Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A limit analysis approach to derive a thermodynamic damage potential for non-linear geomaterials

Identifieur interne : 005096 ( PascalFrancis/Curation ); précédent : 005095; suivant : 005097

A limit analysis approach to derive a thermodynamic damage potential for non-linear geomaterials

Auteurs : A. Karrech [Australie] ; T. Poulet [Australie] ; K. Regenauer-Lieb [Australie]

Source :

RBID : Pascal:13-0023278

Descripteurs français

English descriptors

Abstract

This paper introduces a mathematical model which describes the continuum damage of non-linear geo-materials. The model accounts for full thermo-mechanical coupling as well as irreversible failure and its effect on shear heating. It involves multi-mechanisms creep to describe the material rheology depending on time, temperature, pressure and water content. This coupled thermo-mechanical model combined with the upper bound theory is used to formulate a potential capable of predicting the damage evolution. The model is implemented and applied to a cross-sectional geological layer subjected to extension. It reveals that damage accelerates the creation of faults and accentuates the localization of shear zones, thereby competing with the increase in material rigidity due to rate dependency, especially at high temperature.
pA  
A01 01  1    @0 1478-6435
A03   1    @0 Philos. mag. : (2003, Print)
A05       @2 92
A06       @2 28-30
A08 01  1  ENG  @1 A limit analysis approach to derive a thermodynamic damage potential for non-linear geomaterials
A09 01  1  ENG  @1 Instabilities Across the Scales III
A11 01  1    @1 KARRECH (A.)
A11 02  1    @1 POULET (T.)
A11 03  1    @1 REGENAUER-LIEB (K.)
A12 01  1    @1 MÜLHAUS (Hans-Bernd) @9 ed.
A12 02  1    @1 BUSSO (Esteban P.) @9 ed.
A12 03  1    @1 SUIKER (Akke S. J.) @9 ed.
A12 04  1    @1 SLUYS (Lambertus J.) @9 ed.
A14 01      @1 CSIRO Earth Science and Resource Engineering, 26 Dick Perry Av. @2 Kensington, Perth, WA 6151 @3 AUS @Z 1 aut. @Z 2 aut. @Z 3 aut.
A14 02      @1 School of Earth and Environment, University of Western Australia, 35 Stirling Hwy @2 Crawley 6009 @3 AUS @Z 1 aut. @Z 3 aut.
A14 03      @1 Western Australian Centre of Excellence, 35 Stirling Hwy @2 Crawley 6009 @3 AUS @Z 2 aut. @Z 3 aut.
A15 01      @1 Earth Systems Science Computational Centre (ESSCC), School of Earth Science, The University of Queensland @2 Brisbane, 4072 @3 AUS @Z 1 aut.
A15 02      @1 Centre des Matériaux, Ecole des Mines de Paris, UMR CNRS 7633, B.P. 87 @2 91003 Evry @3 FRA @Z 2 aut.
A15 03      @1 Department of the Built Environment, Eindhoven University of Technology, P.O. Box 513 @2 5600 MB Eindhoven @3 NLD @Z 3 aut.
A15 04      @1 Faculty of Civil Engineering and Geosciences, Delft University of Technology, P.O. Box 5048 @2 2600 GA Delft @3 NLD @Z 4 aut.
A20       @1 3439-3450
A21       @1 2012
A23 01      @0 ENG
A43 01      @1 INIST @2 134A3 @5 354000502921690030
A44       @0 0000 @1 © 2013 INIST-CNRS. All rights reserved.
A45       @0 28 ref.
A47 01  1    @0 13-0023278
A60       @1 P @2 C
A61       @0 A
A64 01  1    @0 Philosophical magazine : (2003. Print)
A66 01      @0 GBR
C01 01    ENG  @0 This paper introduces a mathematical model which describes the continuum damage of non-linear geo-materials. The model accounts for full thermo-mechanical coupling as well as irreversible failure and its effect on shear heating. It involves multi-mechanisms creep to describe the material rheology depending on time, temperature, pressure and water content. This coupled thermo-mechanical model combined with the upper bound theory is used to formulate a potential capable of predicting the damage evolution. The model is implemented and applied to a cross-sectional geological layer subjected to extension. It reveals that damage accelerates the creation of faults and accentuates the localization of shear zones, thereby competing with the increase in material rigidity due to rate dependency, especially at high temperature.
C02 01  3    @0 001B60E40G
C02 02  3    @0 001B60B20F
C02 03  3    @0 001B60B20Q
C03 01  X  FRE  @0 Fonction thermodynamique @5 01
C03 01  X  ENG  @0 Thermodynamic function @5 01
C03 01  X  SPA  @0 Función termodinámica @5 01
C03 02  3  FRE  @0 Endommagement @5 02
C03 02  3  ENG  @0 Damage @5 02
C03 03  X  FRE  @0 Effet non linéaire @5 03
C03 03  X  ENG  @0 Non linear effect @5 03
C03 03  X  SPA  @0 Efecto no lineal @5 03
C03 04  3  FRE  @0 Modèle mathématique @5 04
C03 04  3  ENG  @0 Mathematical models @5 04
C03 05  X  FRE  @0 Continuum @5 05
C03 05  X  ENG  @0 Continuum @5 05
C03 05  X  SPA  @0 Continuo @5 05
C03 06  X  FRE  @0 Matériau non linéaire @5 06
C03 06  X  ENG  @0 Non linear material @5 06
C03 06  X  SPA  @0 Material no lineal @5 06
C03 07  3  FRE  @0 Processus irréversible @5 07
C03 07  3  ENG  @0 Irreversible processes @5 07
C03 08  3  FRE  @0 Cisaillement @5 08
C03 08  3  ENG  @0 Shear @5 08
C03 09  3  FRE  @0 Traitement thermique @5 09
C03 09  3  ENG  @0 Heat treatments @5 09
C03 10  3  FRE  @0 Fluage @5 10
C03 10  3  ENG  @0 Creep @5 10
C03 11  3  FRE  @0 Rhéologie @5 11
C03 11  3  ENG  @0 Rheology @5 11
C03 12  3  FRE  @0 Dépendance temps @5 12
C03 12  3  ENG  @0 Time dependence @5 12
C03 13  3  FRE  @0 Dépendance température @5 13
C03 13  3  ENG  @0 Temperature dependence @5 13
C03 14  3  FRE  @0 Teneur eau @5 14
C03 14  3  ENG  @0 Moisture @5 14
C03 15  3  FRE  @0 Humidité @5 29
C03 15  3  ENG  @0 Humidity @5 29
C03 16  X  FRE  @0 Analyse thermomécanique @5 30
C03 16  X  ENG  @0 Thermomechanical analysis @5 30
C03 16  X  SPA  @0 Análisis termomecánico @5 30
C03 17  X  FRE  @0 Localisation @5 31
C03 17  X  ENG  @0 Localization @5 31
C03 17  X  SPA  @0 Localización @5 31
C03 18  X  FRE  @0 Haute température @5 32
C03 18  X  ENG  @0 High temperature @5 32
C03 18  X  SPA  @0 Alta temperatura @5 32
C03 19  3  FRE  @0 6220F @4 INC @5 66
C03 20  3  FRE  @0 6220Q @4 INC @5 67
C03 21  3  FRE  @0 6540G @4 INC @5 71
N21       @1 014
pR  
A30 01  1  ENG  @1 International Symposium on Instabilities Across the Scales III @3 Cairns AUS @4 2011-06-06

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0023278

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">A limit analysis approach to derive a thermodynamic damage potential for non-linear geomaterials</title>
<author>
<name sortKey="Karrech, A" sort="Karrech, A" uniqKey="Karrech A" first="A." last="Karrech">A. Karrech</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>CSIRO Earth Science and Resource Engineering, 26 Dick Perry Av.</s1>
<s2>Kensington, Perth, WA 6151</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>School of Earth and Environment, University of Western Australia, 35 Stirling Hwy</s1>
<s2>Crawley 6009</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
<author>
<name sortKey="Poulet, T" sort="Poulet, T" uniqKey="Poulet T" first="T." last="Poulet">T. Poulet</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>CSIRO Earth Science and Resource Engineering, 26 Dick Perry Av.</s1>
<s2>Kensington, Perth, WA 6151</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Western Australian Centre of Excellence, 35 Stirling Hwy</s1>
<s2>Crawley 6009</s2>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
<author>
<name sortKey="Regenauer Lieb, K" sort="Regenauer Lieb, K" uniqKey="Regenauer Lieb K" first="K." last="Regenauer-Lieb">K. Regenauer-Lieb</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>CSIRO Earth Science and Resource Engineering, 26 Dick Perry Av.</s1>
<s2>Kensington, Perth, WA 6151</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>School of Earth and Environment, University of Western Australia, 35 Stirling Hwy</s1>
<s2>Crawley 6009</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Western Australian Centre of Excellence, 35 Stirling Hwy</s1>
<s2>Crawley 6009</s2>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">13-0023278</idno>
<date when="2012">2012</date>
<idno type="stanalyst">PASCAL 13-0023278 INIST</idno>
<idno type="RBID">Pascal:13-0023278</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000D67</idno>
<idno type="wicri:Area/PascalFrancis/Curation">005096</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">A limit analysis approach to derive a thermodynamic damage potential for non-linear geomaterials</title>
<author>
<name sortKey="Karrech, A" sort="Karrech, A" uniqKey="Karrech A" first="A." last="Karrech">A. Karrech</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>CSIRO Earth Science and Resource Engineering, 26 Dick Perry Av.</s1>
<s2>Kensington, Perth, WA 6151</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>School of Earth and Environment, University of Western Australia, 35 Stirling Hwy</s1>
<s2>Crawley 6009</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
<author>
<name sortKey="Poulet, T" sort="Poulet, T" uniqKey="Poulet T" first="T." last="Poulet">T. Poulet</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>CSIRO Earth Science and Resource Engineering, 26 Dick Perry Av.</s1>
<s2>Kensington, Perth, WA 6151</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Western Australian Centre of Excellence, 35 Stirling Hwy</s1>
<s2>Crawley 6009</s2>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
<author>
<name sortKey="Regenauer Lieb, K" sort="Regenauer Lieb, K" uniqKey="Regenauer Lieb K" first="K." last="Regenauer-Lieb">K. Regenauer-Lieb</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>CSIRO Earth Science and Resource Engineering, 26 Dick Perry Av.</s1>
<s2>Kensington, Perth, WA 6151</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>School of Earth and Environment, University of Western Australia, 35 Stirling Hwy</s1>
<s2>Crawley 6009</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Western Australian Centre of Excellence, 35 Stirling Hwy</s1>
<s2>Crawley 6009</s2>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Philosophical magazine : (2003. Print)</title>
<title level="j" type="abbreviated">Philos. mag. : (2003, Print)</title>
<idno type="ISSN">1478-6435</idno>
<imprint>
<date when="2012">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Philosophical magazine : (2003. Print)</title>
<title level="j" type="abbreviated">Philos. mag. : (2003, Print)</title>
<idno type="ISSN">1478-6435</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Continuum</term>
<term>Creep</term>
<term>Damage</term>
<term>Heat treatments</term>
<term>High temperature</term>
<term>Humidity</term>
<term>Irreversible processes</term>
<term>Localization</term>
<term>Mathematical models</term>
<term>Moisture</term>
<term>Non linear effect</term>
<term>Non linear material</term>
<term>Rheology</term>
<term>Shear</term>
<term>Temperature dependence</term>
<term>Thermodynamic function</term>
<term>Thermomechanical analysis</term>
<term>Time dependence</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Fonction thermodynamique</term>
<term>Endommagement</term>
<term>Effet non linéaire</term>
<term>Modèle mathématique</term>
<term>Continuum</term>
<term>Matériau non linéaire</term>
<term>Processus irréversible</term>
<term>Cisaillement</term>
<term>Traitement thermique</term>
<term>Fluage</term>
<term>Rhéologie</term>
<term>Dépendance temps</term>
<term>Dépendance température</term>
<term>Teneur eau</term>
<term>Humidité</term>
<term>Analyse thermomécanique</term>
<term>Localisation</term>
<term>Haute température</term>
<term>6220F</term>
<term>6220Q</term>
<term>6540G</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">This paper introduces a mathematical model which describes the continuum damage of non-linear geo-materials. The model accounts for full thermo-mechanical coupling as well as irreversible failure and its effect on shear heating. It involves multi-mechanisms creep to describe the material rheology depending on time, temperature, pressure and water content. This coupled thermo-mechanical model combined with the upper bound theory is used to formulate a potential capable of predicting the damage evolution. The model is implemented and applied to a cross-sectional geological layer subjected to extension. It reveals that damage accelerates the creation of faults and accentuates the localization of shear zones, thereby competing with the increase in material rigidity due to rate dependency, especially at high temperature.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1478-6435</s0>
</fA01>
<fA03 i2="1">
<s0>Philos. mag. : (2003, Print)</s0>
</fA03>
<fA05>
<s2>92</s2>
</fA05>
<fA06>
<s2>28-30</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>A limit analysis approach to derive a thermodynamic damage potential for non-linear geomaterials</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Instabilities Across the Scales III</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>KARRECH (A.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>POULET (T.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>REGENAUER-LIEB (K.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>MÜLHAUS (Hans-Bernd)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>BUSSO (Esteban P.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="03" i2="1">
<s1>SUIKER (Akke S. J.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="04" i2="1">
<s1>SLUYS (Lambertus J.)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>CSIRO Earth Science and Resource Engineering, 26 Dick Perry Av.</s1>
<s2>Kensington, Perth, WA 6151</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>School of Earth and Environment, University of Western Australia, 35 Stirling Hwy</s1>
<s2>Crawley 6009</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Western Australian Centre of Excellence, 35 Stirling Hwy</s1>
<s2>Crawley 6009</s2>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA15 i1="01">
<s1>Earth Systems Science Computational Centre (ESSCC), School of Earth Science, The University of Queensland</s1>
<s2>Brisbane, 4072</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
</fA15>
<fA15 i1="02">
<s1>Centre des Matériaux, Ecole des Mines de Paris, UMR CNRS 7633, B.P. 87</s1>
<s2>91003 Evry</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</fA15>
<fA15 i1="03">
<s1>Department of the Built Environment, Eindhoven University of Technology, P.O. Box 513</s1>
<s2>5600 MB Eindhoven</s2>
<s3>NLD</s3>
<sZ>3 aut.</sZ>
</fA15>
<fA15 i1="04">
<s1>Faculty of Civil Engineering and Geosciences, Delft University of Technology, P.O. Box 5048</s1>
<s2>2600 GA Delft</s2>
<s3>NLD</s3>
<sZ>4 aut.</sZ>
</fA15>
<fA20>
<s1>3439-3450</s1>
</fA20>
<fA21>
<s1>2012</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>134A3</s2>
<s5>354000502921690030</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>28 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0023278</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Philosophical magazine : (2003. Print)</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>This paper introduces a mathematical model which describes the continuum damage of non-linear geo-materials. The model accounts for full thermo-mechanical coupling as well as irreversible failure and its effect on shear heating. It involves multi-mechanisms creep to describe the material rheology depending on time, temperature, pressure and water content. This coupled thermo-mechanical model combined with the upper bound theory is used to formulate a potential capable of predicting the damage evolution. The model is implemented and applied to a cross-sectional geological layer subjected to extension. It reveals that damage accelerates the creation of faults and accentuates the localization of shear zones, thereby competing with the increase in material rigidity due to rate dependency, especially at high temperature.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B60E40G</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B60B20F</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B60B20Q</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Fonction thermodynamique</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Thermodynamic function</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Función termodinámica</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Endommagement</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Damage</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Effet non linéaire</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Non linear effect</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Efecto no lineal</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Modèle mathématique</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Mathematical models</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Continuum</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Continuum</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Continuo</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Matériau non linéaire</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Non linear material</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Material no lineal</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Processus irréversible</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Irreversible processes</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Cisaillement</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Shear</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Traitement thermique</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Heat treatments</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Fluage</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Creep</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Rhéologie</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Rheology</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Dépendance temps</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Time dependence</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Dépendance température</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Temperature dependence</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Teneur eau</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Moisture</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Humidité</s0>
<s5>29</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Humidity</s0>
<s5>29</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Analyse thermomécanique</s0>
<s5>30</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Thermomechanical analysis</s0>
<s5>30</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Análisis termomecánico</s0>
<s5>30</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Localisation</s0>
<s5>31</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Localization</s0>
<s5>31</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Localización</s0>
<s5>31</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Haute température</s0>
<s5>32</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>High temperature</s0>
<s5>32</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Alta temperatura</s0>
<s5>32</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>6220F</s0>
<s4>INC</s4>
<s5>66</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>6220Q</s0>
<s4>INC</s4>
<s5>67</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>6540G</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fN21>
<s1>014</s1>
</fN21>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>International Symposium on Instabilities Across the Scales III</s1>
<s3>Cairns AUS</s3>
<s4>2011-06-06</s4>
</fA30>
</pR>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PascalFrancis/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 005096 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Curation/biblio.hfd -nk 005096 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PascalFrancis
   |étape=   Curation
   |type=    RBID
   |clé=     Pascal:13-0023278
   |texte=   A limit analysis approach to derive a thermodynamic damage potential for non-linear geomaterials
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024