Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Plasticity influencing the light compensation point offsets the specialization for light niches across shrub species in a tropical forest understorey

Identifieur interne : 005522 ( PascalFrancis/Curation ); précédent : 005521; suivant : 005523

Plasticity influencing the light compensation point offsets the specialization for light niches across shrub species in a tropical forest understorey

Auteurs : Frank J. Sterck [Pays-Bas] ; Remko A. Duursma [Australie] ; Robert W. Pearcy [États-Unis] ; Fernando Valladares [Espagne] ; Mikolaj Cieslak [France] ; Monique Weemstra [Pays-Bas, Australie]

Source :

RBID : Pascal:13-0234186

Descripteurs français

English descriptors

Abstract

1. Shade tolerance can be defined as the light level at which plants can survive and possibly grow. This light level is referred to as the whole-plant light compensation point (LCP). The LCP depends on multiple leaf and architectural traits. We are still uncertain how often interspecific trait differences allow species to specialize for separate light niches, as observed between shade-tolerant species and light-demanding species. Alternatively, trait plasticity may allow many species to grow in similar light conditions. 2. We measured leaf and architectural traits of up to 1.5-year-old seedlings of 15 sympatric Psychotria shrub species grown at three light levels. We used a 3D plant model to estimate the impacts of leaf traits, architectural traits and plant size on the whole-plant light compensation point (LCPplant). Plant growth rates were estimated from destructive harvests and allometric relationships. 3. At lower light levels, plants of all species achieved a lower leaf light compensation point (LCPleaf). The light interception efficiency (LIE), an index of self-shading, decreased with increasing plant size and was therefore lower in high-light treatments where plants grew more rapidly. When corrected for size, LIE was lower in the low-light treatment, possibly as a result of lower investments in woody support. Species did not show trade-offs in growth under low- and high-light conditions, because species with the greatest plasticity in LCPplant and underlying traits (LCPleaf and LIE) achieved the highest growth rates at lower light levels. 4. Synthesis. The interspecific differences in LCPplant did not result in a growth or survival trade-off between low- and high-light conditions. Instead, these differences were more than offset by the greater plasticity in LCPplant in some species, which was driven by greater plasticity in both leaves and architecture. The most plastic species achieved the fastest growth at different light levels. The results show that plasticity largely neutralizes the separation of light niches amongst species in this forest understorey genus and imply that differential preferences of species for either gaps or forest understorey occur in later life phases or are driven by other stress factors than low light alone.
pA  
A01 01  1    @0 0022-0477
A02 01      @0 JECOAB
A03   1    @0 J. ecol.
A05       @2 101
A06       @2 4
A08 01  1  ENG  @1 Plasticity influencing the light compensation point offsets the specialization for light niches across shrub species in a tropical forest understorey
A11 01  1    @1 STERCK (Frank J.)
A11 02  1    @1 DUURSMA (Remko A.)
A11 03  1    @1 PEARCY (Robert W.)
A11 04  1    @1 VALLADARES (Fernando)
A11 05  1    @1 CIESLAK (Mikolaj)
A11 06  1    @1 WEEMSTRA (Monique)
A14 01      @1 Forest Ecology and Forest Management Group, Wageningen University, P.O. Box 47 @2 6700 AA, Wageningen @3 NLD @Z 1 aut. @Z 6 aut.
A14 02      @1 Hawkesbury Institute for the Environment, University of Western Sydney, Locked Bag 1797 @2 Penrith, 2751, NSW @3 AUS @Z 2 aut. @Z 6 aut.
A14 03      @1 University of California, Davis One Shields Avenue @2 Davis, CA 95616 @3 USA @Z 3 aut.
A14 04      @1 Museo Nacional de Ciencias Naturales CSIC, Serrano 115 dpdo @2 28006 Madrid @3 ESP @Z 4 aut.
A14 05      @1 INRIA project-team Virtual Plants UMR AGAP, INRA UR 1115 Plantes et Systèmes de Culture Horticoles, 95 rue de la Galéra @2 34095 Montpellier @3 FRA @Z 5 aut.
A20       @1 971-980
A21       @1 2013
A23 01      @0 ENG
A43 01      @1 INIST @2 2004 @5 354000503609660140
A44       @0 0000 @1 © 2013 INIST-CNRS. All rights reserved.
A45       @0 3/4 p.
A47 01  1    @0 13-0234186
A60       @1 P
A61       @0 A
A64 01  1    @0 Journal of ecology
A66 01      @0 GBR
C01 01    ENG  @0 1. Shade tolerance can be defined as the light level at which plants can survive and possibly grow. This light level is referred to as the whole-plant light compensation point (LCP). The LCP depends on multiple leaf and architectural traits. We are still uncertain how often interspecific trait differences allow species to specialize for separate light niches, as observed between shade-tolerant species and light-demanding species. Alternatively, trait plasticity may allow many species to grow in similar light conditions. 2. We measured leaf and architectural traits of up to 1.5-year-old seedlings of 15 sympatric Psychotria shrub species grown at three light levels. We used a 3D plant model to estimate the impacts of leaf traits, architectural traits and plant size on the whole-plant light compensation point (LCPplant). Plant growth rates were estimated from destructive harvests and allometric relationships. 3. At lower light levels, plants of all species achieved a lower leaf light compensation point (LCPleaf). The light interception efficiency (LIE), an index of self-shading, decreased with increasing plant size and was therefore lower in high-light treatments where plants grew more rapidly. When corrected for size, LIE was lower in the low-light treatment, possibly as a result of lower investments in woody support. Species did not show trade-offs in growth under low- and high-light conditions, because species with the greatest plasticity in LCPplant and underlying traits (LCPleaf and LIE) achieved the highest growth rates at lower light levels. 4. Synthesis. The interspecific differences in LCPplant did not result in a growth or survival trade-off between low- and high-light conditions. Instead, these differences were more than offset by the greater plasticity in LCPplant in some species, which was driven by greater plasticity in both leaves and architecture. The most plastic species achieved the fastest growth at different light levels. The results show that plasticity largely neutralizes the separation of light niches amongst species in this forest understorey genus and imply that differential preferences of species for either gaps or forest understorey occur in later life phases or are driven by other stress factors than low light alone.
C02 01  X    @0 002A14B01
C02 02  X    @0 002A33A02
C03 01  X  FRE  @0 Plasticité @5 01
C03 01  X  ENG  @0 Plasticity @5 01
C03 01  X  SPA  @0 Plasticidad @5 01
C03 02  X  FRE  @0 Lumière @5 02
C03 02  X  ENG  @0 Light @5 02
C03 02  X  SPA  @0 Luz @5 02
C03 03  X  FRE  @0 Point compensation @5 03
C03 03  X  ENG  @0 Compensation point @5 03
C03 03  X  SPA  @0 Punto compensación @5 03
C03 04  X  FRE  @0 Spécialisation @5 04
C03 04  X  ENG  @0 Specialization @5 04
C03 04  X  SPA  @0 Especialización @5 04
C03 05  X  FRE  @0 Niche écologique @5 05
C03 05  X  ENG  @0 Ecological niche @5 05
C03 05  X  SPA  @0 Nicho ecológico @5 05
C03 06  X  FRE  @0 Arbrisseau @5 06
C03 06  X  ENG  @0 Shrub @5 06
C03 06  X  SPA  @0 Arbusto @5 06
C03 07  X  FRE  @0 Forêt tropicale @5 07
C03 07  X  ENG  @0 Tropical forest @5 07
C03 07  X  SPA  @0 Bosque tropical @5 07
C03 08  X  FRE  @0 Sous étage @5 08
C03 08  X  ENG  @0 Understory @5 08
C03 08  X  SPA  @0 Subpiso @5 08
C03 09  X  FRE  @0 Ecophysiologie @5 09
C03 09  X  ENG  @0 Ecophysiology @5 09
C03 09  X  SPA  @0 Ecofisiología @5 09
C03 10  X  FRE  @0 Feuille végétal @5 10
C03 10  X  ENG  @0 Plant leaf @5 10
C03 10  X  SPA  @0 Hoja vegetal @5 10
C03 11  X  FRE  @0 Adaptation @5 11
C03 11  X  ENG  @0 Adaptation @5 11
C03 11  X  SPA  @0 Adaptación @5 11
C03 12  X  FRE  @0 Interception lumière @5 12
C03 12  X  ENG  @0 Light interception @5 12
C03 12  X  SPA  @0 Intercepción luz @5 12
C03 13  X  FRE  @0 Ombrage (environnement) @5 13
C03 13  X  ENG  @0 Shading @5 13
C03 13  X  SPA  @0 Sombrajo @5 13
C03 14  X  FRE  @0 Sciaphyte @5 14
C03 14  X  ENG  @0 Sciaphyte @5 14
C03 14  X  SPA  @0 Esciófilo @5 14
C03 15  X  FRE  @0 Architecture plante @4 CD @5 96
C03 15  X  ENG  @0 Plant architecture @4 CD @5 96
N21       @1 217
N44 01      @1 OTO
N82       @1 OTO

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0234186

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Plasticity influencing the light compensation point offsets the specialization for light niches across shrub species in a tropical forest understorey</title>
<author>
<name sortKey="Sterck, Frank J" sort="Sterck, Frank J" uniqKey="Sterck F" first="Frank J." last="Sterck">Frank J. Sterck</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Forest Ecology and Forest Management Group, Wageningen University, P.O. Box 47</s1>
<s2>6700 AA, Wageningen</s2>
<s3>NLD</s3>
<sZ>1 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Pays-Bas</country>
</affiliation>
</author>
<author>
<name sortKey="Duursma, Remko A" sort="Duursma, Remko A" uniqKey="Duursma R" first="Remko A." last="Duursma">Remko A. Duursma</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Hawkesbury Institute for the Environment, University of Western Sydney, Locked Bag 1797</s1>
<s2>Penrith, 2751, NSW</s2>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
<author>
<name sortKey="Pearcy, Robert W" sort="Pearcy, Robert W" uniqKey="Pearcy R" first="Robert W." last="Pearcy">Robert W. Pearcy</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>University of California, Davis One Shields Avenue</s1>
<s2>Davis, CA 95616</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Valladares, Fernando" sort="Valladares, Fernando" uniqKey="Valladares F" first="Fernando" last="Valladares">Fernando Valladares</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Museo Nacional de Ciencias Naturales CSIC, Serrano 115 dpdo</s1>
<s2>28006 Madrid</s2>
<s3>ESP</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Espagne</country>
</affiliation>
</author>
<author>
<name sortKey="Cieslak, Mikolaj" sort="Cieslak, Mikolaj" uniqKey="Cieslak M" first="Mikolaj" last="Cieslak">Mikolaj Cieslak</name>
<affiliation wicri:level="1">
<inist:fA14 i1="05">
<s1>INRIA project-team Virtual Plants UMR AGAP, INRA UR 1115 Plantes et Systèmes de Culture Horticoles, 95 rue de la Galéra</s1>
<s2>34095 Montpellier</s2>
<s3>FRA</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Weemstra, Monique" sort="Weemstra, Monique" uniqKey="Weemstra M" first="Monique" last="Weemstra">Monique Weemstra</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Forest Ecology and Forest Management Group, Wageningen University, P.O. Box 47</s1>
<s2>6700 AA, Wageningen</s2>
<s3>NLD</s3>
<sZ>1 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Pays-Bas</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Hawkesbury Institute for the Environment, University of Western Sydney, Locked Bag 1797</s1>
<s2>Penrith, 2751, NSW</s2>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">13-0234186</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0234186 INIST</idno>
<idno type="RBID">Pascal:13-0234186</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000954</idno>
<idno type="wicri:Area/PascalFrancis/Curation">005522</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Plasticity influencing the light compensation point offsets the specialization for light niches across shrub species in a tropical forest understorey</title>
<author>
<name sortKey="Sterck, Frank J" sort="Sterck, Frank J" uniqKey="Sterck F" first="Frank J." last="Sterck">Frank J. Sterck</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Forest Ecology and Forest Management Group, Wageningen University, P.O. Box 47</s1>
<s2>6700 AA, Wageningen</s2>
<s3>NLD</s3>
<sZ>1 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Pays-Bas</country>
</affiliation>
</author>
<author>
<name sortKey="Duursma, Remko A" sort="Duursma, Remko A" uniqKey="Duursma R" first="Remko A." last="Duursma">Remko A. Duursma</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Hawkesbury Institute for the Environment, University of Western Sydney, Locked Bag 1797</s1>
<s2>Penrith, 2751, NSW</s2>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
<author>
<name sortKey="Pearcy, Robert W" sort="Pearcy, Robert W" uniqKey="Pearcy R" first="Robert W." last="Pearcy">Robert W. Pearcy</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>University of California, Davis One Shields Avenue</s1>
<s2>Davis, CA 95616</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Valladares, Fernando" sort="Valladares, Fernando" uniqKey="Valladares F" first="Fernando" last="Valladares">Fernando Valladares</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Museo Nacional de Ciencias Naturales CSIC, Serrano 115 dpdo</s1>
<s2>28006 Madrid</s2>
<s3>ESP</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Espagne</country>
</affiliation>
</author>
<author>
<name sortKey="Cieslak, Mikolaj" sort="Cieslak, Mikolaj" uniqKey="Cieslak M" first="Mikolaj" last="Cieslak">Mikolaj Cieslak</name>
<affiliation wicri:level="1">
<inist:fA14 i1="05">
<s1>INRIA project-team Virtual Plants UMR AGAP, INRA UR 1115 Plantes et Systèmes de Culture Horticoles, 95 rue de la Galéra</s1>
<s2>34095 Montpellier</s2>
<s3>FRA</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Weemstra, Monique" sort="Weemstra, Monique" uniqKey="Weemstra M" first="Monique" last="Weemstra">Monique Weemstra</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Forest Ecology and Forest Management Group, Wageningen University, P.O. Box 47</s1>
<s2>6700 AA, Wageningen</s2>
<s3>NLD</s3>
<sZ>1 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Pays-Bas</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Hawkesbury Institute for the Environment, University of Western Sydney, Locked Bag 1797</s1>
<s2>Penrith, 2751, NSW</s2>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Journal of ecology</title>
<title level="j" type="abbreviated">J. ecol.</title>
<idno type="ISSN">0022-0477</idno>
<imprint>
<date when="2013">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Journal of ecology</title>
<title level="j" type="abbreviated">J. ecol.</title>
<idno type="ISSN">0022-0477</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adaptation</term>
<term>Compensation point</term>
<term>Ecological niche</term>
<term>Ecophysiology</term>
<term>Light</term>
<term>Light interception</term>
<term>Plant architecture</term>
<term>Plant leaf</term>
<term>Plasticity</term>
<term>Sciaphyte</term>
<term>Shading</term>
<term>Shrub</term>
<term>Specialization</term>
<term>Tropical forest</term>
<term>Understory</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Plasticité</term>
<term>Lumière</term>
<term>Point compensation</term>
<term>Spécialisation</term>
<term>Niche écologique</term>
<term>Arbrisseau</term>
<term>Forêt tropicale</term>
<term>Sous étage</term>
<term>Ecophysiologie</term>
<term>Feuille végétal</term>
<term>Adaptation</term>
<term>Interception lumière</term>
<term>Ombrage (environnement)</term>
<term>Sciaphyte</term>
<term>Architecture plante</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Forêt tropicale</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">1. Shade tolerance can be defined as the light level at which plants can survive and possibly grow. This light level is referred to as the whole-plant light compensation point (LCP). The LCP depends on multiple leaf and architectural traits. We are still uncertain how often interspecific trait differences allow species to specialize for separate light niches, as observed between shade-tolerant species and light-demanding species. Alternatively, trait plasticity may allow many species to grow in similar light conditions. 2. We measured leaf and architectural traits of up to 1.5-year-old seedlings of 15 sympatric Psychotria shrub species grown at three light levels. We used a 3D plant model to estimate the impacts of leaf traits, architectural traits and plant size on the whole-plant light compensation point (LCP
<sub>plant</sub>
). Plant growth rates were estimated from destructive harvests and allometric relationships. 3. At lower light levels, plants of all species achieved a lower leaf light compensation point (LCP
<sub>leaf</sub>
). The light interception efficiency (LIE), an index of self-shading, decreased with increasing plant size and was therefore lower in high-light treatments where plants grew more rapidly. When corrected for size, LIE was lower in the low-light treatment, possibly as a result of lower investments in woody support. Species did not show trade-offs in growth under low- and high-light conditions, because species with the greatest plasticity in LCP
<sub>plant</sub>
and underlying traits (LCP
<sub>leaf</sub>
and LIE) achieved the highest growth rates at lower light levels. 4. Synthesis. The interspecific differences in LCP
<sub>plant</sub>
did not result in a growth or survival trade-off between low- and high-light conditions. Instead, these differences were more than offset by the greater plasticity in LCP
<sub>plant </sub>
in some species, which was driven by greater plasticity in both leaves and architecture. The most plastic species achieved the fastest growth at different light levels. The results show that plasticity largely neutralizes the separation of light niches amongst species in this forest understorey genus and imply that differential preferences of species for either gaps or forest understorey occur in later life phases or are driven by other stress factors than low light alone.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0022-0477</s0>
</fA01>
<fA02 i1="01">
<s0>JECOAB</s0>
</fA02>
<fA03 i2="1">
<s0>J. ecol.</s0>
</fA03>
<fA05>
<s2>101</s2>
</fA05>
<fA06>
<s2>4</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Plasticity influencing the light compensation point offsets the specialization for light niches across shrub species in a tropical forest understorey</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>STERCK (Frank J.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>DUURSMA (Remko A.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>PEARCY (Robert W.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>VALLADARES (Fernando)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>CIESLAK (Mikolaj)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>WEEMSTRA (Monique)</s1>
</fA11>
<fA14 i1="01">
<s1>Forest Ecology and Forest Management Group, Wageningen University, P.O. Box 47</s1>
<s2>6700 AA, Wageningen</s2>
<s3>NLD</s3>
<sZ>1 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Hawkesbury Institute for the Environment, University of Western Sydney, Locked Bag 1797</s1>
<s2>Penrith, 2751, NSW</s2>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>University of California, Davis One Shields Avenue</s1>
<s2>Davis, CA 95616</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Museo Nacional de Ciencias Naturales CSIC, Serrano 115 dpdo</s1>
<s2>28006 Madrid</s2>
<s3>ESP</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="05">
<s1>INRIA project-team Virtual Plants UMR AGAP, INRA UR 1115 Plantes et Systèmes de Culture Horticoles, 95 rue de la Galéra</s1>
<s2>34095 Montpellier</s2>
<s3>FRA</s3>
<sZ>5 aut.</sZ>
</fA14>
<fA20>
<s1>971-980</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>2004</s2>
<s5>354000503609660140</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>3/4 p.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0234186</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of ecology</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>1. Shade tolerance can be defined as the light level at which plants can survive and possibly grow. This light level is referred to as the whole-plant light compensation point (LCP). The LCP depends on multiple leaf and architectural traits. We are still uncertain how often interspecific trait differences allow species to specialize for separate light niches, as observed between shade-tolerant species and light-demanding species. Alternatively, trait plasticity may allow many species to grow in similar light conditions. 2. We measured leaf and architectural traits of up to 1.5-year-old seedlings of 15 sympatric Psychotria shrub species grown at three light levels. We used a 3D plant model to estimate the impacts of leaf traits, architectural traits and plant size on the whole-plant light compensation point (LCP
<sub>plant</sub>
). Plant growth rates were estimated from destructive harvests and allometric relationships. 3. At lower light levels, plants of all species achieved a lower leaf light compensation point (LCP
<sub>leaf</sub>
). The light interception efficiency (LIE), an index of self-shading, decreased with increasing plant size and was therefore lower in high-light treatments where plants grew more rapidly. When corrected for size, LIE was lower in the low-light treatment, possibly as a result of lower investments in woody support. Species did not show trade-offs in growth under low- and high-light conditions, because species with the greatest plasticity in LCP
<sub>plant</sub>
and underlying traits (LCP
<sub>leaf</sub>
and LIE) achieved the highest growth rates at lower light levels. 4. Synthesis. The interspecific differences in LCP
<sub>plant</sub>
did not result in a growth or survival trade-off between low- and high-light conditions. Instead, these differences were more than offset by the greater plasticity in LCP
<sub>plant </sub>
in some species, which was driven by greater plasticity in both leaves and architecture. The most plastic species achieved the fastest growth at different light levels. The results show that plasticity largely neutralizes the separation of light niches amongst species in this forest understorey genus and imply that differential preferences of species for either gaps or forest understorey occur in later life phases or are driven by other stress factors than low light alone.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>002A14B01</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>002A33A02</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Plasticité</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Plasticity</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Plasticidad</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Lumière</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Light</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Luz</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Point compensation</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Compensation point</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Punto compensación</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Spécialisation</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Specialization</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Especialización</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Niche écologique</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Ecological niche</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Nicho ecológico</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Arbrisseau</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Shrub</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Arbusto</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Forêt tropicale</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Tropical forest</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Bosque tropical</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Sous étage</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Understory</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Subpiso</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Ecophysiologie</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Ecophysiology</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Ecofisiología</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Feuille végétal</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Plant leaf</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Hoja vegetal</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Adaptation</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Adaptation</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Adaptación</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Interception lumière</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Light interception</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Intercepción luz</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Ombrage (environnement)</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Shading</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Sombrajo</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Sciaphyte</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Sciaphyte</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Esciófilo</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Architecture plante</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Plant architecture</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fN21>
<s1>217</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PascalFrancis/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 005522 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Curation/biblio.hfd -nk 005522 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PascalFrancis
   |étape=   Curation
   |type=    RBID
   |clé=     Pascal:13-0234186
   |texte=   Plasticity influencing the light compensation point offsets the specialization for light niches across shrub species in a tropical forest understorey
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024