Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Ultra-Stable Very-Low Phase-Noise Signal Source for Very Long Baseline Interferometry Using a Cryocooled Sapphire Oscillator

Identifieur interne : 004835 ( PascalFrancis/Curation ); précédent : 004834; suivant : 004836

Ultra-Stable Very-Low Phase-Noise Signal Source for Very Long Baseline Interferometry Using a Cryocooled Sapphire Oscillator

Auteurs : Nitin R. Nand [Australie] ; John G. Hartnett [Australie] ; Eugene N. Ivanov [Australie] ; Giorgio Santarelli [France]

Source :

RBID : Pascal:12-0043518

Descripteurs français

English descriptors

Abstract

The design and implementation of a novel frequency synthesizer based on low phase-noise digital dividers and a direct digital synthesizer is presented. The synthesis produces two low-noise accurate tunable signals at 10 and 100 MHz. We report the measured residual phase noise and frequency stability of the synthesizer and estimate the total frequency stability, which can be expected from the synthesizer seeded with a signal near 11.2 GHz from an ultra-stable cryocooled sapphire oscillator (cryoCSO). The synthesizer residual single-sideband phase noise, at 1-Hz offset, on 10- and 100-MHz signals was -135 and -130 dBc/Hz, respectively. The frequency stability contributions of these two signals was σy = 9 × 10-15 and σy = 2.2 × 10-15, respectively, at 1-s integration time. The Allan deviation of the total fractional frequency noise on the 10- and 100-MHz signals derived from the synthesizer with the cryoCSO may be estimated, respectively, as σy ≃ 5.2 × 10-15τ-1 + 3.6 × 10-15τ-1/2 + 4 × 10-16 and σy ≃ 2 × 10-15τ-1/2 + 3 x 10-16, respectively, for 1 < r < 104 s. We also calculate the coherence function (a figure of merit for very long baseline interferometry in radio astronomy) for observation frequencies of 100, 230, and 345 GHz, when using the cryoCSO and a hydrogen maser. The results show that the cryoCSO offers a significant advantage at frequencies above 100 GHz.
pA  
A01 01  1    @0 0018-9480
A02 01      @0 IETMAB
A03   1    @0 IEEE trans. microwave theor. tech.
A05       @2 59
A06       @2 11
A08 01  1  ENG  @1 Ultra-Stable Very-Low Phase-Noise Signal Source for Very Long Baseline Interferometry Using a Cryocooled Sapphire Oscillator
A11 01  1    @1 NAND (Nitin R.)
A11 02  1    @1 HARTNETT (John G.)
A11 03  1    @1 IVANOV (Eugene N.)
A11 04  1    @1 SANTARELLI (Giorgio)
A14 01      @1 School of Physics, University of Western Australia @2 Crawley 6009, W.A @3 AUS @Z 1 aut. @Z 2 aut. @Z 3 aut.
A14 02      @1 Laboratoire National de Métrologie et d'Essais Sytemes de Reference Temps Espace (LNE-SYRTE), Observatoire de Paris, Centre National de la Recherche Scientifique (CNRS), Université Pierre et Marie Curie (UPMC) @2 75014 Paris @3 FRA @Z 4 aut.
A20       @1 2978-2986
A21       @1 2011
A23 01      @0 ENG
A43 01      @1 INIST @2 222G2 @5 354000506007180220
A44       @0 0000 @1 © 2012 INIST-CNRS. All rights reserved.
A45       @0 22 ref.
A47 01  1    @0 12-0043518
A60       @1 P
A61       @0 A
A64 01  1    @0 IEEE transactions on microwave theory and techniques
A66 01      @0 USA
C01 01    ENG  @0 The design and implementation of a novel frequency synthesizer based on low phase-noise digital dividers and a direct digital synthesizer is presented. The synthesis produces two low-noise accurate tunable signals at 10 and 100 MHz. We report the measured residual phase noise and frequency stability of the synthesizer and estimate the total frequency stability, which can be expected from the synthesizer seeded with a signal near 11.2 GHz from an ultra-stable cryocooled sapphire oscillator (cryoCSO). The synthesizer residual single-sideband phase noise, at 1-Hz offset, on 10- and 100-MHz signals was -135 and -130 dBc/Hz, respectively. The frequency stability contributions of these two signals was σy = 9 × 10-15 and σy = 2.2 × 10-15, respectively, at 1-s integration time. The Allan deviation of the total fractional frequency noise on the 10- and 100-MHz signals derived from the synthesizer with the cryoCSO may be estimated, respectively, as σy ≃ 5.2 × 10-15τ-1 + 3.6 × 10-15τ-1/2 + 4 × 10-16 and σy ≃ 2 × 10-15τ-1/2 + 3 x 10-16, respectively, for 1 < r < 104 s. We also calculate the coherence function (a figure of merit for very long baseline interferometry in radio astronomy) for observation frequencies of 100, 230, and 345 GHz, when using the cryoCSO and a hydrogen maser. The results show that the cryoCSO offers a significant advantage at frequencies above 100 GHz.
C02 01  X    @0 001D03G02A1
C02 02  X    @0 001D03G02A6
C02 03  X    @0 001D03F06B
C02 04  X    @0 001D03E
C03 01  X  FRE  @0 Circuit faible bruit @5 01
C03 01  X  ENG  @0 Low noise circuit @5 01
C03 01  X  SPA  @0 Circuito débil ruido @5 01
C03 02  X  FRE  @0 Bruit phase @5 02
C03 02  X  ENG  @0 Phase noise @5 02
C03 02  X  SPA  @0 Ruido fase @5 02
C03 03  X  FRE  @0 Source bruit @5 03
C03 03  X  ENG  @0 Noise source @5 03
C03 03  X  SPA  @0 Fuente ruido @5 03
C03 04  X  FRE  @0 Radioastronomie @5 04
C03 04  X  ENG  @0 Radio astronomy @5 04
C03 04  X  SPA  @0 Radioastronomía @5 04
C03 05  X  FRE  @0 Oscillateur @5 05
C03 05  X  ENG  @0 Oscillator @5 05
C03 05  X  SPA  @0 Oscilador @5 05
C03 06  X  FRE  @0 Implémentation @5 06
C03 06  X  ENG  @0 Implementation @5 06
C03 06  X  SPA  @0 Implementación @5 06
C03 07  X  FRE  @0 Synthétiseur fréquence @5 07
C03 07  X  ENG  @0 Frequency synthesizer @5 07
C03 07  X  SPA  @0 Sintetizador frecuencia @5 07
C03 08  X  FRE  @0 Circuit numérique @5 08
C03 08  X  ENG  @0 Digital circuit @5 08
C03 08  X  SPA  @0 Circuito numérico @5 08
C03 09  X  FRE  @0 Diviseur @5 09
C03 09  X  ENG  @0 Divider @5 09
C03 09  X  SPA  @0 Divisor @5 09
C03 10  X  FRE  @0 Méthode directe @5 10
C03 10  X  ENG  @0 Direct method @5 10
C03 10  X  SPA  @0 Método directo @5 10
C03 11  X  FRE  @0 Synthétiseur numérique @5 11
C03 11  X  ENG  @0 Digital synthesizer @5 11
C03 11  X  SPA  @0 Sintetizador numérico @5 11
C03 12  X  FRE  @0 Circuit accordable @5 12
C03 12  X  ENG  @0 Tunable circuit @5 12
C03 12  X  SPA  @0 Circuito acordable @5 12
C03 13  X  FRE  @0 Stabilité fréquence @5 13
C03 13  X  ENG  @0 Frequency stability @5 13
C03 13  X  SPA  @0 Estabilidad frecuencia @5 13
C03 14  X  FRE  @0 Bande latérale unique @5 14
C03 14  X  ENG  @0 Single sideband @5 14
C03 14  X  SPA  @0 Banda lateral única @5 14
C03 15  X  FRE  @0 Fonction cohérence @5 15
C03 15  X  ENG  @0 Coherence function @5 15
C03 15  X  SPA  @0 Función coherencia @5 15
C03 16  X  FRE  @0 Facteur mérite @5 16
C03 16  X  ENG  @0 Figure of merit @5 16
C03 16  X  SPA  @0 Factor mérito @5 16
C03 17  X  FRE  @0 Maser @5 17
C03 17  X  ENG  @0 Maser @5 17
C03 17  X  SPA  @0 Maser @5 17
C03 18  X  FRE  @0 Cryogénie @5 18
C03 18  X  ENG  @0 Cryogenics @5 18
C03 18  X  SPA  @0 Criogenia @5 18
C03 19  X  FRE  @0 Température cryogénique @5 19
C03 19  X  ENG  @0 Cryogenic temperature @5 19
C03 19  X  SPA  @0 Temperatura criogénica @5 19
C03 20  X  FRE  @0 Composite ordre 2 @5 20
C03 20  X  ENG  @0 Composite second order @5 20
C03 20  X  SPA  @0 Compuesto orden 2 @5 20
C03 21  X  FRE  @0 Cohérence @5 21
C03 21  X  ENG  @0 Coherence @5 21
C03 21  X  SPA  @0 Coherencia @5 21
C03 22  X  FRE  @0 Circuit intégré @5 46
C03 22  X  ENG  @0 Integrated circuit @5 46
C03 22  X  SPA  @0 Circuito integrado @5 46
N21       @1 023
N44 01      @1 OTO
N82       @1 OTO

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:12-0043518

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Ultra-Stable Very-Low Phase-Noise Signal Source for Very Long Baseline Interferometry Using a Cryocooled Sapphire Oscillator</title>
<author>
<name sortKey="Nand, Nitin R" sort="Nand, Nitin R" uniqKey="Nand N" first="Nitin R." last="Nand">Nitin R. Nand</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>School of Physics, University of Western Australia</s1>
<s2>Crawley 6009, W.A</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
<author>
<name sortKey="Hartnett, John G" sort="Hartnett, John G" uniqKey="Hartnett J" first="John G." last="Hartnett">John G. Hartnett</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>School of Physics, University of Western Australia</s1>
<s2>Crawley 6009, W.A</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
<author>
<name sortKey="Ivanov, Eugene N" sort="Ivanov, Eugene N" uniqKey="Ivanov E" first="Eugene N." last="Ivanov">Eugene N. Ivanov</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>School of Physics, University of Western Australia</s1>
<s2>Crawley 6009, W.A</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
<author>
<name sortKey="Santarelli, Giorgio" sort="Santarelli, Giorgio" uniqKey="Santarelli G" first="Giorgio" last="Santarelli">Giorgio Santarelli</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Laboratoire National de Métrologie et d'Essais Sytemes de Reference Temps Espace (LNE-SYRTE), Observatoire de Paris, Centre National de la Recherche Scientifique (CNRS), Université Pierre et Marie Curie (UPMC)</s1>
<s2>75014 Paris</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">12-0043518</idno>
<date when="2011">2011</date>
<idno type="stanalyst">PASCAL 12-0043518 INIST</idno>
<idno type="RBID">Pascal:12-0043518</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">001675</idno>
<idno type="wicri:Area/PascalFrancis/Curation">004835</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Ultra-Stable Very-Low Phase-Noise Signal Source for Very Long Baseline Interferometry Using a Cryocooled Sapphire Oscillator</title>
<author>
<name sortKey="Nand, Nitin R" sort="Nand, Nitin R" uniqKey="Nand N" first="Nitin R." last="Nand">Nitin R. Nand</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>School of Physics, University of Western Australia</s1>
<s2>Crawley 6009, W.A</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
<author>
<name sortKey="Hartnett, John G" sort="Hartnett, John G" uniqKey="Hartnett J" first="John G." last="Hartnett">John G. Hartnett</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>School of Physics, University of Western Australia</s1>
<s2>Crawley 6009, W.A</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
<author>
<name sortKey="Ivanov, Eugene N" sort="Ivanov, Eugene N" uniqKey="Ivanov E" first="Eugene N." last="Ivanov">Eugene N. Ivanov</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>School of Physics, University of Western Australia</s1>
<s2>Crawley 6009, W.A</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
<author>
<name sortKey="Santarelli, Giorgio" sort="Santarelli, Giorgio" uniqKey="Santarelli G" first="Giorgio" last="Santarelli">Giorgio Santarelli</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Laboratoire National de Métrologie et d'Essais Sytemes de Reference Temps Espace (LNE-SYRTE), Observatoire de Paris, Centre National de la Recherche Scientifique (CNRS), Université Pierre et Marie Curie (UPMC)</s1>
<s2>75014 Paris</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">IEEE transactions on microwave theory and techniques</title>
<title level="j" type="abbreviated">IEEE trans. microwave theor. tech.</title>
<idno type="ISSN">0018-9480</idno>
<imprint>
<date when="2011">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">IEEE transactions on microwave theory and techniques</title>
<title level="j" type="abbreviated">IEEE trans. microwave theor. tech.</title>
<idno type="ISSN">0018-9480</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Coherence</term>
<term>Coherence function</term>
<term>Composite second order</term>
<term>Cryogenic temperature</term>
<term>Cryogenics</term>
<term>Digital circuit</term>
<term>Digital synthesizer</term>
<term>Direct method</term>
<term>Divider</term>
<term>Figure of merit</term>
<term>Frequency stability</term>
<term>Frequency synthesizer</term>
<term>Implementation</term>
<term>Integrated circuit</term>
<term>Low noise circuit</term>
<term>Maser</term>
<term>Noise source</term>
<term>Oscillator</term>
<term>Phase noise</term>
<term>Radio astronomy</term>
<term>Single sideband</term>
<term>Tunable circuit</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Circuit faible bruit</term>
<term>Bruit phase</term>
<term>Source bruit</term>
<term>Radioastronomie</term>
<term>Oscillateur</term>
<term>Implémentation</term>
<term>Synthétiseur fréquence</term>
<term>Circuit numérique</term>
<term>Diviseur</term>
<term>Méthode directe</term>
<term>Synthétiseur numérique</term>
<term>Circuit accordable</term>
<term>Stabilité fréquence</term>
<term>Bande latérale unique</term>
<term>Fonction cohérence</term>
<term>Facteur mérite</term>
<term>Maser</term>
<term>Cryogénie</term>
<term>Température cryogénique</term>
<term>Composite ordre 2</term>
<term>Cohérence</term>
<term>Circuit intégré</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The design and implementation of a novel frequency synthesizer based on low phase-noise digital dividers and a direct digital synthesizer is presented. The synthesis produces two low-noise accurate tunable signals at 10 and 100 MHz. We report the measured residual phase noise and frequency stability of the synthesizer and estimate the total frequency stability, which can be expected from the synthesizer seeded with a signal near 11.2 GHz from an ultra-stable cryocooled sapphire oscillator (cryoCSO). The synthesizer residual single-sideband phase noise, at 1-Hz offset, on 10- and 100-MHz signals was -135 and -130 dBc/Hz, respectively. The frequency stability contributions of these two signals was σ
<sub>y</sub>
= 9 × 10
<sup>-15</sup>
and σ
<sub>y</sub>
= 2.2 × 10
<sup>-15</sup>
, respectively, at 1-s integration time. The Allan deviation of the total fractional frequency noise on the 10- and 100-MHz signals derived from the synthesizer with the cryoCSO may be estimated, respectively, as σ
<sub>y</sub>
≃ 5.2 × 10
<sup>-15</sup>
τ
<sup>-1</sup>
+ 3.6 × 10
<sup>-15</sup>
τ
<sup>-1/2</sup>
+ 4 × 10
<sup>-16</sup>
and σ
<sub>y</sub>
≃ 2 × 10
<sup>-15</sup>
τ
<sup>-1/2</sup>
+ 3 x 10-
<sup>16</sup>
, respectively, for 1 < r < 10
<sup>4</sup>
s. We also calculate the coherence function (a figure of merit for very long baseline interferometry in radio astronomy) for observation frequencies of 100, 230, and 345 GHz, when using the cryoCSO and a hydrogen maser. The results show that the cryoCSO offers a significant advantage at frequencies above 100 GHz.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0018-9480</s0>
</fA01>
<fA02 i1="01">
<s0>IETMAB</s0>
</fA02>
<fA03 i2="1">
<s0>IEEE trans. microwave theor. tech.</s0>
</fA03>
<fA05>
<s2>59</s2>
</fA05>
<fA06>
<s2>11</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Ultra-Stable Very-Low Phase-Noise Signal Source for Very Long Baseline Interferometry Using a Cryocooled Sapphire Oscillator</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>NAND (Nitin R.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>HARTNETT (John G.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>IVANOV (Eugene N.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>SANTARELLI (Giorgio)</s1>
</fA11>
<fA14 i1="01">
<s1>School of Physics, University of Western Australia</s1>
<s2>Crawley 6009, W.A</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Laboratoire National de Métrologie et d'Essais Sytemes de Reference Temps Espace (LNE-SYRTE), Observatoire de Paris, Centre National de la Recherche Scientifique (CNRS), Université Pierre et Marie Curie (UPMC)</s1>
<s2>75014 Paris</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA20>
<s1>2978-2986</s1>
</fA20>
<fA21>
<s1>2011</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>222G2</s2>
<s5>354000506007180220</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2012 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>22 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>12-0043518</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>IEEE transactions on microwave theory and techniques</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The design and implementation of a novel frequency synthesizer based on low phase-noise digital dividers and a direct digital synthesizer is presented. The synthesis produces two low-noise accurate tunable signals at 10 and 100 MHz. We report the measured residual phase noise and frequency stability of the synthesizer and estimate the total frequency stability, which can be expected from the synthesizer seeded with a signal near 11.2 GHz from an ultra-stable cryocooled sapphire oscillator (cryoCSO). The synthesizer residual single-sideband phase noise, at 1-Hz offset, on 10- and 100-MHz signals was -135 and -130 dBc/Hz, respectively. The frequency stability contributions of these two signals was σ
<sub>y</sub>
= 9 × 10
<sup>-15</sup>
and σ
<sub>y</sub>
= 2.2 × 10
<sup>-15</sup>
, respectively, at 1-s integration time. The Allan deviation of the total fractional frequency noise on the 10- and 100-MHz signals derived from the synthesizer with the cryoCSO may be estimated, respectively, as σ
<sub>y</sub>
≃ 5.2 × 10
<sup>-15</sup>
τ
<sup>-1</sup>
+ 3.6 × 10
<sup>-15</sup>
τ
<sup>-1/2</sup>
+ 4 × 10
<sup>-16</sup>
and σ
<sub>y</sub>
≃ 2 × 10
<sup>-15</sup>
τ
<sup>-1/2</sup>
+ 3 x 10-
<sup>16</sup>
, respectively, for 1 < r < 10
<sup>4</sup>
s. We also calculate the coherence function (a figure of merit for very long baseline interferometry in radio astronomy) for observation frequencies of 100, 230, and 345 GHz, when using the cryoCSO and a hydrogen maser. The results show that the cryoCSO offers a significant advantage at frequencies above 100 GHz.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D03G02A1</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D03G02A6</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>001D03F06B</s0>
</fC02>
<fC02 i1="04" i2="X">
<s0>001D03E</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Circuit faible bruit</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Low noise circuit</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Circuito débil ruido</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Bruit phase</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Phase noise</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Ruido fase</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Source bruit</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Noise source</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Fuente ruido</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Radioastronomie</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Radio astronomy</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Radioastronomía</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Oscillateur</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Oscillator</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Oscilador</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Implémentation</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Implementation</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Implementación</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Synthétiseur fréquence</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Frequency synthesizer</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Sintetizador frecuencia</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Circuit numérique</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Digital circuit</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Circuito numérico</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Diviseur</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Divider</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Divisor</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Méthode directe</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Direct method</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Método directo</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Synthétiseur numérique</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Digital synthesizer</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Sintetizador numérico</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Circuit accordable</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Tunable circuit</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Circuito acordable</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Stabilité fréquence</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Frequency stability</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Estabilidad frecuencia</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Bande latérale unique</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Single sideband</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Banda lateral única</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Fonction cohérence</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Coherence function</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Función coherencia</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Facteur mérite</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Figure of merit</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Factor mérito</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Maser</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Maser</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Maser</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Cryogénie</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Cryogenics</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Criogenia</s0>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Température cryogénique</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Cryogenic temperature</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Temperatura criogénica</s0>
<s5>19</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Composite ordre 2</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Composite second order</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Compuesto orden 2</s0>
<s5>20</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Cohérence</s0>
<s5>21</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Coherence</s0>
<s5>21</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Coherencia</s0>
<s5>21</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Circuit intégré</s0>
<s5>46</s5>
</fC03>
<fC03 i1="22" i2="X" l="ENG">
<s0>Integrated circuit</s0>
<s5>46</s5>
</fC03>
<fC03 i1="22" i2="X" l="SPA">
<s0>Circuito integrado</s0>
<s5>46</s5>
</fC03>
<fN21>
<s1>023</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PascalFrancis/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 004835 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Curation/biblio.hfd -nk 004835 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PascalFrancis
   |étape=   Curation
   |type=    RBID
   |clé=     Pascal:12-0043518
   |texte=   Ultra-Stable Very-Low Phase-Noise Signal Source for Very Long Baseline Interferometry Using a Cryocooled Sapphire Oscillator
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024