Further discussion of our dynamical model, including a partitioning of the contributions to
<italic>M</italic>
(
<italic>t</italic>
) from individual states, is reported in the Supplementary Note 
<xref rid="MOESM1" ref-type="media">5</xref>
.</p>
<p id="Par39">In summary, a heptanuclear {Cr
<sup>III</sup>
Dy
<sup>III</sup>
<sub>6</sub>
} complex has been synthesized and structurally characterized. Experimental evidence in conjunction with theoretical calculations reveal and explain the presence of both SMM and single-molecule toroidic behavior. The toroidal states in the individual {Dy
<sup>III</sup>
<sub>3</sub>
} triangles are found to be ferrotoroidically coupled. We note here that the Cr
<sup>III</sup>
ion does not play any fundamental role in the predicted FT coupling, and the coupling between the two toroidal wheels can in fact be fully explained solely in terms of dipolar interactions, which depend solely on the structural parameters of the complex. The fundamental structural elements influencing the strength of dipolar FT coupling are the staggered arrangement of the two triangles with respect to each other, and the distance
<italic>h</italic>
between the two wheels, which we found not to be optimal for maximizing FT coupling (i.e.,
<inline-formula id="IEq44">
<alternatives>
<tex-math id="M103">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h >r\sqrt {7/2} $$\end{document}</tex-math>
<mml:math id="M104">
<mml:mi>h</mml:mi>
<mml:mo>></mml:mo>
<mml:mi>r</mml:mi>
<mml:msqrt>
<mml:mn>7</mml:mn>
<mml:mo></mml:mo>
<mml:mn>2</mml:mn>
</mml:msqrt>
</mml:math>
<inline-graphic xlink:href="41467_2017_1102_Article_IEq44.gif"></inline-graphic>
</alternatives>
</inline-formula>
). The design and synthesis of similar {M
<sup>III</sup>
Dy
<sup>III</sup>
<sub>6</sub>
} complexes, maintaining the staggered arrangement of the two triangular units, but featuring a smaller, even diamagnetic ion, is expected to lead to a smaller inter-ring distance
<italic>h</italic>
, or even to
<inline-formula id="IEq45">
<alternatives>
<tex-math id="M105">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h < r\sqrt {7/2} $$\end{document}</tex-math>
<mml:math id="M106">
<mml:mi>h</mml:mi>
<mml:mo><</mml:mo>
<mml:mi>r</mml:mi>
<mml:msqrt>
<mml:mn>7</mml:mn>
<mml:mo></mml:mo>
<mml:mn>2</mml:mn>
</mml:msqrt>
</mml:math>
<inline-graphic xlink:href="41467_2017_1102_Article_IEq45.gif"></inline-graphic>
</alternatives>
</inline-formula>
, thus according to Eq. (
<xref rid="Equ6" ref-type="">6</xref>
), to a stronger FT coupling. This route is currently being explored in our labs. Importantly, our findings indicate, for the first time, how coupling between toroidal moments can be manipulated by structural design. Finally, for the first time, the experimental single-crystal magnetization dynamics of a polynuclear Dy complex, displaying zero-field opening of a hysteresis loop, is simulated via a theoretical dynamical model, showing that the FT ground state plays a pivotal role in hindering the flipping of magnetic onion states in a sweeping field, thus slowing down the zero-field magnetic relaxation.</p>
</sec>
</sec>
<sec id="Sec6" sec-type="materials|methods">
<title>Methods</title>
<sec id="Sec7">
<title>Synthesis of [Dy
<sup>III</sup>
<sub>6</sub>
Cr
<sup>III</sup>
(OH)
<sub>8</sub>
(
<italic>ortho</italic>
-tol)
<sub>12</sub>
(MeOH)
<sub>5</sub>
(NO
<sub>3</sub>
)]∙3MeOH (1)</title>
<p id="Par40">Cr(NO
<sub>3</sub>
)
<sub>3</sub>
·9H
<sub>2</sub>
O (0.4 g, 1 mmol) and Dy(NO
<sub>3</sub>
)
<sub>3</sub>
·6H
<sub>2</sub>
O (0.22 g, 0.5 mmol) were dissolved in MeCN (20 ml), followed by the addition
<italic>ortho</italic>
-toluic acid (0.14 g, 1.0 mmol) and triethylamine (0.55 ml, 4.0 mmol), which resulted in a pale purple solution. This solution was stirred for 4 h after which time the solvent was removed to give a purple oil. The oil was re-dissolved in MeOH/
<sup>i</sup>
PrOH (1:1) and the solution allowed to slowly evaporate. Within 10–15 days, pale purple crystals of 1 had appeared, in approximate yield of 25% (crystalline product). Microanalysis for CrDy
<sub>6</sub>
C
<sub>104</sub>
H
<sub>124</sub>
NO
<sub>43</sub>
: expected (found); C 40.25 (39.86), H 4.02 (3.86), N 0.45 (0.62).</p>
<p id="Par41">The synthesis reaction was carried out under aerobic conditions. Chemicals and solvents were obtained from commercial sources and used without further purification.</p>
</sec>
<sec id="Sec8">
<title>X-ray crystallography</title>
<p id="Par42">X-ray measurements for
<bold>1</bold>
were performed at 100(2) K at the Australian synchrotron MX1 beam line
<sup>
<xref ref-type="bibr" rid="CR45">45</xref>
</sup>
. The data collection and integration were performed within Blu-Ice
<sup>
<xref ref-type="bibr" rid="CR46">46</xref>
</sup>
and XDS
<sup>
<xref ref-type="bibr" rid="CR47">47</xref>
</sup>
software programs. Compound
<bold>1</bold>
was solved by direct methods (SHELXS-97)
<sup>
<xref ref-type="bibr" rid="CR48">48</xref>
</sup>
, and refined (SHELXL-97)
<sup>
<xref ref-type="bibr" rid="CR49">49</xref>
</sup>
by full least matrix least squares on all
<italic>F</italic>
<sup>2</sup>
data within X-Seed
<sup>
<xref ref-type="bibr" rid="CR50">50</xref>
</sup>
and OLEX-2 GUIs
<sup>
<xref ref-type="bibr" rid="CR51">51</xref>
</sup>
. Crystallographic data and refinement parameters are summarized in Supplementary Table 
<xref rid="MOESM1" ref-type="media">1</xref>
.</p>
</sec>
<sec id="Sec9">
<title>Magnetic measurements</title>
<p id="Par43">The magnetic susceptibility measurements were carried out on a Quantum Design SQUID magnetometer MPMS-XL 7 operating between 1.8 and 300 K for DC-applied fields ranging from 0 to 5 T. Microcrystalline samples were dispersed in vaseline in order to avoid torquing of the crystallites. The sample mulls were contained in a calibrated gelatine capsule held at the center of a drinking straw that was fixed at the end of the sample rod. Ac susceptibilities were carried out under an oscillating ac field of 3.5 Oe and frequencies ranging from 0.1 to 1500 Hz.</p>
</sec>
<sec id="Sec10">
<title>EPR instrumentation</title>
<p id="Par44">The X-band measurements were made on Bruker spectrometers, at IIT Bombay, with a helium gas-flow cryostat. The X-band measurements were carried out at 5, 10, and 20 K.</p>
</sec>
<sec id="Sec11">
<title>Computational details</title>
<p id="Par45">Even though there are only three crystallographic nonequivalent Dy
<sup>III</sup>
centers, we performed the calculations on all six Dy
<sup>III</sup>
ions to determine the direction of the local anisotropy axis. Using MOLCAS 7.8
<sup>
<xref ref-type="bibr" rid="CR43">43</xref>
</sup>
, ab initio calculations were performed on the six Dy
<sup>III</sup>
ions using the crystal structure of
<bold>1</bold>
. The structure of the modeled Dy fragment employed for calculation is shown in Supplementary Fig. 
<xref rid="MOESM1" ref-type="media">5</xref>
, where the neighboring Dy
<sup>III</sup>
ions are replaced with diamagnetic Lu
<sup>III</sup>
ions and the Cr
<sup>III</sup>
ion replaced with Sc
<sup>III</sup>
ion. We have employed this methodology to study a number of Dy
<sup>III</sup>
/Er
<sup>III</sup>
SMMs
<sup>
<xref ref-type="bibr" rid="CR52">52</xref>
<xref ref-type="bibr" rid="CR55">55</xref>
</sup>
. The relativistic effects are taken into account based on the Douglas−Kroll Hamiltonian
<sup>
<xref ref-type="bibr" rid="CR56">56</xref>
</sup>
. The spin-free eigenstates are achieved by the Complete Active Space Self-Consistent Field (CASSCF) method
<sup>
<xref ref-type="bibr" rid="CR57">57</xref>
</sup>
. We have employed the [ANO-RCC…8s7p5d3f2g1h.] basis set
<sup>
<xref ref-type="bibr" rid="CR58">58</xref>
</sup>
for the Dy atoms, the [ANO-RCC…3s2p.] basis set for the C atoms, the [ANO-RCC…2 s.] basis set for H atoms, the [ANO-RCC…3s2p1d.] basis set for the N atoms, the [ANO-RCC…4s3p1d.] basis set for the Sc atom, the [ANO-RCC…5s4p2d1f.] basis set for the La atom, and the [ANO-RCC…3s2p1d.] basis set for the O atoms. First we performed the CASSCF calculation including nine electrons across seven 4f orbitals of the Dy
<sup>3+</sup>
ion. With this active space, we have computed 21 roots in the configuration interaction procedure. After computing these excited states, we have mixed all roots using RASSI-SO
<sup>
<xref ref-type="bibr" rid="CR59">59</xref>
</sup>
and spin–orbit coupling is considered within the space of calculated spin-free eigenstates. Moreover, we have considered these computed SO states into the SINGLE_ANISO
<sup>
<xref ref-type="bibr" rid="CR60">60</xref>
</sup>
program to compute the
<italic>g</italic>
-tensors. The Dy
<sup>III</sup>
ion has eight low-lying KDs for which the anisotropic
<italic>g</italic>
-tensors have been computed. The Cholesky decomposition for two electron integrals is employed throughout our calculations. We have extracted the crystal field parameters using the SINGLE_ANISO code as implemented in MOLCAS 7.8.</p>
<p id="Par46">DFT calculations were performed using the B3LYP functional
<sup>
<xref ref-type="bibr" rid="CR61">61</xref>
</sup>
with the Gaussian 09 suite of programs
<sup>
<xref ref-type="bibr" rid="CR62">62</xref>
</sup>
. To estimate the exchange constant between Cr
<sup>III</sup>
–Dy
<sup>III</sup>
and Dy
<sup>III</sup>
–Dy
<sup>III</sup>
ions, the dysprosium ions were replaced with the spin-only Gd
<sup>III</sup>
ions in order to investigate the exchange interaction between the Dy
<sup>III</sup>
ions, which was then rescaled to the spin of dysprosium ions. We have used the LanL2DZ ECP basis set for Cr
<sup>
<xref ref-type="bibr" rid="CR63">63</xref>
,
<xref ref-type="bibr" rid="CR64">64</xref>
</sup>
, the double-zeta quality basis set employing Cundari–Stevens (CS) relativistic effective core potential on Gd atom
<sup>
<xref ref-type="bibr" rid="CR65">65</xref>
</sup>
, 6–31G* basis set for the rest of the atoms. The DFT calculations combined with the Broken Symmetry (BS) approach
<sup>
<xref ref-type="bibr" rid="CR66">66</xref>
</sup>
have been employed to compute the magnetic exchange
<italic>J</italic>
value. The actual energy spectrum and wavefunction and magnetic texture calculations, together with simulation of the magnetic measurements, was carried out by inserting the ab initio data into a model intramolecular magnetic coupling Hamiltonian, the development of which is described in the theoretical analysis section (see above).</p>
</sec>
<sec id="Sec12">
<title>Method of simulation of the magnetization dynamics</title>
<p id="Par47">As is well known
<sup>
<xref ref-type="bibr" rid="CR67">67</xref>
</sup>
, in the derivation of the Pauli equations for the diagonal reduced density matrix
<italic>σ</italic>
from the Liouville–Von Neumann equations for the total density matrix describing the coupled system–phonon reservoir, it is expedient to switch to the interaction picture, so that the unperturbed quantum system and reservoir Hamiltonians do not explicitly appear in the transformed equations of motion. The equations of motion in the interaction picture are thus propagated only by the spin–phonon coupling Hamiltonian, which in second order and in the Born–Markov limit generates the dissipative relaxation dynamics of the reduced density matrix. In our particular case, where time dependence arises both from the random dissipative relaxation fields, and from the periodic time dependence of the Zeeman Hamiltonian, a useful interaction picture can still be achieved by including the time-dependent Zeeman Hamiltonian in the zeroth order Hamiltonian
<inline-formula id="IEq46">
<alternatives>
<tex-math id="M107">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${H_0}(t) \equiv {H_0}$$\end{document}</tex-math>
<mml:math id="M108">
<mml:msub>
<mml:mrow>
<mml:mi>H</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mn>0</mml:mn>
</mml:mrow>
</mml:msub>
<mml:mrow>
<mml:mo>(</mml:mo>
<mml:mrow>
<mml:mi>t</mml:mi>
</mml:mrow>
<mml:mo>)</mml:mo>
</mml:mrow>
<mml:mo></mml:mo>
<mml:msub>
<mml:mrow>
<mml:mi>H</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mn>0</mml:mn>
</mml:mrow>
</mml:msub>
</mml:math>
<inline-graphic xlink:href="41467_2017_1102_Article_IEq46.gif"></inline-graphic>
</alternatives>
</inline-formula>
together with Hamiltonian Eqs. (
<xref rid="Equ1" ref-type="">1</xref>
) and (
<xref rid="Equ2" ref-type="">2</xref>
). To avoid the complications related to the resulting time dependence of
<italic>H</italic>
<sub>0</sub>
, which would imply a zeroth order time evolution operator only defined exactly via time-ordered products, we assume valid adiabatic approximation, so that at any time the system is assumed to be described by the eigenfunctions
<inline-formula id="IEq47">
<alternatives>
<tex-math id="M109">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left| {i(t)} \right\rangle.$$\end{document}</tex-math>
<mml:math id="M110">
<mml:mfenced close="⟩" open="∣" separators="">
<mml:mrow>
<mml:mi>i</mml:mi>
<mml:mrow>
<mml:mo>(</mml:mo>
<mml:mrow>
<mml:mi>t</mml:mi>
</mml:mrow>
<mml:mo>)</mml:mo>
</mml:mrow>
</mml:mrow>
</mml:mfenced>
<mml:mo>.</mml:mo>
</mml:math>
<inline-graphic xlink:href="41467_2017_1102_Article_IEq47.gif"></inline-graphic>
</alternatives>
</inline-formula>
and eigenvalues
<italic>E</italic>
<sub>
<italic>i</italic>
</sub>
(
<italic>t</italic>
) of the time-dependent Hamiltonian
<italic>H</italic>
<sub>0</sub>
, so that
<inline-formula id="IEq48">
<alternatives>
<tex-math id="M111">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${H_0}\left( t \right)\left| {i\left( t \right)} \right\rangle = {E_i}\left( t \right)\left| {i\left( t \right)} \right\rangle $$\end{document}</tex-math>
<mml:math id="M112">
<mml:msub>
<mml:mrow>
<mml:mi>H</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mn>0</mml:mn>
</mml:mrow>
</mml:msub>
<mml:mfenced close=")" open="(" separators="">
<mml:mrow>
<mml:mi>t</mml:mi>
</mml:mrow>
</mml:mfenced>
<mml:mfenced close="⟩" open="∣" separators="">
<mml:mrow>
<mml:mi>i</mml:mi>
<mml:mfenced close=")" open="(" separators="">
<mml:mrow>
<mml:mi>t</mml:mi>
</mml:mrow>
</mml:mfenced>
</mml:mrow>
</mml:mfenced>
<mml:mo>=</mml:mo>
<mml:msub>
<mml:mrow>
<mml:mi>E</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>i</mml:mi>
</mml:mrow>
</mml:msub>
<mml:mfenced close=")" open="(" separators="">
<mml:mrow>
<mml:mi>t</mml:mi>
</mml:mrow>
</mml:mfenced>
<mml:mfenced close="⟩" open="∣" separators="">
<mml:mrow>
<mml:mi>i</mml:mi>
<mml:mfenced close=")" open="(" separators="">
<mml:mrow>
<mml:mi>t</mml:mi>
</mml:mrow>
</mml:mfenced>
</mml:mrow>
</mml:mfenced>
</mml:math>
<inline-graphic xlink:href="41467_2017_1102_Article_IEq48.gif"></inline-graphic>
</alternatives>
</inline-formula>
, and the time evolution operator can be simplified as an exponential operator that remains diagonal in the basis of the 256 system’s eigenfunctions
<inline-formula id="IEq49">
<alternatives>
<tex-math id="M113">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left| {i(t)} \right\rangle $$\end{document}</tex-math>
<mml:math id="M114">
<mml:mfenced close="⟩" open="∣" separators="">
<mml:mrow>
<mml:mi>i</mml:mi>
<mml:mrow>
<mml:mo>(</mml:mo>
<mml:mrow>
<mml:mi>t</mml:mi>
</mml:mrow>
<mml:mo>)</mml:mo>
</mml:mrow>
</mml:mrow>
</mml:mfenced>
</mml:math>
<inline-graphic xlink:href="41467_2017_1102_Article_IEq49.gif"></inline-graphic>
</alternatives>
</inline-formula>
at any time. Using well-known approximations to avoid at each given time, the integration of eigenvalues at all previous times, as described for instance in the paper
<sup>
<xref ref-type="bibr" rid="CR68">68</xref>
</sup>
and within the secular approximation
<sup>
<xref ref-type="bibr" rid="CR67">67</xref>
</sup>
, two decoupled sets of equations of motion are obtained for the elements of the reduced density matrix
<inline-formula id="IEq50">
<alternatives>
<tex-math id="M115">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sigma _{ij}} = \left\langle {i{\rm{|}}\sigma {\rm{|}}j} \right\rangle $$\end{document}</tex-math>
<mml:math id="M116">
<mml:msub>
<mml:mrow>
<mml:mi>σ</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>i</mml:mi>
<mml:mi>j</mml:mi>
</mml:mrow>
</mml:msub>
<mml:mo>=</mml:mo>
<mml:mfenced close="⟩" open="⟨" separators="">
<mml:mrow>
<mml:mi>i</mml:mi>
<mml:mi mathvariant="normal"></mml:mi>
<mml:mi>σ</mml:mi>
<mml:mi mathvariant="normal"></mml:mi>
<mml:mi>j</mml:mi>
</mml:mrow>
</mml:mfenced>
</mml:math>
<inline-graphic xlink:href="41467_2017_1102_Article_IEq50.gif"></inline-graphic>
</alternatives>
</inline-formula>
between the adiabatic eigenstates of
<italic>H</italic>
<sub>0</sub>
, one for the diagonal (populations,
<italic>i</italic>
 = 
<italic>j</italic>
) and one for the off-diagonal (coherences,
<inline-formula id="IEq51">
<alternatives>
<tex-math id="M117">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i \ne j$$\end{document}</tex-math>
<mml:math id="M118">
<mml:mi>i</mml:mi>
<mml:mo></mml:mo>
<mml:mi>j</mml:mi>
</mml:math>
<inline-graphic xlink:href="41467_2017_1102_Article_IEq51.gif"></inline-graphic>
</alternatives>
</inline-formula>
) elements of the CrDy
<sub>6</sub>
reduced density matrix
<italic>σ</italic>
, which can be written in the usual Schrodinger’s picture as:
<disp-formula id="Equ9">
<label>9</label>
<alternatives>
<tex-math id="M119">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\dot \sigma _{ij}}(t) = - i/\hbar \langle i{\rm{|}}\left[ {{H_0}(t),\sigma (t)} \right]{\rm{|}}j\rangle + {\delta _{ij}}\mathop {\sum }\limits_k {W_{k \to i}}\left( t \right){\sigma _{kk}}\left( t \right) - {\mu _{ij}}(t){\sigma _{ij}}(t),$$\end{document}</tex-math>
<mml:math id="M120" display="block">
<mml:msub>
<mml:mrow>
<mml:mover accent="true">
<mml:mrow>
<mml:mi>σ</mml:mi>
</mml:mrow>
<mml:mo>°</mml:mo>
</mml:mover>
</mml:mrow>
<mml:mrow>
<mml:mi>i</mml:mi>
<mml:mi>j</mml:mi>
</mml:mrow>
</mml:msub>
<mml:mrow>
<mml:mo>(</mml:mo>
<mml:mrow>
<mml:mi>t</mml:mi>
</mml:mrow>
<mml:mo>)</mml:mo>
</mml:mrow>
<mml:mo>=</mml:mo>
<mml:mo>-</mml:mo>
<mml:mi>i</mml:mi>
<mml:mo></mml:mo>
<mml:mi></mml:mi>
<mml:mrow>
<mml:mo></mml:mo>
<mml:mrow>
<mml:mi>i</mml:mi>
<mml:mi mathvariant="normal"></mml:mi>
<mml:mfenced close="]" open="[" separators="">
<mml:mrow>
<mml:msub>
<mml:mrow>
<mml:mi>H</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mn>0</mml:mn>
</mml:mrow>
</mml:msub>
<mml:mrow>
<mml:mo>(</mml:mo>
<mml:mrow>
<mml:mi>t</mml:mi>
</mml:mrow>
<mml:mo>)</mml:mo>
</mml:mrow>
<mml:mo>,</mml:mo>
<mml:mi>σ</mml:mi>
<mml:mrow>
<mml:mo>(</mml:mo>
<mml:mrow>
<mml:mi>t</mml:mi>
</mml:mrow>
<mml:mo>)</mml:mo>
</mml:mrow>
</mml:mrow>
</mml:mfenced>
<mml:mi mathvariant="normal"></mml:mi>
<mml:mi>j</mml:mi>
</mml:mrow>
<mml:mo></mml:mo>
</mml:mrow>
<mml:mo>+</mml:mo>
<mml:msub>
<mml:mrow>
<mml:mi>δ</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>i</mml:mi>
<mml:mi>j</mml:mi>
</mml:mrow>
</mml:msub>
<mml:munder>
<mml:mrow>
<mml:mo></mml:mo>
</mml:mrow>
<mml:mrow>
<mml:mi>k</mml:mi>
</mml:mrow>
</mml:munder>
<mml:msub>
<mml:mrow>
<mml:mi>W</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>k</mml:mi>
<mml:mo></mml:mo>
<mml:mi>i</mml:mi>
</mml:mrow>
</mml:msub>
<mml:mfenced close=")" open="(" separators="">
<mml:mrow>
<mml:mi>t</mml:mi>
</mml:mrow>
</mml:mfenced>
<mml:msub>
<mml:mrow>
<mml:mi>σ</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>k</mml:mi>
<mml:mi>k</mml:mi>
</mml:mrow>
</mml:msub>
<mml:mfenced close=")" open="(" separators="">
<mml:mrow>
<mml:mi>t</mml:mi>
</mml:mrow>
</mml:mfenced>
<mml:mo>-</mml:mo>
<mml:msub>
<mml:mrow>
<mml:mi>μ</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>i</mml:mi>
<mml:mi>j</mml:mi>
</mml:mrow>
</mml:msub>
<mml:mrow>
<mml:mo>(</mml:mo>
<mml:mrow>
<mml:mi>t</mml:mi>
</mml:mrow>
<mml:mo>)</mml:mo>
</mml:mrow>
<mml:msub>
<mml:mrow>
<mml:mi>σ</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>i</mml:mi>
<mml:mi>j</mml:mi>
</mml:mrow>
</mml:msub>
<mml:mrow>
<mml:mo>(</mml:mo>
<mml:mrow>
<mml:mi>t</mml:mi>
</mml:mrow>
<mml:mo>)</mml:mo>
</mml:mrow>
<mml:mo>,</mml:mo>
</mml:math>
<graphic xlink:href="41467_2017_1102_Article_Equ9.gif" position="anchor"></graphic>
</alternatives>
</disp-formula>
where
<inline-formula id="IEq52">
<alternatives>
<tex-math id="M121">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\dot \sigma _{ij}} \equiv {\rm{d}}{\sigma _{ij}}/{\rm{d}}t$$\end{document}</tex-math>
<mml:math id="M122">
<mml:msub>
<mml:mrow>
<mml:mover accent="true">
<mml:mrow>
<mml:mi>σ</mml:mi>
</mml:mrow>
<mml:mo>°</mml:mo>
</mml:mover>
</mml:mrow>
<mml:mrow>
<mml:mi>i</mml:mi>
<mml:mi>j</mml:mi>
</mml:mrow>
</mml:msub>
<mml:mo></mml:mo>
<mml:mi mathvariant="normal">d</mml:mi>
<mml:msub>
<mml:mrow>
<mml:mi>σ</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>i</mml:mi>
<mml:mi>j</mml:mi>
</mml:mrow>
</mml:msub>
<mml:mo></mml:mo>
<mml:mi mathvariant="normal">d</mml:mi>
<mml:mi>t</mml:mi>
</mml:math>
<inline-graphic xlink:href="41467_2017_1102_Article_IEq52.gif"></inline-graphic>
</alternatives>
</inline-formula>
,
<inline-formula id="IEq53">
<alternatives>
<tex-math id="M123">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left[ {{H_0},\sigma } \right]$$\end{document}</tex-math>
<mml:math id="M124">
<mml:mfenced close="]" open="[" separators="">
<mml:mrow>
<mml:msub>
<mml:mrow>
<mml:mi>H</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mn>0</mml:mn>
</mml:mrow>
</mml:msub>
<mml:mo>,</mml:mo>
<mml:mi>σ</mml:mi>
</mml:mrow>
</mml:mfenced>
</mml:math>
<inline-graphic xlink:href="41467_2017_1102_Article_IEq53.gif"></inline-graphic>
</alternatives>
</inline-formula>
is the commutator between the operators
<italic>H</italic>
<sub>0</sub>
and
<italic>σ</italic>
,
<italic>δ</italic>
<sub>
<italic>ij</italic>
</sub>
is a Kronecker delta,
<inline-formula id="IEq54">
<alternatives>
<tex-math id="M125">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${W_{l \to m}}(t)$$\end{document}</tex-math>
<mml:math id="M126">
<mml:msub>
<mml:mrow>
<mml:mi>W</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>l</mml:mi>
<mml:mo></mml:mo>
<mml:mi>m</mml:mi>
</mml:mrow>
</mml:msub>
<mml:mrow>
<mml:mo>(</mml:mo>
<mml:mrow>
<mml:mi>t</mml:mi>
</mml:mrow>
<mml:mo>)</mml:mo>
</mml:mrow>
</mml:math>
<inline-graphic xlink:href="41467_2017_1102_Article_IEq54.gif"></inline-graphic>
</alternatives>
</inline-formula>
is the transition rate from eigenstate
<inline-formula id="IEq55">
<alternatives>
<tex-math id="M127">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left| {l(t)} \right\rangle $$\end{document}</tex-math>
<mml:math id="M128">
<mml:mfenced close="⟩" open="∣" separators="">
<mml:mrow>
<mml:mi>l</mml:mi>
<mml:mrow>
<mml:mo>(</mml:mo>
<mml:mrow>
<mml:mi>t</mml:mi>
</mml:mrow>
<mml:mo>)</mml:mo>
</mml:mrow>
</mml:mrow>
</mml:mfenced>
</mml:math>
<inline-graphic xlink:href="41467_2017_1102_Article_IEq55.gif"></inline-graphic>
</alternatives>
</inline-formula>
to eigenstate
<inline-formula id="IEq56">
<alternatives>
<tex-math id="M129">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left| {m(t)} \right\rangle $$\end{document}</tex-math>
<mml:math id="M130">
<mml:mfenced close="⟩" open="∣" separators="">
<mml:mrow>
<mml:mi>m</mml:mi>
<mml:mrow>
<mml:mo>(</mml:mo>
<mml:mrow>
<mml:mi>t</mml:mi>
</mml:mrow>
<mml:mo>)</mml:mo>
</mml:mrow>
</mml:mrow>
</mml:mfenced>
</mml:math>
<inline-graphic xlink:href="41467_2017_1102_Article_IEq56.gif"></inline-graphic>
</alternatives>
</inline-formula>
, which become themselves time dependent because of the time-dependent Zeeman field, both via the Zeeman eigenvalues
<italic>E</italic>
<sub>
<italic>i</italic>
</sub>
(
<italic>t</italic>
), but in principle also via the eigenstates
<inline-formula id="IEq57">
<alternatives>
<tex-math id="M131">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left| {l(t)} \right\rangle $$\end{document}</tex-math>
<mml:math id="M132">
<mml:mfenced close="⟩" open="∣" separators="">
<mml:mrow>
<mml:mi>l</mml:mi>
<mml:mrow>
<mml:mo>(</mml:mo>
<mml:mrow>
<mml:mi>t</mml:mi>
</mml:mrow>
<mml:mo>)</mml:mo>
</mml:mrow>
</mml:mrow>
</mml:mfenced>
</mml:math>
<inline-graphic xlink:href="41467_2017_1102_Article_IEq57.gif"></inline-graphic>
</alternatives>
</inline-formula>
, as Cr spin states are now coupled by the magnetic field. Finally, we have
<inline-formula id="IEq58">
<alternatives>
<tex-math id="M133">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mu _{ij}}(t) = 1/2\mathop {\sum }\nolimits_k \left( {{W_{i \to k}}(t) + {W_{j \to k}}(t)} \right).$$\end{document}</tex-math>
<mml:math id="M134">
<mml:msub>
<mml:mrow>
<mml:mi>μ</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>i</mml:mi>
<mml:mi>j</mml:mi>
</mml:mrow>
</mml:msub>
<mml:mrow>
<mml:mo>(</mml:mo>
<mml:mrow>
<mml:mi>t</mml:mi>
</mml:mrow>
<mml:mo>)</mml:mo>
</mml:mrow>
<mml:mo>=</mml:mo>
<mml:mn>1</mml:mn>
<mml:mo></mml:mo>
<mml:mn>2</mml:mn>
<mml:msub>
<mml:mrow>
<mml:mo></mml:mo>
</mml:mrow>
<mml:mrow>
<mml:mi>k</mml:mi>
</mml:mrow>
</mml:msub>
<mml:mfenced close=")" open="(" separators="">
<mml:mrow>
<mml:msub>
<mml:mrow>
<mml:mi>W</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>i</mml:mi>
<mml:mo></mml:mo>
<mml:mi>k</mml:mi>
</mml:mrow>
</mml:msub>
<mml:mrow>
<mml:mo>(</mml:mo>
<mml:mrow>
<mml:mi>t</mml:mi>
</mml:mrow>
<mml:mo>)</mml:mo>
</mml:mrow>
<mml:mo>+</mml:mo>
<mml:msub>
<mml:mrow>
<mml:mi>W</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>j</mml:mi>
<mml:mo></mml:mo>
<mml:mi>k</mml:mi>
</mml:mrow>
</mml:msub>
<mml:mrow>
<mml:mo>(</mml:mo>
<mml:mrow>
<mml:mi>t</mml:mi>
</mml:mrow>
<mml:mo>)</mml:mo>
</mml:mrow>
</mml:mrow>
</mml:mfenced>
<mml:mo>.</mml:mo>
</mml:math>
<inline-graphic xlink:href="41467_2017_1102_Article_IEq58.gif"></inline-graphic>
</alternatives>
</inline-formula>
</p>
<p id="Par48">The details of the spin–phonon coupling Hamiltonian contributing to the transition rates for this polynuclear system coupled to its crystal phonons represents in principle a formidable problem, whose detailed analysis goes beyond the scope of the current paper. Hence we describe here the coupling of the CrDy
<sub>6</sub>
states to an idealized equilibrium acoustic phonon reservoir in terms of well-known phenomenological transition rates
<inline-formula id="IEq59">
<alternatives>
<tex-math id="M135">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${W_{l \to m}}(t)$$\end{document}</tex-math>
<mml:math id="M136">
<mml:msub>
<mml:mrow>
<mml:mi>W</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>l</mml:mi>
<mml:mo></mml:mo>
<mml:mi>m</mml:mi>
</mml:mrow>
</mml:msub>
<mml:mrow>
<mml:mo>(</mml:mo>
<mml:mrow>
<mml:mi>t</mml:mi>
</mml:mrow>
<mml:mo>)</mml:mo>
</mml:mrow>
</mml:math>
<inline-graphic xlink:href="41467_2017_1102_Article_IEq59.gif"></inline-graphic>
</alternatives>
</inline-formula>
obtained within the Debye model
<sup>
<xref ref-type="bibr" rid="CR2">2</xref>
</sup>
and given by:
<disp-formula id="Equ10">
<label>10</label>
<alternatives>
<tex-math id="M137">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W_{i \to j}^{{\rm{ph}}}\left( t \right) = {{{\Gamma }}_{ij}}\frac{{{{\left( {{E_i}\left( t \right) - {E_j}\left( t \right)} \right)}^3}}}{{\exp \left[ {\left( {{E_i}\left( t \right) - {E_j}\left( t \right)} \right)/{k_{\rm{B}}}T} \right] - 1}},{{{\Gamma }}_{ij}} = {{{\Gamma }}_{{\rm{Cr}}}},{{{\Gamma }}_1},{{{\Gamma }}_2},$$\end{document}</tex-math>
<mml:math id="M138" display="block">
<mml:msubsup>
<mml:mrow>
<mml:mi>W</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>i</mml:mi>
<mml:mo></mml:mo>
<mml:mi>j</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi mathvariant="normal">ph</mml:mi>
</mml:mrow>
</mml:msubsup>
<mml:mfenced close=")" open="(" separators="">
<mml:mrow>
<mml:mi>t</mml:mi>
</mml:mrow>
</mml:mfenced>
<mml:mo>=</mml:mo>
<mml:msub>
<mml:mrow>
<mml:mi>Γ</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>i</mml:mi>
<mml:mi>j</mml:mi>
</mml:mrow>
</mml:msub>
<mml:mfrac>
<mml:mrow>
<mml:msup>
<mml:mrow>
<mml:mfenced close=")" open="(" separators="">
<mml:mrow>
<mml:msub>
<mml:mrow>
<mml:mi>E</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>i</mml:mi>
</mml:mrow>
</mml:msub>
<mml:mfenced close=")" open="(" separators="">
<mml:mrow>
<mml:mi>t</mml:mi>
</mml:mrow>
</mml:mfenced>
<mml:mo>-</mml:mo>
<mml:msub>
<mml:mrow>
<mml:mi>E</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>j</mml:mi>
</mml:mrow>
</mml:msub>
<mml:mfenced close=")" open="(" separators="">
<mml:mrow>
<mml:mi>t</mml:mi>
</mml:mrow>
</mml:mfenced>
</mml:mrow>
</mml:mfenced>
</mml:mrow>
<mml:mrow>
<mml:mn>3</mml:mn>
</mml:mrow>
</mml:msup>
</mml:mrow>
<mml:mrow>
<mml:mo>exp</mml:mo>
<mml:mfenced close="]" open="[" separators="">
<mml:mrow>
<mml:mfenced close=")" open="(" separators="">
<mml:mrow>
<mml:msub>
<mml:mrow>
<mml:mi>E</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>i</mml:mi>
</mml:mrow>
</mml:msub>
<mml:mfenced close=")" open="(" separators="">
<mml:mrow>
<mml:mi>t</mml:mi>
</mml:mrow>
</mml:mfenced>
<mml:mo>-</mml:mo>
<mml:msub>
<mml:mrow>
<mml:mi>E</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>j</mml:mi>
</mml:mrow>
</mml:msub>
<mml:mfenced close=")" open="(" separators="">
<mml:mrow>
<mml:mi>t</mml:mi>
</mml:mrow>
</mml:mfenced>
</mml:mrow>
</mml:mfenced>
<mml:mo></mml:mo>
<mml:msub>
<mml:mrow>
<mml:mi>k</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi mathvariant="normal">B</mml:mi>
</mml:mrow>
</mml:msub>
<mml:mi>T</mml:mi>
</mml:mrow>
</mml:mfenced>
<mml:mo>-</mml:mo>
<mml:mn>1</mml:mn>
</mml:mrow>
</mml:mfrac>
<mml:mo>,</mml:mo>
<mml:msub>
<mml:mrow>
<mml:mi>Γ</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>i</mml:mi>
<mml:mi>j</mml:mi>
</mml:mrow>
</mml:msub>
<mml:mo>=</mml:mo>
<mml:msub>
<mml:mrow>
<mml:mi>Γ</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi mathvariant="normal">Cr</mml:mi>
</mml:mrow>
</mml:msub>
<mml:mo>,</mml:mo>
<mml:msub>
<mml:mrow>
<mml:mi>Γ</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mn>1</mml:mn>
</mml:mrow>
</mml:msub>
<mml:mo>,</mml:mo>
<mml:msub>
<mml:mrow>
<mml:mi>Γ</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mn>2</mml:mn>
</mml:mrow>
</mml:msub>
<mml:mo>,</mml:mo>
</mml:math>
<graphic xlink:href="41467_2017_1102_Article_Equ10.gif" position="anchor"></graphic>
</alternatives>
</disp-formula>
</p>
<p id="Par49">where
<italic>E</italic>
<sub>
<italic>i</italic>
</sub>
(
<italic>t</italic>
) are now the time-dependent Zeeman energies of the CrDy
<sub>6</sub>
quantum states, while
<inline-formula id="IEq60">
<alternatives>
<tex-math id="M139">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{{\Gamma }}_{ij}}$$\end{document}</tex-math>
<mml:math id="M140">
<mml:msub>
<mml:mrow>
<mml:mi>Γ</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>i</mml:mi>
<mml:mi>j</mml:mi>
</mml:mrow>
</mml:msub>
</mml:math>
<inline-graphic xlink:href="41467_2017_1102_Article_IEq60.gif"></inline-graphic>
</alternatives>
</inline-formula>
are numerical parameters measuring the transition rate
<italic>Γ</italic>
<sub>Cr</sub>
, or
<italic>Γ</italic>
<sub>1</sub>
, or
<italic>Γ</italic>
<sub>2</sub>
, according to how many spin flips connect states
<inline-formula id="IEq61">
<alternatives>
<tex-math id="M141">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left| {i(t)} \right\rangle $$\end{document}</tex-math>
<mml:math id="M142">
<mml:mfenced close="⟩" open="∣" separators="">
<mml:mrow>
<mml:mi>i</mml:mi>
<mml:mrow>
<mml:mo>(</mml:mo>
<mml:mrow>
<mml:mi>t</mml:mi>
</mml:mrow>
<mml:mo>)</mml:mo>
</mml:mrow>
</mml:mrow>
</mml:mfenced>
</mml:math>
<inline-graphic xlink:href="41467_2017_1102_Article_IEq61.gif"></inline-graphic>
</alternatives>
</inline-formula>
and
<inline-formula id="IEq62">
<alternatives>
<tex-math id="M143">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left| {j(t)} \right\rangle $$\end{document}</tex-math>
<mml:math id="M144">
<mml:mfenced close="⟩" open="∣" separators="">
<mml:mrow>
<mml:mi>j</mml:mi>
<mml:mrow>
<mml:mo>(</mml:mo>
<mml:mrow>
<mml:mi>t</mml:mi>
</mml:mrow>
<mml:mo>)</mml:mo>
</mml:mrow>
</mml:mrow>
</mml:mfenced>
</mml:math>
<inline-graphic xlink:href="41467_2017_1102_Article_IEq62.gif"></inline-graphic>
</alternatives>
</inline-formula>
(we set
<inline-formula id="IEq63">
<alternatives>
<tex-math id="M145">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{{\Gamma }}_{ij}} = 0$$\end{document}</tex-math>
<mml:math id="M146">
<mml:msub>
<mml:mrow>
<mml:mi>Γ</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>i</mml:mi>
<mml:mi>j</mml:mi>
</mml:mrow>
</mml:msub>
<mml:mo>=</mml:mo>
<mml:mn>0</mml:mn>
</mml:math>
<inline-graphic xlink:href="41467_2017_1102_Article_IEq63.gif"></inline-graphic>
</alternatives>
</inline-formula>
if the two states are connected by three or more spin flips).</p>
<p id="Par50">Finally, in order to account for the relaxation dynamics associated to quantum tunneling processes induced by, e.g., random stray magnetic fields produced by the fluctuations of nuclear dipole moments or neighboring molecular magnetic moments, we follow the approach proposed by Leuenberger and Loss
<sup>
<xref ref-type="bibr" rid="CR69">69</xref>
</sup>
(see in particular the derivation of their Eqs. (35) and (36)), and further correct the zeroth order Hamiltonian
<italic>H</italic>
<sub>0</sub>
in Eq. (
<xref rid="Equ9" ref-type="">9</xref>
) with an additional term
<italic>V</italic>
describing tunneling between the Dy
<sup>3+</sup>
and Cr
<sup>3+</sup>
magnetic states via, e.g., coupling to fluctuating magnetic fields arising from neighboring spins. We note in fact that in Eq. (
<xref rid="Equ9" ref-type="">9</xref>
), the diagonal matrix elements of the commutator between the eigenstates of
<italic>H</italic>
<sub>0</sub>
are exactly zero in the adiabatic approximation, and thus the differential equations for the populations are there decoupled from those for the coherences. If on the other hand we now introduce the tunneling operator
<italic>V</italic>
, so that in Eq. (
<xref rid="Equ8" ref-type="">8</xref>
)
<inline-formula id="IEq64">
<alternatives>
<tex-math id="M147">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${H_0}\left( t \right) \to {H_0}\left( t \right) + V$$\end{document}</tex-math>
<mml:math id="M148">
<mml:msub>
<mml:mrow>
<mml:mi>H</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mn>0</mml:mn>
</mml:mrow>
</mml:msub>
<mml:mfenced close=")" open="(" separators="">
<mml:mrow>
<mml:mi>t</mml:mi>
</mml:mrow>
</mml:mfenced>
<mml:mo></mml:mo>
<mml:msub>
<mml:mrow>
<mml:mi>H</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mn>0</mml:mn>
</mml:mrow>
</mml:msub>
<mml:mfenced close=")" open="(" separators="">
<mml:mrow>
<mml:mi>t</mml:mi>
</mml:mrow>
</mml:mfenced>
<mml:mo>+</mml:mo>
<mml:mi>V</mml:mi>
</mml:math>
<inline-graphic xlink:href="41467_2017_1102_Article_IEq64.gif"></inline-graphic>
</alternatives>
</inline-formula>
, since
<italic>V</italic>
by definition has non-zero off-diagonal matrix elements between the eigenstates of
<italic>H</italic>
<sub>0</sub>
, this correction will re-introduce coupling between populations and coherences in Eq. (
<xref rid="Equ9" ref-type="">9</xref>
). Assuming a steady-state approximation for the coherences, so that
<inline-formula id="IEq65">
<alternatives>
<tex-math id="M149">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\dot \sigma _{ij}}(t) \approx 0$$\end{document}</tex-math>
<mml:math id="M150">
<mml:msub>
<mml:mrow>
<mml:mover accent="true">
<mml:mrow>
<mml:mi>σ</mml:mi>
</mml:mrow>
<mml:mo>°</mml:mo>
</mml:mover>
</mml:mrow>
<mml:mrow>
<mml:mi>i</mml:mi>
<mml:mi>j</mml:mi>
</mml:mrow>
</mml:msub>
<mml:mrow>
<mml:mo>(</mml:mo>
<mml:mrow>
<mml:mi>t</mml:mi>
</mml:mrow>
<mml:mo>)</mml:mo>
</mml:mrow>
<mml:mo></mml:mo>
<mml:mn>0</mml:mn>
</mml:math>
<inline-graphic xlink:href="41467_2017_1102_Article_IEq65.gif"></inline-graphic>
</alternatives>
</inline-formula>
on the timescale over which the populations
<inline-formula id="IEq66">
<alternatives>
<tex-math id="M151">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sigma _{kk}}\left( t \right)$$\end{document}</tex-math>
<mml:math id="M152">
<mml:msub>
<mml:mrow>
<mml:mi>σ</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>k</mml:mi>
<mml:mi>k</mml:mi>
</mml:mrow>
</mml:msub>
<mml:mfenced close=")" open="(" separators="">
<mml:mrow>
<mml:mi>t</mml:mi>
</mml:mrow>
</mml:mfenced>
</mml:math>
<inline-graphic xlink:href="41467_2017_1102_Article_IEq66.gif"></inline-graphic>
</alternatives>
</inline-formula>
display appreciable changes, Eq. (
<xref rid="Equ9" ref-type="">9</xref>
) can be transformed in a system of differential equations for the populations only, a set of generalized Pauli equations that reads (this is Eq. (
<xref rid="Equ8" ref-type="">8</xref>
), reported here for convenience):
<disp-formula id="Equ11">
<label>11</label>
<alternatives>
<tex-math id="M153">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\dot \sigma _{ii}}(t) = \mathop {\sum }\limits_k \left\{ {W_{k \to i}^{{\rm{ph}}}\left( t \right) + {\rm{\Omega }}_{k \leftrightarrow i}^{{\rm{tun}}}(t)} \right\}{\sigma _{kk}}\left( t \right) - {\sigma _{ii}}(t)\mathop {\sum }\limits_k \left\{ {W_{i \to k}^{{\rm{ph}}}\left( t \right) + {\rm{\Omega }}_{k \leftrightarrow i}^{{\rm{tun}}}(t)} \right\},$$\end{document}</tex-math>
<mml:math id="M154" display="block">
<mml:msub>
<mml:mrow>
<mml:mover accent="true">
<mml:mrow>
<mml:mi>σ</mml:mi>
</mml:mrow>
<mml:mo>°</mml:mo>
</mml:mover>
</mml:mrow>
<mml:mrow>
<mml:mi>i</mml:mi>
<mml:mi>i</mml:mi>
</mml:mrow>
</mml:msub>
<mml:mrow>
<mml:mo>(</mml:mo>
<mml:mrow>
<mml:mi>t</mml:mi>
</mml:mrow>
<mml:mo>)</mml:mo>
</mml:mrow>
<mml:mo>=</mml:mo>
<mml:munder>
<mml:mrow>
<mml:mo></mml:mo>
</mml:mrow>
<mml:mrow>
<mml:mi>k</mml:mi>
</mml:mrow>
</mml:munder>
<mml:mfenced close="}" open="{" separators="">
<mml:mrow>
<mml:msubsup>
<mml:mrow>
<mml:mi>W</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>k</mml:mi>
<mml:mo></mml:mo>
<mml:mi>i</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi mathvariant="normal">ph</mml:mi>
</mml:mrow>
</mml:msubsup>
<mml:mfenced close=")" open="(" separators="">
<mml:mrow>
<mml:mi>t</mml:mi>
</mml:mrow>
</mml:mfenced>
<mml:mo>+</mml:mo>
<mml:msubsup>
<mml:mrow>
<mml:mi mathvariant="normal">Ω</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>k</mml:mi>
<mml:mo></mml:mo>
<mml:mi>i</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi mathvariant="normal">tun</mml:mi>
</mml:mrow>
</mml:msubsup>
<mml:mrow>
<mml:mo>(</mml:mo>
<mml:mrow>
<mml:mi>t</mml:mi>
</mml:mrow>
<mml:mo>)</mml:mo>
</mml:mrow>
</mml:mrow>
</mml:mfenced>
<mml:msub>
<mml:mrow>
<mml:mi>σ</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>k</mml:mi>
<mml:mi>k</mml:mi>
</mml:mrow>
</mml:msub>
<mml:mfenced close=")" open="(" separators="">
<mml:mrow>
<mml:mi>t</mml:mi>
</mml:mrow>
</mml:mfenced>
<mml:mo>-</mml:mo>
<mml:msub>
<mml:mrow>
<mml:mi>σ</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>i</mml:mi>
<mml:mi>i</mml:mi>
</mml:mrow>
</mml:msub>
<mml:mrow>
<mml:mo>(</mml:mo>
<mml:mrow>
<mml:mi>t</mml:mi>
</mml:mrow>
<mml:mo>)</mml:mo>
</mml:mrow>
<mml:munder>
<mml:mrow>
<mml:mo></mml:mo>
</mml:mrow>
<mml:mrow>
<mml:mi>k</mml:mi>
</mml:mrow>
</mml:munder>
<mml:mfenced close="}" open="{" separators="">
<mml:mrow>
<mml:msubsup>
<mml:mrow>
<mml:mi>W</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>i</mml:mi>
<mml:mo></mml:mo>
<mml:mi>k</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi mathvariant="normal">ph</mml:mi>
</mml:mrow>
</mml:msubsup>
<mml:mfenced close=")" open="(" separators="">
<mml:mrow>
<mml:mi>t</mml:mi>
</mml:mrow>
</mml:mfenced>
<mml:mo>+</mml:mo>
<mml:msubsup>
<mml:mrow>
<mml:mi mathvariant="normal">Ω</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>k</mml:mi>
<mml:mo></mml:mo>
<mml:mi>i</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi mathvariant="normal">tun</mml:mi>
</mml:mrow>
</mml:msubsup>
<mml:mrow>
<mml:mo>(</mml:mo>
<mml:mrow>
<mml:mi>t</mml:mi>
</mml:mrow>
<mml:mo>)</mml:mo>
</mml:mrow>
</mml:mrow>
</mml:mfenced>
<mml:mo>,</mml:mo>
</mml:math>
<graphic xlink:href="41467_2017_1102_Article_Equ11.gif" position="anchor"></graphic>
</alternatives>
</disp-formula>
</p>
<p id="Par51">where the time-dependent incoherent tunneling transition rates
<inline-formula id="IEq67">
<alternatives>
<tex-math id="M155">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rm{\Omega }}_{k \leftrightarrow i}^{{\rm{tun}}}\left( t \right)$$\end{document}</tex-math>
<mml:math id="M156">
<mml:msubsup>
<mml:mrow>
<mml:mi mathvariant="normal">Ω</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>k</mml:mi>
<mml:mo></mml:mo>
<mml:mi>i</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi mathvariant="normal">tun</mml:mi>
</mml:mrow>
</mml:msubsup>
<mml:mfenced close=")" open="(" separators="">
<mml:mrow>
<mml:mi>t</mml:mi>
</mml:mrow>
</mml:mfenced>
</mml:math>
<inline-graphic xlink:href="41467_2017_1102_Article_IEq67.gif"></inline-graphic>
</alternatives>
</inline-formula>
are given by:
<disp-formula id="Equ12">
<label>12</label>
<alternatives>
<tex-math id="M157">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rm{\Omega }}_{k \leftrightarrow i}^{{\rm{tun}}}\left( t \right) = {\gamma _{ki}}\frac{{{\mu _{ij}}(t)}}{{\omega _{ij}^2\left( t \right) + {{\left| {{\mu _{ij}}\left( t \right)} \right|}^2}}} \approx {\gamma _{ki}}\frac{\lambda }{{\omega _{ij}^2\left( t \right) + {\lambda ^2}}},{\rm{with}}{\kern 1pt} \;{\gamma _{ki}} = {{\rm{\gamma }}_{{\rm{Cr}}}},{{\rm{\gamma }}_1},{{\rm{\gamma }}_2},$$\end{document}</tex-math>
<mml:math id="M158" display="block">
<mml:msubsup>
<mml:mrow>
<mml:mi mathvariant="normal">Ω</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>k</mml:mi>
<mml:mo></mml:mo>
<mml:mi>i</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi mathvariant="normal">tun</mml:mi>
</mml:mrow>
</mml:msubsup>
<mml:mfenced close=")" open="(" separators="">
<mml:mrow>
<mml:mi>t</mml:mi>
</mml:mrow>
</mml:mfenced>
<mml:mo>=</mml:mo>
<mml:msub>
<mml:mrow>
<mml:mi>γ</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>k</mml:mi>
<mml:mi>i</mml:mi>
</mml:mrow>
</mml:msub>
<mml:mfrac>
<mml:mrow>
<mml:msub>
<mml:mrow>
<mml:mi>μ</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>i</mml:mi>
<mml:mi>j</mml:mi>
</mml:mrow>
</mml:msub>
<mml:mrow>
<mml:mo>(</mml:mo>
<mml:mrow>
<mml:mi>t</mml:mi>
</mml:mrow>
<mml:mo>)</mml:mo>
</mml:mrow>
</mml:mrow>
<mml:mrow>
<mml:msubsup>
<mml:mrow>
<mml:mi>ω</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>i</mml:mi>
<mml:mi>j</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mn>2</mml:mn>
</mml:mrow>
</mml:msubsup>
<mml:mfenced close=")" open="(" separators="">
<mml:mrow>
<mml:mi>t</mml:mi>
</mml:mrow>
</mml:mfenced>
<mml:mo>+</mml:mo>
<mml:msup>
<mml:mrow>
<mml:mfenced close="∣" open="∣" separators="">
<mml:mrow>
<mml:msub>
<mml:mrow>
<mml:mi>μ</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>i</mml:mi>
<mml:mi>j</mml:mi>
</mml:mrow>
</mml:msub>
<mml:mfenced close=")" open="(" separators="">
<mml:mrow>
<mml:mi>t</mml:mi>
</mml:mrow>
</mml:mfenced>
</mml:mrow>
</mml:mfenced>
</mml:mrow>
<mml:mrow>
<mml:mn>2</mml:mn>
</mml:mrow>
</mml:msup>
</mml:mrow>
</mml:mfrac>
<mml:mo></mml:mo>
<mml:msub>
<mml:mrow>
<mml:mi>γ</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>k</mml:mi>
<mml:mi>i</mml:mi>
</mml:mrow>
</mml:msub>
<mml:mfrac>
<mml:mrow>
<mml:mi>λ</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:msubsup>
<mml:mrow>
<mml:mi>ω</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>i</mml:mi>
<mml:mi>j</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mn>2</mml:mn>
</mml:mrow>
</mml:msubsup>
<mml:mfenced close=")" open="(" separators="">
<mml:mrow>
<mml:mi>t</mml:mi>
</mml:mrow>
</mml:mfenced>
<mml:mo>+</mml:mo>
<mml:msup>
<mml:mrow>
<mml:mi>λ</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mn>2</mml:mn>
</mml:mrow>
</mml:msup>
</mml:mrow>
</mml:mfrac>
<mml:mo>,</mml:mo>
<mml:mi mathvariant="normal">with</mml:mi>
<mml:mspace width="2.77626pt"></mml:mspace>
<mml:msub>
<mml:mrow>
<mml:mi>γ</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>k</mml:mi>
<mml:mi>i</mml:mi>
</mml:mrow>
</mml:msub>
<mml:mo>=</mml:mo>
<mml:msub>
<mml:mrow>
<mml:mi mathvariant="normal">γ</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi mathvariant="normal">Cr</mml:mi>
</mml:mrow>
</mml:msub>
<mml:mo>,</mml:mo>
<mml:msub>
<mml:mrow>
<mml:mi mathvariant="normal">γ</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mn>1</mml:mn>
</mml:mrow>
</mml:msub>
<mml:mo>,</mml:mo>
<mml:msub>
<mml:mrow>
<mml:mi mathvariant="normal">γ</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mn>2</mml:mn>
</mml:mrow>
</mml:msub>
<mml:mo>,</mml:mo>
</mml:math>
<graphic xlink:href="41467_2017_1102_Article_Equ12.gif" position="anchor"></graphic>
</alternatives>
</disp-formula>
</p>
<p id="Par52">where
<inline-formula id="IEq68">
<alternatives>
<tex-math id="M159">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\omega _{ij}}\left( t \right) = \left( {{E_i}\left( t \right) - {E_j}\left( t \right)} \right)/\hbar $$\end{document}</tex-math>
<mml:math id="M160">
<mml:msub>
<mml:mrow>
<mml:mi>ω</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>i</mml:mi>
<mml:mi>j</mml:mi>
</mml:mrow>
</mml:msub>
<mml:mfenced close=")" open="(" separators="">
<mml:mrow>
<mml:mi>t</mml:mi>
</mml:mrow>
</mml:mfenced>
<mml:mo>=</mml:mo>
<mml:mfenced close=")" open="(" separators="">
<mml:mrow>
<mml:msub>
<mml:mrow>
<mml:mi>E</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>i</mml:mi>
</mml:mrow>
</mml:msub>
<mml:mfenced close=")" open="(" separators="">
<mml:mrow>
<mml:mi>t</mml:mi>
</mml:mrow>
</mml:mfenced>
<mml:mo>-</mml:mo>
<mml:msub>
<mml:mrow>
<mml:mi>E</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>j</mml:mi>
</mml:mrow>
</mml:msub>
<mml:mfenced close=")" open="(" separators="">
<mml:mrow>
<mml:mi>t</mml:mi>
</mml:mrow>
</mml:mfenced>
</mml:mrow>
</mml:mfenced>
<mml:mo></mml:mo>
<mml:mi></mml:mi>
</mml:math>
<inline-graphic xlink:href="41467_2017_1102_Article_IEq68.gif"></inline-graphic>
</alternatives>
</inline-formula>
. We note that Eq. (
<xref rid="Equ12" ref-type="">12</xref>
) is in fact the equation of a Lorentzian lineshape with a maximum at the resonance
<inline-formula id="IEq69">
<alternatives>
<tex-math id="M161">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\omega _{ij}}\left( t \right) = 0$$\end{document}</tex-math>
<mml:math id="M162">
<mml:msub>
<mml:mrow>
<mml:mi>ω</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>i</mml:mi>
<mml:mi>j</mml:mi>
</mml:mrow>
</mml:msub>
<mml:mfenced close=")" open="(" separators="">
<mml:mrow>
<mml:mi>t</mml:mi>
</mml:mrow>
</mml:mfenced>
<mml:mo>=</mml:mo>
<mml:mn>0</mml:mn>
</mml:math>
<inline-graphic xlink:href="41467_2017_1102_Article_IEq69.gif"></inline-graphic>
</alternatives>
</inline-formula>
, thus describing incoherent tunneling processes between Zeeman states in proximity of level crossing. While in principle, this derivation predicts via Eq. (
<xref rid="Equ12" ref-type="">12</xref>
) that the broadening of the Lorentzian lineshape should also be treated as time-dependent, we choose here to fix the broadening as a constant parameter
<italic>λ</italic>
to simplify our dynamical model.</p>
<p id="Par53">The task of solving Eq. (
<xref rid="Equ11" ref-type="">11</xref>
) is computationally not trivial, and to make the calculations faster and more stable, instead of including all the 256 states of the CrDy
<sub>6</sub>
system arising from our low-energy model, we decided to include only the lowest energy states over the magnetic field range explored, which beside the 16 FT and AFT states, they correspond to Dy-based magnetic states with anisotropy axes aligned along the sweeping field. These states correspond in fact to the configurations shown in Supplementary Fig. 
<xref rid="MOESM1" ref-type="media">8</xref>
. We report in Supplementary Fig. 
<xref rid="MOESM1" ref-type="media">10</xref>
the 56 Zeeman levels entering our dynamical model (Eq. (
<xref rid="Equ11" ref-type="">11</xref>
)), as function of the magnetic field, which can be compared with the full plot of the 256 Zeeman levels in Fig. 
<xref rid="Fig8" ref-type="fig">8b–d</xref>
in the main text.</p>
<p id="Par54">Note that in principle we have at least seven free parameters entering Eq. (
<xref rid="Equ11" ref-type="">11</xref>
): the three spin–phonon relaxation rates
<italic>Γ</italic>
<sub>Cr</sub>
,
<italic>Γ</italic>
<sub>1</sub>
, and
<italic>Γ</italic>
<sub>2</sub>
, with
<italic>Γ</italic>
<sub>Cr</sub>
 ≫ 
<italic>Γ</italic>
<sub>1</sub>
 > 
<italic>Γ</italic>
<sub>2</sub>
, the three squares of tunneling relaxation rates
<italic>γ</italic>
<sub>Cr</sub>
,
<italic>γ</italic>
<sub>1</sub>
, and
<italic>γ</italic>
<sub>2</sub>
with
<italic>γ</italic>
<sub>Cr</sub>
 ≫ 
<italic>γ</italic>
<sub>1</sub>
 > 
<italic>γ</italic>
<sub>2</sub>
, and the Lorentzian broadening
<italic>λ</italic>
. The actual maximal relaxation rate at the Lorentzian maximum (i.e., at exact level crossing) is in fact given by
<italic>γ</italic>
<sub>k</sub>
/
<italic>λ</italic>
, with
<italic>γ</italic>
<sub>k</sub>
corresponding to the square of the tunneling splitting at level crossing expressed in Hz. Some of these parameters can in fact be fixed within reasonable ranges. For instance, from ref.
<sup>
<xref ref-type="bibr" rid="CR70">70</xref>
</sup>
., we learn that the typical range of values for
<italic>Γ</italic>
<sub>Cr</sub>
, i.e., the spin–phonon relaxation rate for simple paramagnetic ions, is in the range 3 × 10
<sup>3</sup>
–3 × 10
<sup>5</sup>
 Hz/(cm
<sup>−1</sup>
)
<sup>
<xref ref-type="bibr" rid="CR3">3</xref>
</sup>
. We further assume that fluctuating stray fields are of the order of 1 mT, given that the magnitude of the non-fluctuating dipolar field induced at any Cr
<sup>3+</sup>
or Dy
<sup>3+</sup>
site within one molecule varies between ~8 mT (inter-wheel interactions) and ~200 mT (intra-wheel interactions), and that due to the strongly anisotropic and non-collinear character of the local magnetic moments, orientational effects will greatly reduce these fields, which can only induce tunneling when oriented perpendicular to the local anisotropy axes. Considering that the transition magnetic moment between Cr
<sup>3+</sup>
spin states whose
<italic>M</italic>
<sub>
<italic>S</italic>
</sub>
quantum number differ by one unit is ~2
<italic>µ</italic>
<sub>
<italic>B</italic>
</sub>
, we get the following rough estimation for
<inline-formula id="IEq70">
<alternatives>
<tex-math id="M163">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\gamma _{{\rm{Cr}}}}\sim {\left( {2{\mu _B} \times 1{\rm{mT}}} \right)^2}/{\hbar ^2}\sim {10^{16}}{\rm{H}}{{\rm{z}}^2}$$\end{document}</tex-math>
<mml:math id="M164">
<mml:msub>
<mml:mrow>
<mml:mi>γ</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi mathvariant="normal">Cr</mml:mi>
</mml:mrow>
</mml:msub>
<mml:mo>~</mml:mo>
<mml:msup>
<mml:mrow>
<mml:mfenced close=")" open="(" separators="">
<mml:mrow>
<mml:mn>2</mml:mn>
<mml:msub>
<mml:mrow>
<mml:mi>μ</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>B</mml:mi>
</mml:mrow>
</mml:msub>
<mml:mo>×</mml:mo>
<mml:mn>1</mml:mn>
<mml:mi mathvariant="normal">mT</mml:mi>
</mml:mrow>
</mml:mfenced>
</mml:mrow>
<mml:mrow>
<mml:mn>2</mml:mn>
</mml:mrow>
</mml:msup>
<mml:mo></mml:mo>
<mml:msup>
<mml:mrow>
<mml:mi></mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mn>2</mml:mn>
</mml:mrow>
</mml:msup>
<mml:mo>~</mml:mo>
<mml:mn>1</mml:mn>
<mml:msup>
<mml:mrow>
<mml:mn>0</mml:mn>
</mml:mrow>
<mml:mrow>
<mml:mn>16</mml:mn>
</mml:mrow>
</mml:msup>
<mml:mi mathvariant="normal">H</mml:mi>
<mml:msup>
<mml:mrow>
<mml:mi mathvariant="normal">z</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mn>2</mml:mn>
</mml:mrow>
</mml:msup>
</mml:math>
<inline-graphic xlink:href="41467_2017_1102_Article_IEq70.gif"></inline-graphic>
</alternatives>
</inline-formula>
(corresponding to a maximal tunneling frequency in the absence of broadening of ~0.1 GHz). Also, from our single-ion ab initio calculations for the Dy
<sup>3+</sup>
ions in CrDy
<sub>6</sub>
, we find that the average value of the transition matrix element between the two components
<italic>M</italic>
<sub>
<italic>J</italic>
</sub>
~ ± 15/2 of the ground KD on each ion is of the order of
<inline-formula id="IEq71">
<alternatives>
<tex-math id="M165">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim {10^{ - 2}}{\mu _B}$$\end{document}</tex-math>
<mml:math id="M166">
<mml:mo>~</mml:mo>
<mml:mn>1</mml:mn>
<mml:msup>
<mml:mrow>
<mml:mn>0</mml:mn>
</mml:mrow>
<mml:mrow>
<mml:mo>-</mml:mo>
<mml:mn>2</mml:mn>
</mml:mrow>
</mml:msup>
<mml:msub>
<mml:mrow>
<mml:mi>μ</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>B</mml:mi>
</mml:mrow>
</mml:msub>
</mml:math>
<inline-graphic xlink:href="41467_2017_1102_Article_IEq71.gif"></inline-graphic>
</alternatives>
</inline-formula>
. Given that the 1-flip tunneling transitions only involve one Dy
<sup>3+</sup>
ion at the time, we obtain
<inline-formula id="IEq72">
<alternatives>
<tex-math id="M167">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\gamma _1}\sim {\left( {{{10}^{ - 2}}{\mu _B} \times 1{\rm{mT}}} \right)^2}/{\hbar ^2}\sim {10^{11}}- {10^{12}}{\rm{H}}{{\rm{z}}^2}$$\end{document}</tex-math>
<mml:math id="M168">
<mml:msub>
<mml:mrow>
<mml:mi>γ</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mn>1</mml:mn>
</mml:mrow>
</mml:msub>
<mml:mo>~</mml:mo>
<mml:msup>
<mml:mrow>
<mml:mfenced close=")" open="(" separators="">
<mml:mrow>
<mml:msup>
<mml:mrow>
<mml:mn>10</mml:mn>
</mml:mrow>
<mml:mrow>
<mml:mo>-</mml:mo>
<mml:mn>2</mml:mn>
</mml:mrow>
</mml:msup>
<mml:msub>
<mml:mrow>
<mml:mi>μ</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>B</mml:mi>
</mml:mrow>
</mml:msub>
<mml:mo>×</mml:mo>
<mml:mn>1</mml:mn>
<mml:mi mathvariant="normal">mT</mml:mi>
</mml:mrow>
</mml:mfenced>
</mml:mrow>
<mml:mrow>
<mml:mn>2</mml:mn>
</mml:mrow>
</mml:msup>
<mml:mo></mml:mo>
<mml:msup>
<mml:mrow>
<mml:mi></mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mn>2</mml:mn>
</mml:mrow>
</mml:msup>
<mml:mo>~</mml:mo>
<mml:mn>1</mml:mn>
<mml:msup>
<mml:mrow>
<mml:mn>0</mml:mn>
</mml:mrow>
<mml:mrow>
<mml:mn>11</mml:mn>
</mml:mrow>
</mml:msup>
<mml:mo>-</mml:mo>
<mml:mn>1</mml:mn>
<mml:msup>
<mml:mrow>
<mml:mn>0</mml:mn>
</mml:mrow>
<mml:mrow>
<mml:mn>12</mml:mn>
</mml:mrow>
</mml:msup>
<mml:mi mathvariant="normal">H</mml:mi>
<mml:msup>
<mml:mrow>
<mml:mi mathvariant="normal">z</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mn>2</mml:mn>
</mml:mrow>
</mml:msup>
</mml:math>
<inline-graphic xlink:href="41467_2017_1102_Article_IEq72.gif"></inline-graphic>
</alternatives>
</inline-formula>
(i.e., a maximal tunneling frequency of 1 MHz). While these rough considerations reduce the possible values for three of the seven free parameters, we still need to arbitrarily fix four of them:
<italic>Γ</italic>
<sub>1</sub>
,
<italic>Γ</italic>
<sub>2</sub>
,
<italic>γ</italic>
<sub>2</sub>
, and
<italic>λ</italic>
.</p>
<p id="Par55">Given the approximate nature of the model, it is not our aim to attempt a fully satisfying fitting of the remaining four parameters. Thus guided by the relations
<italic>Γ</italic>
<sub>Cr</sub>
 = 10
<sup>5</sup>
 Hz/(cm
<sup>−1</sup>
)
<sup>
<xref ref-type="bibr" rid="CR3">3</xref>
</sup>
<italic>Γ</italic>
<sub>1</sub>
 > 
<italic>Γ</italic>
<sub>2</sub>
, and
<italic>γ</italic>
<sub>Cr</sub>
 = 10
<sup>16</sup>
 Hz
<sup>2</sup>
 ≫ 
<italic>γ</italic>
<sub>1</sub>
 = 10
<sup>12</sup>
 Hz
<sup>2</sup>
 > 
<italic>γ</italic>
<sub>2</sub>
, we found that a reasonably good agreement between the calculated magnetization
<inline-formula id="IEq73">
<alternatives>
<tex-math id="M169">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M\left( t \right) = {\rm{Tr}}\left[ {\sigma (t)M} \right]$$\end{document}</tex-math>
<mml:math id="M170">
<mml:mi>M</mml:mi>
<mml:mfenced close=")" open="(" separators="">
<mml:mrow>
<mml:mi>t</mml:mi>
</mml:mrow>
</mml:mfenced>
<mml:mo>=</mml:mo>
<mml:mi mathvariant="normal">Tr</mml:mi>
<mml:mfenced close="]" open="[" separators="">
<mml:mrow>
<mml:mi>σ</mml:mi>
<mml:mrow>
<mml:mo>(</mml:mo>
<mml:mrow>
<mml:mi>t</mml:mi>
</mml:mrow>
<mml:mo>)</mml:mo>
</mml:mrow>
<mml:mi>M</mml:mi>
</mml:mrow>
</mml:mfenced>
</mml:math>
<inline-graphic xlink:href="41467_2017_1102_Article_IEq73.gif"></inline-graphic>
</alternatives>
</inline-formula>
and experimental magnetization can be obtained for
<italic>Γ</italic>
<sub>1</sub>
 = 10
<sup>−7</sup>
 × 
<italic>Γ</italic>
<sub>Cr</sub>
,
<italic>Γ</italic>
<sub>2</sub>
 = 10
<sup>−3</sup>
 × 
<italic>Γ</italic>
<sub>1</sub>
,
<italic>γ</italic>
<sub>2</sub>
 = 10
<sup>−3</sup>
 × 
<italic>γ</italic>
<sub>1</sub>
, and
<italic>λ</italic>
 = 10
<sup>10</sup>
 Hz, which are the parameters used to obtain both Fig. 
<xref rid="Fig9" ref-type="fig">9</xref>
and Supplementary Fig. 
<xref rid="MOESM1" ref-type="media">11</xref>
.</p>
</sec>
<sec id="Sec13">
<title>Data availability</title>
<p id="Par56">The X-ray crystallographic coordinates for structure reported in this study have been deposited at the Cambridge Crystallographic Data Centre (CCDC), under deposition number 1435033. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via
<ext-link ext-link-type="uri" xlink:href="http://www.ccdc.cam.ac.uk/data_request/cif">www.ccdc.cam.ac.uk/data_request/cif</ext-link>
.</p>
</sec>
</sec>
<sec sec-type="supplementary-material">
<title>Electronic supplementary material</title>
<sec id="Sec14">
<p>
<supplementary-material content-type="local-data" id="MOESM1">
<media xlink:href="41467_2017_1102_MOESM1_ESM.pdf">
<caption>
<p>Supplementary Information</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="MOESM2">
<media xlink:href="41467_2017_1102_MOESM2_ESM.pdf">
<caption>
<p>Peer Review File</p>
</caption>
</media>
</supplementary-material>
</p>
</sec>
</sec>
</body>
<back>
<fn-group>
<fn>
<p>
<bold>Electronic supplementary material</bold>
</p>
<p>
<bold>Supplementary Information</bold>
accompanies this paper at doi:10.1038/s41467-017-01102-5.</p>
</fn>
<fn>
<p>
<bold>Publisher's note:</bold>
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.</p>
</fn>
</fn-group>
<ack>
<title>Acknowledgements</title>
<p>G.R. would like to acknowledge the financial support from DST-India, and IIT Bombay for the high performance computing facility. K.S.M. and G.R. thank the Australia-India AISRF program for support. K.R.V. is thankful to the IITB-Monash Research Academy for a PhD studentship. G.R. acknowledges funding from SERB-DST (EMR/2014/000247) for financial support. A.S. acknowledges support from the Australian Research Council, Discovery Grant ID: DP15010325. W.W. acknowledges the Alexander von Humboldt foundation.</p>
</ack>
<notes notes-type="author-contribution">
<title>Author contributions</title>
<p>A.S., K.S.M., S.K.L., and G.R. visualized and designed the project. K.R.V. and S.K.L. carried out the syntheses and characterized the materials. S.K.L. and K.R.V. performed the synchrotron X-ray scattering measurements, analyzed the data, and solved the crystal structure. W.W. carried out micro-SQUID measurements. K.R.V. and A.S. carried out the ab initio calculations. A.S. developed the theoretical models for magnetic coupling, and for the hysteretic dynamics of the magnetization, and used them for the simulation and interpretation of the magnetic data. A.S., K.S.M., and G.R. wrote the manuscript. All the authors discussed the results and contributed to the manuscript.</p>
</notes>
<notes notes-type="COI-statement">
<sec id="FPar1">
<title>Competing interests</title>
<p id="Par57">The authors declare no competing financial interests.</p>
</sec>
</notes>
<ref-list id="Bib1">
<title>References</title>
<ref id="CR1">
<label>1.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Christou</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Gatteschi</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Hendrickson</surname>
<given-names>DN</given-names>
</name>
<name>
<surname>Sessoli</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>Single-molecule magnets</article-title>
<source>MRS Bull.</source>
<year>2000</year>
<volume>25</volume>
<fpage>66</fpage>
<lpage>71</lpage>
<pub-id pub-id-type="doi">10.1557/mrs2000.226</pub-id>
</element-citation>
</ref>
<ref id="CR2">
<label>2.</label>
<mixed-citation publication-type="other">Gatteschi, D., Sessoli, R.& Villain, J.
<italic>Molecular Nanomagnets</italic>
(Oxford University Press, Oxford, 2006).</mixed-citation>
</ref>
<ref id="CR3">
<label>3.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gatteschi</surname>
<given-names>D</given-names>
</name>
</person-group>
<article-title>Molecular magnetism: a basis for new materials</article-title>
<source>Adv. Mater.</source>
<year>1994</year>
<volume>6</volume>
<fpage>635</fpage>
<lpage>645</lpage>
<pub-id pub-id-type="doi">10.1002/adma.19940060903</pub-id>
</element-citation>
</ref>
<ref id="CR4">
<label>4.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gatteschi</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Sessoli</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>Quantum tunneling of magnetization and related phenomena in molecular materials</article-title>
<source>Angew. Chem. Int. Ed.</source>
<year>2003</year>
<volume>42</volume>
<fpage>268</fpage>
<lpage>297</lpage>
<pub-id pub-id-type="doi">10.1002/anie.200390099</pub-id>
</element-citation>
</ref>
<ref id="CR5">
<label>5.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sessoli</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Gatteschi</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Caneschi</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Novak</surname>
<given-names>MA</given-names>
</name>
</person-group>
<article-title>Magnetic bistability in a metal-ion cluster</article-title>
<source>Nature</source>
<year>1993</year>
<volume>365</volume>
<fpage>141</fpage>
<lpage>143</lpage>
<pub-id pub-id-type="doi">10.1038/365141a0</pub-id>
</element-citation>
</ref>
<ref id="CR6">
<label>6.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sessoli</surname>
<given-names>R</given-names>
</name>
<etal></etal>
</person-group>
<article-title>High-spin molecules: [Mn
<sub>12</sub>
O
<sub>12</sub>
(O
<sub>2</sub>
CR)
<sub>16</sub>
(H
<sub>2</sub>
O)
<sub>4</sub>
]</article-title>
<source>J. Am. Chem. Soc.</source>
<year>1993</year>
<volume>115</volume>
<fpage>1804</fpage>
<lpage>1816</lpage>
<pub-id pub-id-type="doi">10.1021/ja00058a027</pub-id>
</element-citation>
</ref>
<ref id="CR7">
<label>7.</label>
<mixed-citation publication-type="other">Gutlich, P. & Goodwin, H. A.
<italic>Spin Crossover in Transition Metal Compounds I</italic>
(Springer, Berlin, 2004).</mixed-citation>
</ref>
<ref id="CR8">
<label>8.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tang</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Dysprosium triangles showing single-molecule magnet behavior of thermally excited spin states</article-title>
<source>Angew. Chem. Int. Ed.</source>
<year>2006</year>
<volume>45</volume>
<fpage>1729</fpage>
<lpage>1733</lpage>
<pub-id pub-id-type="doi">10.1002/anie.200503564</pub-id>
</element-citation>
</ref>
<ref id="CR9">
<label>9.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chibotaru</surname>
<given-names>LF</given-names>
</name>
<name>
<surname>Ungur</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Soncini</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>The origin of nonmagnetic Kramers doublets in the ground state of dysprosium triangles: evidence for a toroidal magnetic moment</article-title>
<source>Angew. Chem. Int. Ed.</source>
<year>2008</year>
<volume>47</volume>
<fpage>4126</fpage>
<lpage>4129</lpage>
<pub-id pub-id-type="doi">10.1002/anie.200800283</pub-id>
</element-citation>
</ref>
<ref id="CR10">
<label>10.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lin</surname>
<given-names>S-Y</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Coupling Dy
<sub>3</sub>
triangles to maximize the toroidal moment</article-title>
<source>Angew. Chem. Int. Ed.</source>
<year>2012</year>
<volume>51</volume>
<fpage>12767</fpage>
<lpage>12771</lpage>
<pub-id pub-id-type="doi">10.1002/anie.201206602</pub-id>
</element-citation>
</ref>
<ref id="CR11">
<label>11.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Novitchi</surname>
<given-names>G</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Heterometallic Cu
<sup>II</sup>
/Dy
<sup>III</sup>
1D chiral polymers: chirogenesis and exchange coupling of toroidal moments in trinuclear Dy
<sub>3</sub>
single molecule magnets</article-title>
<source>Chem. Sci.</source>
<year>2012</year>
<volume>3</volume>
<fpage>1169</fpage>
<lpage>1176</lpage>
<pub-id pub-id-type="doi">10.1039/c2sc00728b</pub-id>
</element-citation>
</ref>
<ref id="CR12">
<label>12.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Soncini</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Chibotaru</surname>
<given-names>LF</given-names>
</name>
</person-group>
<article-title>Toroidal magnetic states in molecular wheels: interplay between isotropic exchange interactions and local magnetic anisotropy</article-title>
<source>Phys. Rev. B</source>
<year>2008</year>
<volume>77</volume>
<fpage>220406</fpage>
<pub-id pub-id-type="doi">10.1103/PhysRevB.77.220406</pub-id>
</element-citation>
</ref>
<ref id="CR13">
<label>13.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ungur</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Lin</surname>
<given-names>S-Y</given-names>
</name>
<name>
<surname>Tang</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Chibotaru</surname>
<given-names>LF</given-names>
</name>
</person-group>
<article-title>Single-molecule toroics in Ising-type lanthanide molecular clusters</article-title>
<source>Chem. Soc. Rev.</source>
<year>2014</year>
<volume>43</volume>
<fpage>6894</fpage>
<lpage>6905</lpage>
<pub-id pub-id-type="doi">10.1039/C4CS00095A</pub-id>
<pub-id pub-id-type="pmid">24975197</pub-id>
</element-citation>
</ref>
<ref id="CR14">
<label>14.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ungur</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Van den Heuvel</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Chibotaru</surname>
<given-names>LF</given-names>
</name>
</person-group>
<article-title>Ab initio investigation of the non-collinear magnetic structure and the lowest magnetic excitations in dysprosium triangles</article-title>
<source>New J. Chem.</source>
<year>2009</year>
<volume>33</volume>
<fpage>1224</fpage>
<lpage>1230</lpage>
<pub-id pub-id-type="doi">10.1039/b903126j</pub-id>
</element-citation>
</ref>
<ref id="CR15">
<label>15.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gysler</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Multitechnique investigation of Dy
<sub>3</sub>
- implications for coupled lanthanide clusters</article-title>
<source>Chem. Sci.</source>
<year>2016</year>
<volume>7</volume>
<fpage>4347</fpage>
<lpage>4354</lpage>
<pub-id pub-id-type="doi">10.1039/C6SC00318D</pub-id>
</element-citation>
</ref>
<ref id="CR16">
<label>16.</label>
<mixed-citation publication-type="other">Gatteschi, D., Sessoli, R. & Sorace, L. in
<italic>Handbook on the Physics and Chemistry of Rare Earths</italic>
Vol. 50 (eds Bünzli Jean-Claude, G. & Pecharsky Vitalij, K.) 91–139 (Elsevier, Amsterdam, 2016).</mixed-citation>
</ref>
<ref id="CR17">
<label>17.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Luzon</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Spin chirality in a molecular dysprosium triangle: the archetype of the noncollinear Ising model</article-title>
<source>Phys. Rev. Lett.</source>
<year>2008</year>
<volume>100</volume>
<fpage>247205</fpage>
<pub-id pub-id-type="doi">10.1103/PhysRevLett.100.247205</pub-id>
<pub-id pub-id-type="pmid">18643625</pub-id>
</element-citation>
</ref>
<ref id="CR18">
<label>18.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hewitt</surname>
<given-names>IJ</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Coupling Dy
<sub>3</sub>
triangles enhances their slow magnetic relaxation</article-title>
<source>Angew. Chem. Int. Ed.</source>
<year>2010</year>
<volume>49</volume>
<fpage>6352</fpage>
<lpage>6356</lpage>
<pub-id pub-id-type="doi">10.1002/anie.201002691</pub-id>
</element-citation>
</ref>
<ref id="CR19">
<label>19.</label>
<mixed-citation publication-type="other">Hussain, B., Savard, D., Burchell, T. J., Wernsdorfer, W. & Murugesu, M. Linking high anisotropy Dy
<sub>3</sub>
triangles to create a Dy
<sub>6</sub>
single-molecule magnet.
<italic>Chem. Commun</italic>
.
<bold>7</bold>
, 1100–1102 (2009).</mixed-citation>
</ref>
<ref id="CR20">
<label>20.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Katsura</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Nagaosa</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Balatsky</surname>
<given-names>AV</given-names>
</name>
</person-group>
<article-title>Spin current and magnetoelectric effect in noncollinear magnets</article-title>
<source>Phys. Rev. Lett.</source>
<year>2005</year>
<volume>95</volume>
<fpage>057205</fpage>
<pub-id pub-id-type="doi">10.1103/PhysRevLett.95.057205</pub-id>
<pub-id pub-id-type="pmid">16090916</pub-id>
</element-citation>
</ref>
<ref id="CR21">
<label>21.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Soncini</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Chibotaru</surname>
<given-names>LF</given-names>
</name>
</person-group>
<article-title>Molecular spintronics using noncollinear magnetic molecules</article-title>
<source>Phys. Rev. B</source>
<year>2010</year>
<volume>81</volume>
<fpage>132403</fpage>
<pub-id pub-id-type="doi">10.1103/PhysRevB.81.132403</pub-id>
</element-citation>
</ref>
<ref id="CR22">
<label>22.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Trif</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Troiani</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Stepanenko</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Loss</surname>
<given-names>D</given-names>
</name>
</person-group>
<article-title>Spin-electric coupling in molecular magnets</article-title>
<source>Phys. Rev. Lett.</source>
<year>2008</year>
<volume>101</volume>
<fpage>217201</fpage>
<pub-id pub-id-type="doi">10.1103/PhysRevLett.101.217201</pub-id>
<pub-id pub-id-type="pmid">19113446</pub-id>
</element-citation>
</ref>
<ref id="CR23">
<label>23.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Das</surname>
<given-names>C</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Single-molecule magnetism, enhanced magnetocaloric effect, and toroidal magnetic moments in a family of Ln
<sub>4</sub>
squares</article-title>
<source>Chem. Eur. J.</source>
<year>2015</year>
<volume>21</volume>
<fpage>15639</fpage>
<lpage>15650</lpage>
<pub-id pub-id-type="doi">10.1002/chem.201502720</pub-id>
<pub-id pub-id-type="pmid">26383786</pub-id>
</element-citation>
</ref>
<ref id="CR24">
<label>24.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Guo</surname>
<given-names>P-H</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The first {Dy
<sub>4</sub>
} single-molecule magnet with a toroidal magnetic moment in the ground state</article-title>
<source>Inorg. Chem.</source>
<year>2012</year>
<volume>51</volume>
<fpage>1233</fpage>
<lpage>1235</lpage>
<pub-id pub-id-type="doi">10.1021/ic202650f</pub-id>
<pub-id pub-id-type="pmid">22239617</pub-id>
</element-citation>
</ref>
<ref id="CR25">
<label>25.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Popov</surname>
<given-names>AI</given-names>
</name>
<name>
<surname>Plokhov</surname>
<given-names>DI</given-names>
</name>
<name>
<surname>Zvezdin</surname>
<given-names>AK</given-names>
</name>
</person-group>
<article-title>Magnetoelectricity of single molecular toroics: the {Dy
<sub>4</sub>
} ring cluster</article-title>
<source>Phys. Rev. B</source>
<year>2016</year>
<volume>94</volume>
<fpage>184408</fpage>
<pub-id pub-id-type="doi">10.1103/PhysRevB.94.184408</pub-id>
</element-citation>
</ref>
<ref id="CR26">
<label>26.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ungur</surname>
<given-names>L</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Net toroidal magnetic moment in the ground state of a {Dy
<sub>6</sub>
}-triethanolamine ring</article-title>
<source>J. Am. Chem. Soc.</source>
<year>2012</year>
<volume>134</volume>
<fpage>18554</fpage>
<lpage>18557</lpage>
<pub-id pub-id-type="doi">10.1021/ja309211d</pub-id>
<pub-id pub-id-type="pmid">23110698</pub-id>
</element-citation>
</ref>
<ref id="CR27">
<label>27.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kaelberer</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Fedotov</surname>
<given-names>VA</given-names>
</name>
<name>
<surname>Papasimakis</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Tsai</surname>
<given-names>DP</given-names>
</name>
<name>
<surname>Zheludev</surname>
<given-names>NI</given-names>
</name>
</person-group>
<article-title>Toroidal dipolar response in a metamaterial</article-title>
<source>Science</source>
<year>2010</year>
<volume>330</volume>
<fpage>1510</fpage>
<lpage>1512</lpage>
<pub-id pub-id-type="doi">10.1126/science.1197172</pub-id>
<pub-id pub-id-type="pmid">21051597</pub-id>
</element-citation>
</ref>
<ref id="CR28">
<label>28.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chilton</surname>
<given-names>NF</given-names>
</name>
<name>
<surname>Langley</surname>
<given-names>SK</given-names>
</name>
<name>
<surname>Moubaraki</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Murray</surname>
<given-names>KS</given-names>
</name>
</person-group>
<article-title>Synthesis, structural and magnetic studies of an isostructural family of mixed 3d/4f tetranuclear ‘star’ clusters</article-title>
<source>Chem. Commun.</source>
<year>2010</year>
<volume>46</volume>
<fpage>7787</fpage>
<lpage>7789</lpage>
<pub-id pub-id-type="doi">10.1039/c0cc02642e</pub-id>
</element-citation>
</ref>
<ref id="CR29">
<label>29.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Langley</surname>
<given-names>SK</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Heterometallic tetranuclear [Ln
<sup>III</sup>
<sub>2</sub>
Co
<sup>III</sup>
<sub>2</sub>
] complexes including suppression of quantum tunneling of magnetization in the [Dy
<sup>III</sup>
<sub>2</sub>
Co
<sup>III</sup>
<sub>2</sub>
] single molecule magnet</article-title>
<source>Inorg. Chem.</source>
<year>2012</year>
<volume>51</volume>
<fpage>11873</fpage>
<lpage>11881</lpage>
<pub-id pub-id-type="doi">10.1021/ic301784m</pub-id>
<pub-id pub-id-type="pmid">23072350</pub-id>
</element-citation>
</ref>
<ref id="CR30">
<label>30.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A family of 3d-4f octa-nuclear [Mn
<sup>III</sup>
<sub>4</sub>
Ln
<sup>III</sup>
4
<sub>]</sub>
wheels (Ln=Sm, Gd, Tb, Dy, Ho, Er, and Y): synthesis, structure, and magnetism</article-title>
<source>Inorg. Chem.</source>
<year>2010</year>
<volume>49</volume>
<fpage>11587</fpage>
<lpage>11594</lpage>
<pub-id pub-id-type="doi">10.1021/ic101754g</pub-id>
<pub-id pub-id-type="pmid">21070004</pub-id>
</element-citation>
</ref>
<ref id="CR31">
<label>31.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schray</surname>
<given-names>D</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Combined magnetic susceptibility measurements and
<sup>57</sup>
Fe mössbauer spectroscopy on a ferromagnetic {Fe
<sup>III</sup>
<sub>4</sub>
Dy
<sub>4</sub>
} ring</article-title>
<source>Angew. Chem. Int. Ed.</source>
<year>2010</year>
<volume>49</volume>
<fpage>5185</fpage>
<lpage>5188</lpage>
<pub-id pub-id-type="doi">10.1002/anie.201001110</pub-id>
</element-citation>
</ref>
<ref id="CR32">
<label>32.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vignesh</surname>
<given-names>KR</given-names>
</name>
<name>
<surname>Langley</surname>
<given-names>SK</given-names>
</name>
<name>
<surname>Moubaraki</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Murray</surname>
<given-names>KS</given-names>
</name>
<name>
<surname>Rajaraman</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>Large hexadecametallic {Mn
<sup>III</sup>
-Ln
<sup>III</sup>
} wheels: synthesis, structural, magnetic, and theoretical characterization</article-title>
<source>Chem. Eur. J.</source>
<year>2015</year>
<volume>21</volume>
<fpage>16364</fpage>
<lpage>16369</lpage>
<pub-id pub-id-type="doi">10.1002/chem.201503424</pub-id>
<pub-id pub-id-type="pmid">26403264</pub-id>
</element-citation>
</ref>
<ref id="CR33">
<label>33.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Langley</surname>
<given-names>SK</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A {Cr
<sup>III</sup>
<sub>2</sub>
Dy
<sup>III</sup>
<sub>2</sub>
} single-molecule magnet: enhancing the blocking temperature through 3d magnetic exchange</article-title>
<source>Angew. Chem. Int. Ed.</source>
<year>2013</year>
<volume>52</volume>
<fpage>12014</fpage>
<lpage>12019</lpage>
<pub-id pub-id-type="doi">10.1002/anie.201306329</pub-id>
</element-citation>
</ref>
<ref id="CR34">
<label>34.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Langley</surname>
<given-names>SK</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Modulation of slow magnetic relaxation by tuning magnetic exchange in {Cr
<sub>2</sub>
Dy
<sub>2</sub>
} single molecule magnets</article-title>
<source>Chem. Sci.</source>
<year>2014</year>
<volume>5</volume>
<fpage>3246</fpage>
<lpage>3256</lpage>
<pub-id pub-id-type="doi">10.1039/C4SC01239A</pub-id>
</element-citation>
</ref>
<ref id="CR35">
<label>35.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Langley</surname>
<given-names>SK</given-names>
</name>
<name>
<surname>Wielechowski</surname>
<given-names>DP</given-names>
</name>
<name>
<surname>Moubaraki</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Murray</surname>
<given-names>KS</given-names>
</name>
</person-group>
<article-title>Enhancing the magnetic blocking temperature and magnetic coercivity of {Cr
<sup>III</sup>
<sub>2</sub>
Ln
<sup>III</sup>
<sub>2</sub>
} single-molecule magnets via bridging ligand modification</article-title>
<source>Chem. Commun.</source>
<year>2016</year>
<volume>52</volume>
<fpage>10976</fpage>
<lpage>10979</lpage>
<pub-id pub-id-type="doi">10.1039/C6CC06152D</pub-id>
</element-citation>
</ref>
<ref id="CR36">
<label>36.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rinck</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
<article-title>An octanuclear [Cr
<sup>III</sup>
<sub>4</sub>
Dy
<sup>III</sup>
<sub>4</sub>
] 3d-4f single-molecule magnet</article-title>
<source>Angew. Chem. Int. Ed.</source>
<year>2010</year>
<volume>49</volume>
<fpage>7583</fpage>
<lpage>7587</lpage>
<pub-id pub-id-type="doi">10.1002/anie.201002690</pub-id>
</element-citation>
</ref>
<ref id="CR37">
<label>37.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cirera</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Ruiz</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Alvarez</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Shape and spin state in four-coordinate transition-metal complexes: the case of the d
<sup>6</sup>
configuration</article-title>
<source>Chem. Eur. J.</source>
<year>2006</year>
<volume>12</volume>
<fpage>3162</fpage>
<lpage>3167</lpage>
<pub-id pub-id-type="doi">10.1002/chem.200501516</pub-id>
<pub-id pub-id-type="pmid">16453356</pub-id>
</element-citation>
</ref>
<ref id="CR38">
<label>38.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pinsky</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Avnir</surname>
<given-names>D</given-names>
</name>
</person-group>
<article-title>Continuous symmetry measures. 5. the classical polyhedra</article-title>
<source>Inorg. Chem.</source>
<year>1998</year>
<volume>37</volume>
<fpage>5575</fpage>
<lpage>5582</lpage>
<pub-id pub-id-type="doi">10.1021/ic9804925</pub-id>
<pub-id pub-id-type="pmid">11670704</pub-id>
</element-citation>
</ref>
<ref id="CR39">
<label>39.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cadiou</surname>
<given-names>C</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Studies of a nickel-based single molecule magnet: resonant quantum tunnelling in an S=12 molecule</article-title>
<source>Chem. Commun.</source>
<year>2001</year>
<volume>0</volume>
<fpage>2666</fpage>
<lpage>2667</lpage>
<pub-id pub-id-type="doi">10.1039/b108894g</pub-id>
</element-citation>
</ref>
<ref id="CR40">
<label>40.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Hanson</surname>
<given-names>GR</given-names>
</name>
</person-group>
<article-title>New methodologies for computer simulation of paramagnetic resonance spectra</article-title>
<source>Appl. Magn. Reson.</source>
<year>1996</year>
<volume>11</volume>
<fpage>401</fpage>
<lpage>415</lpage>
<pub-id pub-id-type="doi">10.1007/BF03162236</pub-id>
</element-citation>
</ref>
<ref id="CR41">
<label>41.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Hanson</surname>
<given-names>GR</given-names>
</name>
</person-group>
<article-title>Extreme rhombic distortion in electron paramagnetic resonance and a superposition model account</article-title>
<source>J. Magn. Reson. Ser. A</source>
<year>1996</year>
<volume>118</volume>
<fpage>1</fpage>
<lpage>6</lpage>
<pub-id pub-id-type="doi">10.1006/jmra.1996.0001</pub-id>
</element-citation>
</ref>
<ref id="CR42">
<label>42.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Moreno Pineda</surname>
<given-names>E</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Direct measurement of dysprosium(III)˙˙˙dysprosium(III) interactions in a single-molecule magnet</article-title>
<source>Nat. Commun.</source>
<year>2014</year>
<volume>5</volume>
<fpage>5243</fpage>
<pub-id pub-id-type="doi">10.1038/ncomms6243</pub-id>
<pub-id pub-id-type="pmid">25308160</pub-id>
</element-citation>
</ref>
<ref id="CR43">
<label>43.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Aquilante</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Pedersen</surname>
<given-names>TB</given-names>
</name>
<name>
<surname>Veryazov</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Lindh</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>MOLCAS—a software for multiconfigurational quantum chemistry calculations</article-title>
<source>WIRES Comput. Mol. Sci</source>
<year>2013</year>
<volume>3</volume>
<fpage>143</fpage>
<lpage>149</lpage>
<pub-id pub-id-type="doi">10.1002/wcms.1117</pub-id>
</element-citation>
</ref>
<ref id="CR44">
<label>44.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lines</surname>
<given-names>ME</given-names>
</name>
</person-group>
<article-title>Orbital angular momentum in the theory of paramagnetic clusters</article-title>
<source>J. Chem. Phys.</source>
<year>1971</year>
<volume>55</volume>
<fpage>2977</fpage>
<lpage>2984</lpage>
<pub-id pub-id-type="doi">10.1063/1.1676524</pub-id>
</element-citation>
</ref>
<ref id="CR45">
<label>45.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cowieson</surname>
<given-names>NP</given-names>
</name>
<etal></etal>
</person-group>
<article-title>MX1: a bending-magnet crystallography beamline serving both chemical and macromolecular crystallography communities at the Australian synchrotron</article-title>
<source>J. Synchrotron Radiat.</source>
<year>2015</year>
<volume>22</volume>
<fpage>187</fpage>
<lpage>190</lpage>
<pub-id pub-id-type="doi">10.1107/S1600577514021717</pub-id>
<pub-id pub-id-type="pmid">25537608</pub-id>
</element-citation>
</ref>
<ref id="CR46">
<label>46.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>McPhillips</surname>
<given-names>TM</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Blu-ice and the distributed control system: software for data acquisition and instrument control at macromolecular crystallography beamlines</article-title>
<source>J. Synchrotron Radiat.</source>
<year>2002</year>
<volume>9</volume>
<fpage>401</fpage>
<lpage>406</lpage>
<pub-id pub-id-type="doi">10.1107/S0909049502015170</pub-id>
<pub-id pub-id-type="pmid">12409628</pub-id>
</element-citation>
</ref>
<ref id="CR47">
<label>47.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kabsch</surname>
<given-names>W</given-names>
</name>
</person-group>
<article-title>Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants</article-title>
<source>J. Appl. Crystallogr.</source>
<year>1993</year>
<volume>26</volume>
<fpage>795</fpage>
<lpage>800</lpage>
<pub-id pub-id-type="doi">10.1107/S0021889893005588</pub-id>
</element-citation>
</ref>
<ref id="CR48">
<label>48.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sheldrick</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>A short history of SHELX</article-title>
<source>Acta Crystallogr. Sect. A</source>
<year>2008</year>
<volume>64</volume>
<fpage>112</fpage>
<lpage>122</lpage>
<pub-id pub-id-type="doi">10.1107/S0108767307043930</pub-id>
<pub-id pub-id-type="pmid">18156677</pub-id>
</element-citation>
</ref>
<ref id="CR49">
<label>49.</label>
<mixed-citation publication-type="other">Sheldrick, G. M.
<italic>SHELXL-97, Programs for X-ray Crystal Structure Refinement</italic>
(University of Göttingen, Göttingen, 1997).</mixed-citation>
</ref>
<ref id="CR50">
<label>50.</label>
<mixed-citation publication-type="other">Barbour, L. J. X-Seed—A software tool for supramolecular crystallography.
<italic>J. Supramol. Chem.</italic>
.
<bold>1</bold>
, 189–191 (2001).</mixed-citation>
</ref>
<ref id="CR51">
<label>51.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dolomanov</surname>
<given-names>OV</given-names>
</name>
<name>
<surname>Bourhis</surname>
<given-names>LJ</given-names>
</name>
<name>
<surname>Gildea</surname>
<given-names>RJ</given-names>
</name>
<name>
<surname>Howard</surname>
<given-names>JAK</given-names>
</name>
<name>
<surname>Puschmann</surname>
<given-names>H</given-names>
</name>
</person-group>
<article-title>OLEX2: a complete structure solution, refinement and analysis program</article-title>
<source>J. Appl. Crystallogr.</source>
<year>2009</year>
<volume>42</volume>
<fpage>339</fpage>
<lpage>341</lpage>
<pub-id pub-id-type="doi">10.1107/S0021889808042726</pub-id>
</element-citation>
</ref>
<ref id="CR52">
<label>52.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vignesh</surname>
<given-names>KR</given-names>
</name>
<name>
<surname>Langley</surname>
<given-names>SK</given-names>
</name>
<name>
<surname>Murray</surname>
<given-names>KS</given-names>
</name>
<name>
<surname>Rajaraman</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>Role of diamagnetic ions on the mechanism of magnetization relaxation in “Butterfly” {Co
<sup>III</sup>
<sub>2</sub>
Ln
<sup>III</sup>
<sub>2</sub>
} (Ln=Dy, Tb, Ho) complexes</article-title>
<source>Inorg. Chem.</source>
<year>2017</year>
<volume>56</volume>
<fpage>2518</fpage>
<lpage>2532</lpage>
<pub-id pub-id-type="doi">10.1021/acs.inorgchem.6b02720</pub-id>
<pub-id pub-id-type="pmid">28211682</pub-id>
</element-citation>
</ref>
<ref id="CR53">
<label>53.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Singh</surname>
<given-names>MK</given-names>
</name>
<name>
<surname>Yadav</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Rajaraman</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>Record high magnetic exchange and magnetization blockade in Ln
<sub>2</sub>
@C
<sub>79</sub>
N (Ln=Gd(iii) and Dy(iii)) molecules: a theoretical perspective</article-title>
<source>Chem. Commun.</source>
<year>2015</year>
<volume>51</volume>
<fpage>17732</fpage>
<lpage>17735</lpage>
<pub-id pub-id-type="doi">10.1039/C5CC06642E</pub-id>
</element-citation>
</ref>
<ref id="CR54">
<label>54.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Singh</surname>
<given-names>SK</given-names>
</name>
<name>
<surname>Gupta</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Rajaraman</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>Magnetic anisotropy and mechanism of magnetic relaxation in Er(III) single-ion magnets</article-title>
<source>Inorg. Chem.</source>
<year>2014</year>
<volume>53</volume>
<fpage>10835</fpage>
<lpage>10845</lpage>
<pub-id pub-id-type="doi">10.1021/ic500772f</pub-id>
<pub-id pub-id-type="pmid">25259840</pub-id>
</element-citation>
</ref>
<ref id="CR55">
<label>55.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Upadhyay</surname>
<given-names>A</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Enhancing the effective energy barrier of a Dy(iii) SMM using a bridged diamagnetic Zn(ii) ion</article-title>
<source>Chem. Commun.</source>
<year>2014</year>
<volume>50</volume>
<fpage>8838</fpage>
<lpage>8841</lpage>
<pub-id pub-id-type="doi">10.1039/C4CC02094D</pub-id>
</element-citation>
</ref>
<ref id="CR56">
<label>56.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hess</surname>
<given-names>BA</given-names>
</name>
<name>
<surname>Marian</surname>
<given-names>CM</given-names>
</name>
<name>
<surname>Wahlgren</surname>
<given-names>U</given-names>
</name>
<name>
<surname>Gropen</surname>
<given-names>O</given-names>
</name>
</person-group>
<article-title>A mean-field spin-orbit method applicable to correlated wavefunctions</article-title>
<source>Chem. Phys. Lett.</source>
<year>1996</year>
<volume>251</volume>
<fpage>365</fpage>
<lpage>371</lpage>
<pub-id pub-id-type="doi">10.1016/0009-2614(96)00119-4</pub-id>
</element-citation>
</ref>
<ref id="CR57">
<label>57.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Roos</surname>
<given-names>BO</given-names>
</name>
<name>
<surname>Malmqvist</surname>
<given-names>P-A</given-names>
</name>
</person-group>
<article-title>Relativistic quantum chemistry: the multiconfigurational approach</article-title>
<source>Phys. Chem. Chem. Phys.</source>
<year>2004</year>
<volume>6</volume>
<fpage>2919</fpage>
<lpage>2927</lpage>
<pub-id pub-id-type="doi">10.1039/b401472n</pub-id>
</element-citation>
</ref>
<ref id="CR58">
<label>58.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Roos</surname>
<given-names>BO</given-names>
</name>
<etal></etal>
</person-group>
<article-title>New relativistic atomic natural orbital basis sets for lanthanide atoms with applications to the Ce diatom and LuF
<sub>3</sub>
</article-title>
<source>J. Phys. Chem. A</source>
<year>2008</year>
<volume>112</volume>
<fpage>11431</fpage>
<lpage>11435</lpage>
<pub-id pub-id-type="doi">10.1021/jp803213j</pub-id>
<pub-id pub-id-type="pmid">18928264</pub-id>
</element-citation>
</ref>
<ref id="CR59">
<label>59.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Malmqvist</surname>
<given-names>PA</given-names>
</name>
<name>
<surname>Roos</surname>
<given-names>BO</given-names>
</name>
<name>
<surname>Schimmelpfennig</surname>
<given-names>B</given-names>
</name>
</person-group>
<article-title>The restricted active space (RAS) state interaction approach with spin-orbit coupling</article-title>
<source>Chem. Phys. Lett.</source>
<year>2002</year>
<volume>357</volume>
<fpage>230</fpage>
<lpage>240</lpage>
<pub-id pub-id-type="doi">10.1016/S0009-2614(02)00498-0</pub-id>
</element-citation>
</ref>
<ref id="CR60">
<label>60.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chibotaru</surname>
<given-names>LF</given-names>
</name>
<name>
<surname>Ungur</surname>
<given-names>L</given-names>
</name>
</person-group>
<article-title>Ab initio calculation of anisotropic magnetic properties of complexes. I. Unique definition of pseudospin Hamiltonians and their derivation</article-title>
<source>J. Chem. Phys.</source>
<year>2012</year>
<volume>137</volume>
<fpage>064112</fpage>
<lpage>064122</lpage>
<pub-id pub-id-type="doi">10.1063/1.4739763</pub-id>
<pub-id pub-id-type="pmid">22897260</pub-id>
</element-citation>
</ref>
<ref id="CR61">
<label>61.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Becke</surname>
<given-names>AD</given-names>
</name>
</person-group>
<article-title>Density functional thermochemistry. III. The role of exact exchange</article-title>
<source>. J. Chem. Phys.</source>
<year>1993</year>
<volume>98</volume>
<fpage>5648</fpage>
<lpage>5652</lpage>
<pub-id pub-id-type="doi">10.1063/1.464913</pub-id>
</element-citation>
</ref>
<ref id="CR62">
<label>62.</label>
<mixed-citation publication-type="other">Frisch, M. J. et al. Gaussian 09, Rev. A.02 (Gaussian, 2009).</mixed-citation>
</ref>
<ref id="CR63">
<label>63.</label>
<mixed-citation publication-type="other">Dunning, J. R. T. H. & Hay, P. J. in
<italic>Methods of Electronic Structure Theory</italic>
3rd edn, (ed Schaefer, H. F.) (Plenum, 1977).</mixed-citation>
</ref>
<ref id="CR64">
<label>64.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hay</surname>
<given-names>PJ</given-names>
</name>
<name>
<surname>Wadt</surname>
<given-names>WR</given-names>
</name>
</person-group>
<article-title>Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg</article-title>
<source>J. Chem. Phys.</source>
<year>1985</year>
<volume>82</volume>
<fpage>270</fpage>
<lpage>283</lpage>
<pub-id pub-id-type="doi">10.1063/1.448799</pub-id>
</element-citation>
</ref>
<ref id="CR65">
<label>65.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cundari</surname>
<given-names>TR</given-names>
</name>
<name>
<surname>Stevens</surname>
<given-names>WJ</given-names>
</name>
</person-group>
<article-title>Effective core potential methods for the lanthanides</article-title>
<source>J. Chem. Phys.</source>
<year>1993</year>
<volume>98</volume>
<fpage>5555</fpage>
<lpage>5565</lpage>
<pub-id pub-id-type="doi">10.1063/1.464902</pub-id>
</element-citation>
</ref>
<ref id="CR66">
<label>66.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Noodleman</surname>
<given-names>L</given-names>
</name>
</person-group>
<article-title>Valence bond description of antiferromagnetic coupling in transition metal dimers</article-title>
<source>J. Am. Chem. Soc.</source>
<year>1981</year>
<volume>74</volume>
<fpage>5737</fpage>
<lpage>5743</lpage>
</element-citation>
</ref>
<ref id="CR67">
<label>67.</label>
<mixed-citation publication-type="other">Blum, K.
<italic>Density Matrix Theory and Applications</italic>
(Springer, Berlin, 2012).</mixed-citation>
</ref>
<ref id="CR68">
<label>68.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rousochatzakis</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Luban</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Master equations for pulsed magnetic fields: application to magnetic molecules</article-title>
<source>Phys. Rev. B</source>
<year>2005</year>
<volume>72</volume>
<fpage>134424</fpage>
<pub-id pub-id-type="doi">10.1103/PhysRevB.72.134424</pub-id>
</element-citation>
</ref>
<ref id="CR69">
<label>69.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Leuenberger</surname>
<given-names>MN</given-names>
</name>
<name>
<surname>Loss</surname>
<given-names>D</given-names>
</name>
</person-group>
<article-title>Spin tunneling and phonon-assisted relaxation in Mn
<sub>12</sub>
-acetate</article-title>
<source>Phys. Rev. B</source>
<year>2000</year>
<volume>61</volume>
<fpage>1286</fpage>
<lpage>1302</lpage>
<pub-id pub-id-type="doi">10.1103/PhysRevB.61.1286</pub-id>
</element-citation>
</ref>
<ref id="CR70">
<label>70.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lascialfari</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Jang</surname>
<given-names>ZH</given-names>
</name>
<name>
<surname>Borsa</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Carretta</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Gatteschi</surname>
<given-names>D</given-names>
</name>
</person-group>
<article-title>Thermal fluctuations in the magnetic ground state of the molecular cluster Mn
<sub>12</sub>
O
<sub>12</sub>
acetate from mSR and proton NMR relaxation</article-title>
<source>Phys. Rev. Lett.</source>
<year>1998</year>
<volume>81</volume>
<fpage>3773</fpage>
<lpage>3776</lpage>
<pub-id pub-id-type="doi">10.1103/PhysRevLett.81.3773</pub-id>
</element-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000D88 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000D88 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:5647347
   |texte=   Ferrotoroidic ground state in a heterometallic {CrIIIDyIII6} complex displaying slow magnetic relaxation
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:29044098" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a AustralieFrV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024