Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Mechanical effect of rotating non-spherical particles on failure in compression

Identifieur interne : 005097 ( PascalFrancis/Curation ); précédent : 005096; suivant : 005098

Mechanical effect of rotating non-spherical particles on failure in compression

Auteurs : Arcady V. Dyskin [Australie] ; Elena Pasternak [Australie]

Source :

RBID : Pascal:13-0023279

Descripteurs français

English descriptors

Abstract

When non-spherical particles (grains, blocks) in a rock or geomaterial under compression are sufficiently detached to enable rolling under shear stress the moment equilibrium dictates that further increase in displacement requires reduced shear stress. Thus the rolling non-spherical particle produces an effect of apparent negative stiffness whose value is proportional to the magnitude of the compressive stress. We model geomaterials with rolling particles at a macroscale as a matrix containing inclusions with negative shear modulus. We consider two extreme types of inclusions: spherical inclusions and shear cracks with negative stiffness shear springs inside. We show that there exists a critical concentration of inclusions at which the effective shear modulus abruptly becomes negative and the geomaterial loses stability. Furthermore, there exists a special value of negative shear modulus/stiffness of inclusions (and hence the magnitude of the compressive stress) at which the critical concentration is zero, such that the first rolling particle induces the global instability. This stress is of the order of the shear modulus the geomaterial exhibits at the advanced stage of fracturing when the particles are sufficiently detached to enable the rolling.
pA  
A01 01  1    @0 1478-6435
A03   1    @0 Philos. mag. : (2003, Print)
A05       @2 92
A06       @2 28-30
A08 01  1  ENG  @1 Mechanical effect of rotating non-spherical particles on failure in compression
A09 01  1  ENG  @1 Instabilities Across the Scales III
A11 01  1    @1 DYSKIN (Arcady V.)
A11 02  1    @1 PASTERNAK (Elena)
A12 01  1    @1 MÜLHAUS (Hans-Bernd) @9 ed.
A12 02  1    @1 BUSSO (Esteban P.) @9 ed.
A12 03  1    @1 SUIKER (Akke S. J.) @9 ed.
A12 04  1    @1 SLUYS (Lambertus J.) @9 ed.
A14 01      @1 School of Civil and Resource Engineering, The University of Western Australia, 35 Stirling Highway @2 Crawley, WA 6009 @3 AUS @Z 1 aut.
A14 02      @1 School of Mechanical and Chemical Engineering, The University of Western Australia, 35 Stirling Highway @2 Crawley, WA 6009 @3 AUS @Z 2 aut.
A15 01      @1 Earth Systems Science Computational Centre (ESSCC), School of Earth Science, The University of Queensland @2 Brisbane, 4072 @3 AUS @Z 1 aut.
A15 02      @1 Centre des Matériaux, Ecole des Mines de Paris, UMR CNRS 7633, B.P. 87 @2 91003 Evry @3 FRA @Z 2 aut.
A15 03      @1 Department of the Built Environment, Eindhoven University of Technology, P.O. Box 513 @2 5600 MB Eindhoven @3 NLD @Z 3 aut.
A15 04      @1 Faculty of Civil Engineering and Geosciences, Delft University of Technology, P.O. Box 5048 @2 2600 GA Delft @3 NLD @Z 4 aut.
A20       @1 3451-3473
A21       @1 2012
A23 01      @0 ENG
A43 01      @1 INIST @2 134A3 @5 354000502921690040
A44       @0 0000 @1 © 2013 INIST-CNRS. All rights reserved.
A45       @0 90 ref.
A47 01  1    @0 13-0023279
A60       @1 P @2 C
A61       @0 A
A64 01  1    @0 Philosophical magazine : (2003. Print)
A66 01      @0 GBR
C01 01    ENG  @0 When non-spherical particles (grains, blocks) in a rock or geomaterial under compression are sufficiently detached to enable rolling under shear stress the moment equilibrium dictates that further increase in displacement requires reduced shear stress. Thus the rolling non-spherical particle produces an effect of apparent negative stiffness whose value is proportional to the magnitude of the compressive stress. We model geomaterials with rolling particles at a macroscale as a matrix containing inclusions with negative shear modulus. We consider two extreme types of inclusions: spherical inclusions and shear cracks with negative stiffness shear springs inside. We show that there exists a critical concentration of inclusions at which the effective shear modulus abruptly becomes negative and the geomaterial loses stability. Furthermore, there exists a special value of negative shear modulus/stiffness of inclusions (and hence the magnitude of the compressive stress) at which the critical concentration is zero, such that the first rolling particle induces the global instability. This stress is of the order of the shear modulus the geomaterial exhibits at the advanced stage of fracturing when the particles are sufficiently detached to enable the rolling.
C02 01  3    @0 001B60B20F
C02 02  3    @0 001B60B20M
C03 01  X  FRE  @0 Particule sphérique @5 01
C03 01  X  ENG  @0 Spherical particle @5 01
C03 01  X  SPA  @0 Partícula esférica @5 01
C03 02  3  FRE  @0 Laminage @5 02
C03 02  3  ENG  @0 Rolling @5 02
C03 03  X  FRE  @0 Contrainte cisaillement @5 03
C03 03  X  ENG  @0 Shear stress @5 03
C03 03  X  SPA  @0 Tensión cizallamiento @5 03
C03 04  X  FRE  @0 Rigidité @5 04
C03 04  X  ENG  @0 Stiffness @5 04
C03 04  X  SPA  @0 Rigidez @5 04
C03 05  X  FRE  @0 Contrainte compression @5 05
C03 05  X  ENG  @0 Compressive stress @5 05
C03 05  X  SPA  @0 Tensión compresión @5 05
C03 06  3  FRE  @0 Inclusion @5 06
C03 06  3  ENG  @0 Inclusions @5 06
C03 07  3  FRE  @0 Module cisaillement @5 07
C03 07  3  ENG  @0 Shear modulus @5 07
C03 08  X  FRE  @0 Forme sphérique @5 08
C03 08  X  ENG  @0 Spherical shape @5 08
C03 08  X  SPA  @0 Forma esférica @5 08
C03 09  3  FRE  @0 Cisaillement @5 09
C03 09  3  ENG  @0 Shear @5 09
C03 10  3  FRE  @0 Fissure @5 10
C03 10  3  ENG  @0 Cracks @5 10
C03 11  3  FRE  @0 Instabilité @5 11
C03 11  3  ENG  @0 Instability @5 11
C03 12  3  FRE  @0 Effet contrainte @5 12
C03 12  3  ENG  @0 Stress effects @5 12
C03 13  3  FRE  @0 Rupture @5 13
C03 13  3  ENG  @0 Ruptures @5 13
C03 14  3  FRE  @0 Minerai @5 14
C03 14  3  ENG  @0 Ores @5 14
C03 15  3  FRE  @0 Roche @5 29
C03 15  3  ENG  @0 Rocks @5 29
C03 16  3  FRE  @0 6220F @4 INC @5 65
C03 17  3  FRE  @0 6220M @4 INC @5 66
N21       @1 014
pR  
A30 01  1  ENG  @1 International Symposium on Instabilities Across the Scales III @3 Cairns AUS @4 2011-06-06

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0023279

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Mechanical effect of rotating non-spherical particles on failure in compression</title>
<author>
<name sortKey="Dyskin, Arcady V" sort="Dyskin, Arcady V" uniqKey="Dyskin A" first="Arcady V." last="Dyskin">Arcady V. Dyskin</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>School of Civil and Resource Engineering, The University of Western Australia, 35 Stirling Highway</s1>
<s2>Crawley, WA 6009</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
<author>
<name sortKey="Pasternak, Elena" sort="Pasternak, Elena" uniqKey="Pasternak E" first="Elena" last="Pasternak">Elena Pasternak</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>School of Mechanical and Chemical Engineering, The University of Western Australia, 35 Stirling Highway</s1>
<s2>Crawley, WA 6009</s2>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">13-0023279</idno>
<date when="2012">2012</date>
<idno type="stanalyst">PASCAL 13-0023279 INIST</idno>
<idno type="RBID">Pascal:13-0023279</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000D66</idno>
<idno type="wicri:Area/PascalFrancis/Curation">005097</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Mechanical effect of rotating non-spherical particles on failure in compression</title>
<author>
<name sortKey="Dyskin, Arcady V" sort="Dyskin, Arcady V" uniqKey="Dyskin A" first="Arcady V." last="Dyskin">Arcady V. Dyskin</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>School of Civil and Resource Engineering, The University of Western Australia, 35 Stirling Highway</s1>
<s2>Crawley, WA 6009</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
<author>
<name sortKey="Pasternak, Elena" sort="Pasternak, Elena" uniqKey="Pasternak E" first="Elena" last="Pasternak">Elena Pasternak</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>School of Mechanical and Chemical Engineering, The University of Western Australia, 35 Stirling Highway</s1>
<s2>Crawley, WA 6009</s2>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Philosophical magazine : (2003. Print)</title>
<title level="j" type="abbreviated">Philos. mag. : (2003, Print)</title>
<idno type="ISSN">1478-6435</idno>
<imprint>
<date when="2012">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Philosophical magazine : (2003. Print)</title>
<title level="j" type="abbreviated">Philos. mag. : (2003, Print)</title>
<idno type="ISSN">1478-6435</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Compressive stress</term>
<term>Cracks</term>
<term>Inclusions</term>
<term>Instability</term>
<term>Ores</term>
<term>Rocks</term>
<term>Rolling</term>
<term>Ruptures</term>
<term>Shear</term>
<term>Shear modulus</term>
<term>Shear stress</term>
<term>Spherical particle</term>
<term>Spherical shape</term>
<term>Stiffness</term>
<term>Stress effects</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Particule sphérique</term>
<term>Laminage</term>
<term>Contrainte cisaillement</term>
<term>Rigidité</term>
<term>Contrainte compression</term>
<term>Inclusion</term>
<term>Module cisaillement</term>
<term>Forme sphérique</term>
<term>Cisaillement</term>
<term>Fissure</term>
<term>Instabilité</term>
<term>Effet contrainte</term>
<term>Rupture</term>
<term>Minerai</term>
<term>Roche</term>
<term>6220F</term>
<term>6220M</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">When non-spherical particles (grains, blocks) in a rock or geomaterial under compression are sufficiently detached to enable rolling under shear stress the moment equilibrium dictates that further increase in displacement requires reduced shear stress. Thus the rolling non-spherical particle produces an effect of apparent negative stiffness whose value is proportional to the magnitude of the compressive stress. We model geomaterials with rolling particles at a macroscale as a matrix containing inclusions with negative shear modulus. We consider two extreme types of inclusions: spherical inclusions and shear cracks with negative stiffness shear springs inside. We show that there exists a critical concentration of inclusions at which the effective shear modulus abruptly becomes negative and the geomaterial loses stability. Furthermore, there exists a special value of negative shear modulus/stiffness of inclusions (and hence the magnitude of the compressive stress) at which the critical concentration is zero, such that the first rolling particle induces the global instability. This stress is of the order of the shear modulus the geomaterial exhibits at the advanced stage of fracturing when the particles are sufficiently detached to enable the rolling.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1478-6435</s0>
</fA01>
<fA03 i2="1">
<s0>Philos. mag. : (2003, Print)</s0>
</fA03>
<fA05>
<s2>92</s2>
</fA05>
<fA06>
<s2>28-30</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Mechanical effect of rotating non-spherical particles on failure in compression</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Instabilities Across the Scales III</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>DYSKIN (Arcady V.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>PASTERNAK (Elena)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>MÜLHAUS (Hans-Bernd)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>BUSSO (Esteban P.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="03" i2="1">
<s1>SUIKER (Akke S. J.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="04" i2="1">
<s1>SLUYS (Lambertus J.)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>School of Civil and Resource Engineering, The University of Western Australia, 35 Stirling Highway</s1>
<s2>Crawley, WA 6009</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>School of Mechanical and Chemical Engineering, The University of Western Australia, 35 Stirling Highway</s1>
<s2>Crawley, WA 6009</s2>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA15 i1="01">
<s1>Earth Systems Science Computational Centre (ESSCC), School of Earth Science, The University of Queensland</s1>
<s2>Brisbane, 4072</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
</fA15>
<fA15 i1="02">
<s1>Centre des Matériaux, Ecole des Mines de Paris, UMR CNRS 7633, B.P. 87</s1>
<s2>91003 Evry</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</fA15>
<fA15 i1="03">
<s1>Department of the Built Environment, Eindhoven University of Technology, P.O. Box 513</s1>
<s2>5600 MB Eindhoven</s2>
<s3>NLD</s3>
<sZ>3 aut.</sZ>
</fA15>
<fA15 i1="04">
<s1>Faculty of Civil Engineering and Geosciences, Delft University of Technology, P.O. Box 5048</s1>
<s2>2600 GA Delft</s2>
<s3>NLD</s3>
<sZ>4 aut.</sZ>
</fA15>
<fA20>
<s1>3451-3473</s1>
</fA20>
<fA21>
<s1>2012</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>134A3</s2>
<s5>354000502921690040</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>90 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0023279</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Philosophical magazine : (2003. Print)</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>When non-spherical particles (grains, blocks) in a rock or geomaterial under compression are sufficiently detached to enable rolling under shear stress the moment equilibrium dictates that further increase in displacement requires reduced shear stress. Thus the rolling non-spherical particle produces an effect of apparent negative stiffness whose value is proportional to the magnitude of the compressive stress. We model geomaterials with rolling particles at a macroscale as a matrix containing inclusions with negative shear modulus. We consider two extreme types of inclusions: spherical inclusions and shear cracks with negative stiffness shear springs inside. We show that there exists a critical concentration of inclusions at which the effective shear modulus abruptly becomes negative and the geomaterial loses stability. Furthermore, there exists a special value of negative shear modulus/stiffness of inclusions (and hence the magnitude of the compressive stress) at which the critical concentration is zero, such that the first rolling particle induces the global instability. This stress is of the order of the shear modulus the geomaterial exhibits at the advanced stage of fracturing when the particles are sufficiently detached to enable the rolling.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B60B20F</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B60B20M</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Particule sphérique</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Spherical particle</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Partícula esférica</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Laminage</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Rolling</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Contrainte cisaillement</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Shear stress</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Tensión cizallamiento</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Rigidité</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Stiffness</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Rigidez</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Contrainte compression</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Compressive stress</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Tensión compresión</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Inclusion</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Inclusions</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Module cisaillement</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Shear modulus</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Forme sphérique</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Spherical shape</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Forma esférica</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Cisaillement</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Shear</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Fissure</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Cracks</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Instabilité</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Instability</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Effet contrainte</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Stress effects</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Rupture</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Ruptures</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Minerai</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Ores</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Roche</s0>
<s5>29</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Rocks</s0>
<s5>29</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>6220F</s0>
<s4>INC</s4>
<s5>65</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>6220M</s0>
<s4>INC</s4>
<s5>66</s5>
</fC03>
<fN21>
<s1>014</s1>
</fN21>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>International Symposium on Instabilities Across the Scales III</s1>
<s3>Cairns AUS</s3>
<s4>2011-06-06</s4>
</fA30>
</pR>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PascalFrancis/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 005097 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Curation/biblio.hfd -nk 005097 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PascalFrancis
   |étape=   Curation
   |type=    RBID
   |clé=     Pascal:13-0023279
   |texte=   Mechanical effect of rotating non-spherical particles on failure in compression
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024