Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Ammonia-mediated suppression of coke formation in direct-methane solid oxide fuel cells with nickel-based anodes

Identifieur interne : 005524 ( PascalFrancis/Curation ); précédent : 005523; suivant : 005525

Ammonia-mediated suppression of coke formation in direct-methane solid oxide fuel cells with nickel-based anodes

Auteurs : WEI WANG [République populaire de Chine] ; RAN RAN [République populaire de Chine] ; CHAO SU [Australie] ; YOUMIN CUO [France] ; David Farrusseng [France] ; ZONGPING SHAO [République populaire de Chine, Australie]

Source :

RBID : Pascal:13-0235294

Descripteurs français

English descriptors

Abstract

In this study, we report a novel approach for suppressing coke formation in direct-methane solid oxide fuel cells (SOFCs) with a conventional nickel cermet anode by simply adding ammonia to the fuel gas. Because ammonia preferentially occupies the acidic sites of the anode catalyst materials, a significant decrease in the coke formation rate is realized by introducing ammonia into the methane gas. In addition, hydrogen, a decomposition product of ammonia, also acts as an additional fuel for the SOFCs, resulting in high cell performance. At 700 °C, the coke formation rate over the Ni-YSZ anode is suppressed by 71% after the addition of 33.3% NH3 into CH4. Suppressed coke formation is also observed for other Ni catalysts such as Ni/Al2O3, a common catalyst for methane reforming that has been successfully used as the anode catalyst layer for SOFCs operating on methane, which suggests that introducing NH3 as an additive gas is a general method for suppressing the coke formation. The addition of ammonia can also effectively improve the power output and operational stability and offers a novel means for developing new coke-resistant SOFCs operating on widely available hydrocarbons for clean power generation to realize a sustainable future.
pA  
A01 01  1    @0 0378-7753
A02 01      @0 JPSODZ
A03   1    @0 J. power sources
A05       @2 240
A08 01  1  ENG  @1 Ammonia-mediated suppression of coke formation in direct-methane solid oxide fuel cells with nickel-based anodes
A11 01  1    @1 WEI WANG
A11 02  1    @1 RAN RAN
A11 03  1    @1 CHAO SU
A11 04  1    @1 YOUMIN CUO
A11 05  1    @1 FARRUSSENG (David)
A11 06  1    @1 ZONGPING SHAO
A14 01      @1 State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry & Chemical Engineering, Nanjing University of Technology, No. 5 Xin Mofan Road @2 Nanjing 210009 @3 CHN @Z 1 aut. @Z 2 aut. @Z 6 aut.
A14 02      @1 Department of Chemical Engineering, Curtin University @2 Perth, WA 6845 @3 AUS @Z 3 aut. @Z 6 aut.
A14 03      @1 Institut de Recherches sur la Catalyse et l'Environnement de Lyon (IRCELYON), UMR5256, CNRS/Université Claude Bernard, Lyon 1, 2 Av. A. Einstein @2 69626 Villeurbanne @3 FRA @Z 4 aut. @Z 5 aut.
A20       @1 232-240
A21       @1 2013
A23 01      @0 ENG
A43 01      @1 INIST @2 17113 @5 354000503627070290
A44       @0 0000 @1 © 2013 INIST-CNRS. All rights reserved.
A45       @0 35 ref.
A47 01  1    @0 13-0235294
A60       @1 P
A61       @0 A
A64 01  1    @0 Journal of power sources
A66 01      @0 NLD
C01 01    ENG  @0 In this study, we report a novel approach for suppressing coke formation in direct-methane solid oxide fuel cells (SOFCs) with a conventional nickel cermet anode by simply adding ammonia to the fuel gas. Because ammonia preferentially occupies the acidic sites of the anode catalyst materials, a significant decrease in the coke formation rate is realized by introducing ammonia into the methane gas. In addition, hydrogen, a decomposition product of ammonia, also acts as an additional fuel for the SOFCs, resulting in high cell performance. At 700 °C, the coke formation rate over the Ni-YSZ anode is suppressed by 71% after the addition of 33.3% NH3 into CH4. Suppressed coke formation is also observed for other Ni catalysts such as Ni/Al2O3, a common catalyst for methane reforming that has been successfully used as the anode catalyst layer for SOFCs operating on methane, which suggests that introducing NH3 as an additive gas is a general method for suppressing the coke formation. The addition of ammonia can also effectively improve the power output and operational stability and offers a novel means for developing new coke-resistant SOFCs operating on widely available hydrocarbons for clean power generation to realize a sustainable future.
C02 01  X    @0 001D06D03E
C02 02  X    @0 001D05I03E
C02 03  X    @0 001D05C
C02 04  X    @0 230
C03 01  X  FRE  @0 Coke @5 01
C03 01  X  ENG  @0 Coke @5 01
C03 01  X  SPA  @0 Coque @5 01
C03 02  X  FRE  @0 Formation @5 02
C03 02  X  ENG  @0 Formation @5 02
C03 02  X  SPA  @0 Formación @5 02
C03 03  X  FRE  @0 Pile combustible oxyde solide @5 03
C03 03  X  ENG  @0 Solid oxide fuel cell @5 03
C03 03  X  SPA  @0 Pila combustible oxido sólido @5 03
C03 04  X  FRE  @0 Anode @5 04
C03 04  X  ENG  @0 Anode @5 04
C03 04  X  SPA  @0 Anodo @5 04
C03 05  X  FRE  @0 Ammoniac @2 NK @2 FX @5 22
C03 05  X  ENG  @0 Ammonia @2 NK @2 FX @5 22
C03 05  X  SPA  @0 Amoníaco @2 NK @2 FX @5 22
C03 06  X  FRE  @0 Méthane @2 NK @2 FX @5 23
C03 06  X  ENG  @0 Methane @2 NK @2 FX @5 23
C03 06  X  SPA  @0 Metano @2 NK @2 FX @5 23
C03 07  X  FRE  @0 Nickel @2 NC @2 FX @5 24
C03 07  X  ENG  @0 Nickel @2 NC @2 FX @5 24
C03 07  X  SPA  @0 Niquel @2 NC @2 FX @5 24
C03 08  X  FRE  @0 Matériau électrode @5 46
C03 08  X  ENG  @0 Electrode material @5 46
C03 08  X  SPA  @0 Material electrodo @5 46
C03 09  X  FRE  @0 . @4 INC @5 82
C07 01  X  FRE  @0 Métal transition @2 NC @5 05
C07 01  X  ENG  @0 Transition metal @2 NC @5 05
C07 01  X  SPA  @0 Metal transición @2 NC @5 05
N21       @1 217
N44 01      @1 OTO
N82       @1 OTO

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0235294

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Ammonia-mediated suppression of coke formation in direct-methane solid oxide fuel cells with nickel-based anodes</title>
<author>
<name sortKey="Wei Wang" sort="Wei Wang" uniqKey="Wei Wang" last="Wei Wang">WEI WANG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry & Chemical Engineering, Nanjing University of Technology, No. 5 Xin Mofan Road</s1>
<s2>Nanjing 210009</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
</affiliation>
</author>
<author>
<name sortKey="Ran Ran" sort="Ran Ran" uniqKey="Ran Ran" last="Ran Ran">RAN RAN</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry & Chemical Engineering, Nanjing University of Technology, No. 5 Xin Mofan Road</s1>
<s2>Nanjing 210009</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
</affiliation>
</author>
<author>
<name sortKey="Chao Su" sort="Chao Su" uniqKey="Chao Su" last="Chao Su">CHAO SU</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Chemical Engineering, Curtin University</s1>
<s2>Perth, WA 6845</s2>
<s3>AUS</s3>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
<author>
<name sortKey="Youmin Cuo" sort="Youmin Cuo" uniqKey="Youmin Cuo" last="Youmin Cuo">YOUMIN CUO</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Institut de Recherches sur la Catalyse et l'Environnement de Lyon (IRCELYON), UMR5256, CNRS/Université Claude Bernard, Lyon 1, 2 Av. A. Einstein</s1>
<s2>69626 Villeurbanne</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Farrusseng, David" sort="Farrusseng, David" uniqKey="Farrusseng D" first="David" last="Farrusseng">David Farrusseng</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Institut de Recherches sur la Catalyse et l'Environnement de Lyon (IRCELYON), UMR5256, CNRS/Université Claude Bernard, Lyon 1, 2 Av. A. Einstein</s1>
<s2>69626 Villeurbanne</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Zongping Shao" sort="Zongping Shao" uniqKey="Zongping Shao" last="Zongping Shao">ZONGPING SHAO</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry & Chemical Engineering, Nanjing University of Technology, No. 5 Xin Mofan Road</s1>
<s2>Nanjing 210009</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Chemical Engineering, Curtin University</s1>
<s2>Perth, WA 6845</s2>
<s3>AUS</s3>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">13-0235294</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0235294 INIST</idno>
<idno type="RBID">Pascal:13-0235294</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000952</idno>
<idno type="wicri:Area/PascalFrancis/Curation">005524</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Ammonia-mediated suppression of coke formation in direct-methane solid oxide fuel cells with nickel-based anodes</title>
<author>
<name sortKey="Wei Wang" sort="Wei Wang" uniqKey="Wei Wang" last="Wei Wang">WEI WANG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry & Chemical Engineering, Nanjing University of Technology, No. 5 Xin Mofan Road</s1>
<s2>Nanjing 210009</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
</affiliation>
</author>
<author>
<name sortKey="Ran Ran" sort="Ran Ran" uniqKey="Ran Ran" last="Ran Ran">RAN RAN</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry & Chemical Engineering, Nanjing University of Technology, No. 5 Xin Mofan Road</s1>
<s2>Nanjing 210009</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
</affiliation>
</author>
<author>
<name sortKey="Chao Su" sort="Chao Su" uniqKey="Chao Su" last="Chao Su">CHAO SU</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Chemical Engineering, Curtin University</s1>
<s2>Perth, WA 6845</s2>
<s3>AUS</s3>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
<author>
<name sortKey="Youmin Cuo" sort="Youmin Cuo" uniqKey="Youmin Cuo" last="Youmin Cuo">YOUMIN CUO</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Institut de Recherches sur la Catalyse et l'Environnement de Lyon (IRCELYON), UMR5256, CNRS/Université Claude Bernard, Lyon 1, 2 Av. A. Einstein</s1>
<s2>69626 Villeurbanne</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Farrusseng, David" sort="Farrusseng, David" uniqKey="Farrusseng D" first="David" last="Farrusseng">David Farrusseng</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Institut de Recherches sur la Catalyse et l'Environnement de Lyon (IRCELYON), UMR5256, CNRS/Université Claude Bernard, Lyon 1, 2 Av. A. Einstein</s1>
<s2>69626 Villeurbanne</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Zongping Shao" sort="Zongping Shao" uniqKey="Zongping Shao" last="Zongping Shao">ZONGPING SHAO</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry & Chemical Engineering, Nanjing University of Technology, No. 5 Xin Mofan Road</s1>
<s2>Nanjing 210009</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Chemical Engineering, Curtin University</s1>
<s2>Perth, WA 6845</s2>
<s3>AUS</s3>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Journal of power sources</title>
<title level="j" type="abbreviated">J. power sources</title>
<idno type="ISSN">0378-7753</idno>
<imprint>
<date when="2013">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Journal of power sources</title>
<title level="j" type="abbreviated">J. power sources</title>
<idno type="ISSN">0378-7753</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Ammonia</term>
<term>Anode</term>
<term>Coke</term>
<term>Electrode material</term>
<term>Formation</term>
<term>Methane</term>
<term>Nickel</term>
<term>Solid oxide fuel cell</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Coke</term>
<term>Formation</term>
<term>Pile combustible oxyde solide</term>
<term>Anode</term>
<term>Ammoniac</term>
<term>Méthane</term>
<term>Nickel</term>
<term>Matériau électrode</term>
<term>.</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Coke</term>
<term>Nickel</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In this study, we report a novel approach for suppressing coke formation in direct-methane solid oxide fuel cells (SOFCs) with a conventional nickel cermet anode by simply adding ammonia to the fuel gas. Because ammonia preferentially occupies the acidic sites of the anode catalyst materials, a significant decrease in the coke formation rate is realized by introducing ammonia into the methane gas. In addition, hydrogen, a decomposition product of ammonia, also acts as an additional fuel for the SOFCs, resulting in high cell performance. At 700 °C, the coke formation rate over the Ni-YSZ anode is suppressed by 71% after the addition of 33.3% NH
<sub>3</sub>
into CH
<sub>4</sub>
. Suppressed coke formation is also observed for other Ni catalysts such as Ni/Al
<sub>2</sub>
O
<sub>3</sub>
, a common catalyst for methane reforming that has been successfully used as the anode catalyst layer for SOFCs operating on methane, which suggests that introducing NH
<sub>3</sub>
as an additive gas is a general method for suppressing the coke formation. The addition of ammonia can also effectively improve the power output and operational stability and offers a novel means for developing new coke-resistant SOFCs operating on widely available hydrocarbons for clean power generation to realize a sustainable future.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0378-7753</s0>
</fA01>
<fA02 i1="01">
<s0>JPSODZ</s0>
</fA02>
<fA03 i2="1">
<s0>J. power sources</s0>
</fA03>
<fA05>
<s2>240</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Ammonia-mediated suppression of coke formation in direct-methane solid oxide fuel cells with nickel-based anodes</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>WEI WANG</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>RAN RAN</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>CHAO SU</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>YOUMIN CUO</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>FARRUSSENG (David)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>ZONGPING SHAO</s1>
</fA11>
<fA14 i1="01">
<s1>State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry & Chemical Engineering, Nanjing University of Technology, No. 5 Xin Mofan Road</s1>
<s2>Nanjing 210009</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Chemical Engineering, Curtin University</s1>
<s2>Perth, WA 6845</s2>
<s3>AUS</s3>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Institut de Recherches sur la Catalyse et l'Environnement de Lyon (IRCELYON), UMR5256, CNRS/Université Claude Bernard, Lyon 1, 2 Av. A. Einstein</s1>
<s2>69626 Villeurbanne</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA20>
<s1>232-240</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>17113</s2>
<s5>354000503627070290</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>35 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0235294</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of power sources</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>In this study, we report a novel approach for suppressing coke formation in direct-methane solid oxide fuel cells (SOFCs) with a conventional nickel cermet anode by simply adding ammonia to the fuel gas. Because ammonia preferentially occupies the acidic sites of the anode catalyst materials, a significant decrease in the coke formation rate is realized by introducing ammonia into the methane gas. In addition, hydrogen, a decomposition product of ammonia, also acts as an additional fuel for the SOFCs, resulting in high cell performance. At 700 °C, the coke formation rate over the Ni-YSZ anode is suppressed by 71% after the addition of 33.3% NH
<sub>3</sub>
into CH
<sub>4</sub>
. Suppressed coke formation is also observed for other Ni catalysts such as Ni/Al
<sub>2</sub>
O
<sub>3</sub>
, a common catalyst for methane reforming that has been successfully used as the anode catalyst layer for SOFCs operating on methane, which suggests that introducing NH
<sub>3</sub>
as an additive gas is a general method for suppressing the coke formation. The addition of ammonia can also effectively improve the power output and operational stability and offers a novel means for developing new coke-resistant SOFCs operating on widely available hydrocarbons for clean power generation to realize a sustainable future.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D06D03E</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D05I03E</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>001D05C</s0>
</fC02>
<fC02 i1="04" i2="X">
<s0>230</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Coke</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Coke</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Coque</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Formation</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Formation</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Formación</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Pile combustible oxyde solide</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Solid oxide fuel cell</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Pila combustible oxido sólido</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Anode</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Anode</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Anodo</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Ammoniac</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>22</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Ammonia</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>22</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Amoníaco</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>22</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Méthane</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>23</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Methane</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>23</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Metano</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>23</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Nickel</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>24</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Nickel</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>24</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Niquel</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>24</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Matériau électrode</s0>
<s5>46</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Electrode material</s0>
<s5>46</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Material electrodo</s0>
<s5>46</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>.</s0>
<s4>INC</s4>
<s5>82</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Métal transition</s0>
<s2>NC</s2>
<s5>05</s5>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>Transition metal</s0>
<s2>NC</s2>
<s5>05</s5>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Metal transición</s0>
<s2>NC</s2>
<s5>05</s5>
</fC07>
<fN21>
<s1>217</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PascalFrancis/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 005524 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Curation/biblio.hfd -nk 005524 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PascalFrancis
   |étape=   Curation
   |type=    RBID
   |clé=     Pascal:13-0235294
   |texte=   Ammonia-mediated suppression of coke formation in direct-methane solid oxide fuel cells with nickel-based anodes
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024