Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Cloud statistics and cloud radiative effect for a low-mountain site

Identifieur interne : 004042 ( PascalFrancis/Curation ); précédent : 004041; suivant : 004043

Cloud statistics and cloud radiative effect for a low-mountain site

Auteurs : Kerstin Ebell [Allemagne] ; Susanne Crewell [Allemagne] ; Ulrich Löhnert [Allemagne] ; David D. Turner [États-Unis] ; Ewan J. O'Connor [Royaume-Uni, Finlande]

Source :

RBID : Pascal:11-0163353

Descripteurs français

English descriptors

Abstract

In 2007, the Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF) was operated for a nine-month period in the Murg Valley, Black Forest, Germany, in support of the Convective and Orographically-induced Precipitation Study (COPS). The synergy of AMF and COPS partner instrumentation was exploited to derive a set of high-quality thermodynamic and cloud property profiles with 30 s resolution. In total, clouds were present 72% of the time, with multi-layer mixed phase (28.4%) and single-layer water clouds (11.3%) occurring most frequently. A comparison with the Cloudnet sites Chilbolton and Lindenberg for the same time period revealed that the Murg Valley exhibits lower liquid water paths (LWPs; median = 37.5 g m-2) compared to the two sites located in flat terrain. In order to evaluate the derived thermodynamic and cloud property profiles, a radiative closure study was performed with independent surface radiation measurements. In clear sky, average differences between calculated and observed surface fluxes are less than 2% and 4% for the short wave and long wave part, respectively. In cloudy situations, differences between simulated and observed fluxes, particularly in the short wave part, are much larger, but most of these can be related to broken cloud situations. The daytime cloud radiative effect (CRE), i.e. the difference of cloudy and clear-sky net fluxes, has been analysed for the whole nine-month period. For overcast, single-layer water clouds, sensitivity studies revealed that the CRE uncertainty is likewise determined by uncertainties in liquid water content and effective radius. For low LWP clouds, CRE uncertainty is dominated by LWP uncertainty; therefore refined retrievals, such as using infrared and/or higher microwave frequencies, are needed.
pA  
A01 01  1    @0 0035-9009
A02 01      @0 QJRMAM
A03   1    @0 Q. J. R. Meteorol. Soc.
A05       @2 137
A06       @3 SUP1
A08 01  1  ENG  @1 Cloud statistics and cloud radiative effect for a low-mountain site
A09 01  1  ENG  @1 Advances in the understanding of convective processes and precipitation over low-mountain regions through the Convective and Orographically-induced Precipitation Study (COPS)
A11 01  1    @1 EBELL (Kerstin)
A11 02  1    @1 CREWELL (Susanne)
A11 03  1    @1 LÖHNERT (Ulrich)
A11 04  1    @1 TURNER (David D.)
A11 05  1    @1 O'CONNOR (Ewan J.)
A12 01  1    @1 WULFMEYER (V.) @9 ed.
A12 02  1    @1 FLAMANT (C.) @9 ed.
A12 03  1    @1 BEHRENDT (A.) @9 ed.
A12 04  1    @1 BLYTH (A.) @9 ed.
A12 05  1    @1 BROWN (A.) @9 ed.
A12 06  1    @1 DORNINGER (M.) @9 ed.
A12 07  1    @1 ILLINGWORTH (A.) @9 ed.
A12 08  1    @1 MASCART (P.) @9 ed.
A12 09  1    @1 MONTANI (A.) @9 ed.
A12 10  1    @1 WECKWERTH (T.) @9 ed.
A14 01      @1 Institute for Geophysics and Meteorology, University of Cologne @3 DEU @Z 1 aut. @Z 2 aut. @Z 3 aut.
A14 02      @1 University of Wisconsin-Madison @2 Madison, Wisconsin @3 USA @Z 4 aut.
A14 03      @1 NOAA / National Severe Storms Laboratory @2 Norman, Oklahoma @3 USA @Z 4 aut.
A14 04      @1 University of Reading @2 Reading @3 GBR @Z 5 aut.
A14 05      @1 Finnish Meteorological Institute @2 Helsinki @3 FIN @Z 5 aut.
A15 01      @1 Institute of Physics and Meteorology (IPM), University of Hahenhaim (UHOH) @2 Stuttgart @3 DEU @Z 1 aut. @Z 3 aut.
A15 02      @1 Laboratoire Atmosphères, Milieux, Observations Spatiales, CNRS/UPMC/UVSQ @2 Paris @3 FRA @Z 2 aut.
A15 03      @1 National Centre for Atmospheric Science, University of Leeds @3 GBR @Z 4 aut.
A15 04      @1 Met Office @2 Exeter @3 GBR @Z 5 aut.
A15 05      @1 Deparmtent of Meteorology and Geophysics, University of Vienna @3 AUS @Z 6 aut.
A15 06      @1 Department of Meteorology, University of Reading @3 GBR @Z 7 aut.
A15 07      @1 Laboratoire d'Aérologie - UMR 5560 @2 Toulouse @3 FRA @Z 8 aut.
A15 08      @1 ARPA-SIM @2 Bologna @3 ITA @Z 9 aut.
A15 09      @1 National Center of Atmospheric Research (NCAR) @2 Boulder, CO @3 USA @Z 10 aut.
A20       @1 306-324
A21       @1 2011
A23 01      @0 ENG
A43 01      @1 INIST @2 3134 @5 354000193711790200
A44       @0 0000 @1 © 2011 INIST-CNRS. All rights reserved.
A45       @0 1 p.1/4
A47 01  1    @0 11-0163353
A60       @1 P
A61       @0 A
A64 01  1    @0 Quarterly Journal of the Royal Meteorological Society
A66 01      @0 GBR
C01 01    ENG  @0 In 2007, the Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF) was operated for a nine-month period in the Murg Valley, Black Forest, Germany, in support of the Convective and Orographically-induced Precipitation Study (COPS). The synergy of AMF and COPS partner instrumentation was exploited to derive a set of high-quality thermodynamic and cloud property profiles with 30 s resolution. In total, clouds were present 72% of the time, with multi-layer mixed phase (28.4%) and single-layer water clouds (11.3%) occurring most frequently. A comparison with the Cloudnet sites Chilbolton and Lindenberg for the same time period revealed that the Murg Valley exhibits lower liquid water paths (LWPs; median = 37.5 g m-2) compared to the two sites located in flat terrain. In order to evaluate the derived thermodynamic and cloud property profiles, a radiative closure study was performed with independent surface radiation measurements. In clear sky, average differences between calculated and observed surface fluxes are less than 2% and 4% for the short wave and long wave part, respectively. In cloudy situations, differences between simulated and observed fluxes, particularly in the short wave part, are much larger, but most of these can be related to broken cloud situations. The daytime cloud radiative effect (CRE), i.e. the difference of cloudy and clear-sky net fluxes, has been analysed for the whole nine-month period. For overcast, single-layer water clouds, sensitivity studies revealed that the CRE uncertainty is likewise determined by uncertainties in liquid water content and effective radius. For low LWP clouds, CRE uncertainty is dominated by LWP uncertainty; therefore refined retrievals, such as using infrared and/or higher microwave frequencies, are needed.
C02 01  2    @0 001E02H
C02 02  2    @0 001E02D
C03 01  X  FRE  @0 Nuage aqueux @5 01
C03 01  X  ENG  @0 Water cloud @5 01
C03 01  X  SPA  @0 Nube acuosa @5 01
C03 02  2  FRE  @0 Massif montagneux @5 02
C03 02  2  ENG  @0 mountains @5 02
C03 02  2  SPA  @0 Macizo montañoso @5 02
C03 03  X  FRE  @0 Rayonnement atmosphérique @5 03
C03 03  X  ENG  @0 Atmospheric radiation @5 03
C03 03  X  SPA  @0 Radiación atmosférica @5 03
C03 04  2  FRE  @0 Précipitation atmosphérique @5 04
C03 04  2  ENG  @0 atmospheric precipitation @5 04
C03 04  2  SPA  @0 Precipitación atmosférica @5 04
C03 05  2  FRE  @0 Propriété thermodynamique @5 05
C03 05  2  ENG  @0 thermodynamic properties @5 05
C03 06  X  FRE  @0 Couche mélangée @5 06
C03 06  X  ENG  @0 Mixed layer @5 06
C03 06  X  SPA  @0 Capa mezclada @5 06
C03 07  X  FRE  @0 Trajet eau liquide @5 07
C03 07  X  ENG  @0 Liquid water path @5 07
C03 07  X  SPA  @0 Recorrido agua líquida @5 07
C03 08  X  FRE  @0 Ciel serein @5 08
C03 08  X  ENG  @0 Clear sky @5 08
C03 08  X  SPA  @0 Cielo sereno @5 08
C03 09  2  FRE  @0 Onde courte période @5 09
C03 09  2  ENG  @0 short period waves @5 09
C03 09  2  SPA  @0 Onda corto periodo @5 09
C03 10  X  FRE  @0 Onde longue @5 10
C03 10  X  ENG  @0 Long wave @5 10
C03 10  X  SPA  @0 Onda larga @5 10
C03 11  X  FRE  @0 Ciel couvert @5 11
C03 11  X  ENG  @0 Cloudy sky @5 11
C03 11  X  SPA  @0 Cielo cubierto @5 11
C03 12  2  FRE  @0 Analyse sensibilité @5 12
C03 12  2  ENG  @0 sensitivity analysis @5 12
C03 13  2  FRE  @0 Incertitude @5 13
C03 13  2  ENG  @0 uncertainties @5 13
C03 14  2  FRE  @0 Teneur eau @5 14
C03 14  2  ENG  @0 water content @5 14
C03 14  2  SPA  @0 Contenido en agua @5 14
C03 15  X  FRE  @0 Rayon effectif @5 15
C03 15  X  ENG  @0 Effective radius @5 15
C03 15  X  SPA  @0 Radio efectivo @5 15
C03 16  2  FRE  @0 Télédétection @5 16
C03 16  2  ENG  @0 remote sensing @5 16
C03 16  2  SPA  @0 Detección a distancia @5 16
C03 17  2  FRE  @0 Forêt Noire @2 NG @5 21
C03 17  2  ENG  @0 Black Forest @2 NG @5 21
C03 17  2  SPA  @0 Bosque Negro @2 NG @5 21
C07 01  2  FRE  @0 Bade Wurtemberg @2 NG
C07 01  2  ENG  @0 Baden-Wurttemberg Germany @2 NG
C07 01  2  SPA  @0 Bade Wurtemberg @2 NG
C07 02  2  FRE  @0 Allemagne @2 NG
C07 02  2  ENG  @0 Germany @2 NG
C07 02  2  SPA  @0 Alemania @2 NG
C07 03  2  FRE  @0 Europe Centrale @2 NG
C07 03  2  ENG  @0 Central Europe @2 NG
C07 03  2  SPA  @0 Europa central @2 NG
C07 04  2  FRE  @0 Europe @2 564
C07 04  2  ENG  @0 Europe @2 564
C07 04  2  SPA  @0 Europa @2 564
N21       @1 101
N44 01      @1 OTO
N82       @1 OTO

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:11-0163353

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Cloud statistics and cloud radiative effect for a low-mountain site</title>
<author>
<name sortKey="Ebell, Kerstin" sort="Ebell, Kerstin" uniqKey="Ebell K" first="Kerstin" last="Ebell">Kerstin Ebell</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute for Geophysics and Meteorology, University of Cologne</s1>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
</affiliation>
</author>
<author>
<name sortKey="Crewell, Susanne" sort="Crewell, Susanne" uniqKey="Crewell S" first="Susanne" last="Crewell">Susanne Crewell</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute for Geophysics and Meteorology, University of Cologne</s1>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
</affiliation>
</author>
<author>
<name sortKey="Lohnert, Ulrich" sort="Lohnert, Ulrich" uniqKey="Lohnert U" first="Ulrich" last="Löhnert">Ulrich Löhnert</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute for Geophysics and Meteorology, University of Cologne</s1>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
</affiliation>
</author>
<author>
<name sortKey="Turner, David D" sort="Turner, David D" uniqKey="Turner D" first="David D." last="Turner">David D. Turner</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>University of Wisconsin-Madison</s1>
<s2>Madison, Wisconsin</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>NOAA / National Severe Storms Laboratory</s1>
<s2>Norman, Oklahoma</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="O Connor, Ewan J" sort="O Connor, Ewan J" uniqKey="O Connor E" first="Ewan J." last="O'Connor">Ewan J. O'Connor</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>University of Reading</s1>
<s2>Reading</s2>
<s3>GBR</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="05">
<s1>Finnish Meteorological Institute</s1>
<s2>Helsinki</s2>
<s3>FIN</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Finlande</country>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">11-0163353</idno>
<date when="2011">2011</date>
<idno type="stanalyst">PASCAL 11-0163353 INIST</idno>
<idno type="RBID">Pascal:11-0163353</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">001E95</idno>
<idno type="wicri:Area/PascalFrancis/Curation">004042</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Cloud statistics and cloud radiative effect for a low-mountain site</title>
<author>
<name sortKey="Ebell, Kerstin" sort="Ebell, Kerstin" uniqKey="Ebell K" first="Kerstin" last="Ebell">Kerstin Ebell</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute for Geophysics and Meteorology, University of Cologne</s1>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
</affiliation>
</author>
<author>
<name sortKey="Crewell, Susanne" sort="Crewell, Susanne" uniqKey="Crewell S" first="Susanne" last="Crewell">Susanne Crewell</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute for Geophysics and Meteorology, University of Cologne</s1>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
</affiliation>
</author>
<author>
<name sortKey="Lohnert, Ulrich" sort="Lohnert, Ulrich" uniqKey="Lohnert U" first="Ulrich" last="Löhnert">Ulrich Löhnert</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute for Geophysics and Meteorology, University of Cologne</s1>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
</affiliation>
</author>
<author>
<name sortKey="Turner, David D" sort="Turner, David D" uniqKey="Turner D" first="David D." last="Turner">David D. Turner</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>University of Wisconsin-Madison</s1>
<s2>Madison, Wisconsin</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>NOAA / National Severe Storms Laboratory</s1>
<s2>Norman, Oklahoma</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="O Connor, Ewan J" sort="O Connor, Ewan J" uniqKey="O Connor E" first="Ewan J." last="O'Connor">Ewan J. O'Connor</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>University of Reading</s1>
<s2>Reading</s2>
<s3>GBR</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="05">
<s1>Finnish Meteorological Institute</s1>
<s2>Helsinki</s2>
<s3>FIN</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Finlande</country>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Quarterly Journal of the Royal Meteorological Society</title>
<title level="j" type="abbreviated">Q. J. R. Meteorol. Soc.</title>
<idno type="ISSN">0035-9009</idno>
<imprint>
<date when="2011">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Quarterly Journal of the Royal Meteorological Society</title>
<title level="j" type="abbreviated">Q. J. R. Meteorol. Soc.</title>
<idno type="ISSN">0035-9009</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Atmospheric radiation</term>
<term>Black Forest</term>
<term>Clear sky</term>
<term>Cloudy sky</term>
<term>Effective radius</term>
<term>Liquid water path</term>
<term>Long wave</term>
<term>Mixed layer</term>
<term>Water cloud</term>
<term>atmospheric precipitation</term>
<term>mountains</term>
<term>remote sensing</term>
<term>sensitivity analysis</term>
<term>short period waves</term>
<term>thermodynamic properties</term>
<term>uncertainties</term>
<term>water content</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Nuage aqueux</term>
<term>Massif montagneux</term>
<term>Rayonnement atmosphérique</term>
<term>Précipitation atmosphérique</term>
<term>Propriété thermodynamique</term>
<term>Couche mélangée</term>
<term>Trajet eau liquide</term>
<term>Ciel serein</term>
<term>Onde courte période</term>
<term>Onde longue</term>
<term>Ciel couvert</term>
<term>Analyse sensibilité</term>
<term>Incertitude</term>
<term>Teneur eau</term>
<term>Rayon effectif</term>
<term>Télédétection</term>
<term>Forêt Noire</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Télédétection</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In 2007, the Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF) was operated for a nine-month period in the Murg Valley, Black Forest, Germany, in support of the Convective and Orographically-induced Precipitation Study (COPS). The synergy of AMF and COPS partner instrumentation was exploited to derive a set of high-quality thermodynamic and cloud property profiles with 30 s resolution. In total, clouds were present 72% of the time, with multi-layer mixed phase (28.4%) and single-layer water clouds (11.3%) occurring most frequently. A comparison with the Cloudnet sites Chilbolton and Lindenberg for the same time period revealed that the Murg Valley exhibits lower liquid water paths (LWPs; median = 37.5 g m
<sup>-2</sup>
) compared to the two sites located in flat terrain. In order to evaluate the derived thermodynamic and cloud property profiles, a radiative closure study was performed with independent surface radiation measurements. In clear sky, average differences between calculated and observed surface fluxes are less than 2% and 4% for the short wave and long wave part, respectively. In cloudy situations, differences between simulated and observed fluxes, particularly in the short wave part, are much larger, but most of these can be related to broken cloud situations. The daytime cloud radiative effect (CRE), i.e. the difference of cloudy and clear-sky net fluxes, has been analysed for the whole nine-month period. For overcast, single-layer water clouds, sensitivity studies revealed that the CRE uncertainty is likewise determined by uncertainties in liquid water content and effective radius. For low LWP clouds, CRE uncertainty is dominated by LWP uncertainty; therefore refined retrievals, such as using infrared and/or higher microwave frequencies, are needed.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0035-9009</s0>
</fA01>
<fA02 i1="01">
<s0>QJRMAM</s0>
</fA02>
<fA03 i2="1">
<s0>Q. J. R. Meteorol. Soc.</s0>
</fA03>
<fA05>
<s2>137</s2>
</fA05>
<fA06>
<s3>SUP1</s3>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Cloud statistics and cloud radiative effect for a low-mountain site</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Advances in the understanding of convective processes and precipitation over low-mountain regions through the Convective and Orographically-induced Precipitation Study (COPS)</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>EBELL (Kerstin)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>CREWELL (Susanne)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>LÖHNERT (Ulrich)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>TURNER (David D.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>O'CONNOR (Ewan J.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>WULFMEYER (V.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>FLAMANT (C.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="03" i2="1">
<s1>BEHRENDT (A.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="04" i2="1">
<s1>BLYTH (A.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="05" i2="1">
<s1>BROWN (A.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="06" i2="1">
<s1>DORNINGER (M.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="07" i2="1">
<s1>ILLINGWORTH (A.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="08" i2="1">
<s1>MASCART (P.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="09" i2="1">
<s1>MONTANI (A.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="10" i2="1">
<s1>WECKWERTH (T.)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Institute for Geophysics and Meteorology, University of Cologne</s1>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>University of Wisconsin-Madison</s1>
<s2>Madison, Wisconsin</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>NOAA / National Severe Storms Laboratory</s1>
<s2>Norman, Oklahoma</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>University of Reading</s1>
<s2>Reading</s2>
<s3>GBR</s3>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="05">
<s1>Finnish Meteorological Institute</s1>
<s2>Helsinki</s2>
<s3>FIN</s3>
<sZ>5 aut.</sZ>
</fA14>
<fA15 i1="01">
<s1>Institute of Physics and Meteorology (IPM), University of Hahenhaim (UHOH)</s1>
<s2>Stuttgart</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</fA15>
<fA15 i1="02">
<s1>Laboratoire Atmosphères, Milieux, Observations Spatiales, CNRS/UPMC/UVSQ</s1>
<s2>Paris</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</fA15>
<fA15 i1="03">
<s1>National Centre for Atmospheric Science, University of Leeds</s1>
<s3>GBR</s3>
<sZ>4 aut.</sZ>
</fA15>
<fA15 i1="04">
<s1>Met Office</s1>
<s2>Exeter</s2>
<s3>GBR</s3>
<sZ>5 aut.</sZ>
</fA15>
<fA15 i1="05">
<s1>Deparmtent of Meteorology and Geophysics, University of Vienna</s1>
<s3>AUS</s3>
<sZ>6 aut.</sZ>
</fA15>
<fA15 i1="06">
<s1>Department of Meteorology, University of Reading</s1>
<s3>GBR</s3>
<sZ>7 aut.</sZ>
</fA15>
<fA15 i1="07">
<s1>Laboratoire d'Aérologie - UMR 5560</s1>
<s2>Toulouse</s2>
<s3>FRA</s3>
<sZ>8 aut.</sZ>
</fA15>
<fA15 i1="08">
<s1>ARPA-SIM</s1>
<s2>Bologna</s2>
<s3>ITA</s3>
<sZ>9 aut.</sZ>
</fA15>
<fA15 i1="09">
<s1>National Center of Atmospheric Research (NCAR)</s1>
<s2>Boulder, CO</s2>
<s3>USA</s3>
<sZ>10 aut.</sZ>
</fA15>
<fA20>
<s1>306-324</s1>
</fA20>
<fA21>
<s1>2011</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>3134</s2>
<s5>354000193711790200</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2011 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>1 p.1/4</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>11-0163353</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Quarterly Journal of the Royal Meteorological Society</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>In 2007, the Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF) was operated for a nine-month period in the Murg Valley, Black Forest, Germany, in support of the Convective and Orographically-induced Precipitation Study (COPS). The synergy of AMF and COPS partner instrumentation was exploited to derive a set of high-quality thermodynamic and cloud property profiles with 30 s resolution. In total, clouds were present 72% of the time, with multi-layer mixed phase (28.4%) and single-layer water clouds (11.3%) occurring most frequently. A comparison with the Cloudnet sites Chilbolton and Lindenberg for the same time period revealed that the Murg Valley exhibits lower liquid water paths (LWPs; median = 37.5 g m
<sup>-2</sup>
) compared to the two sites located in flat terrain. In order to evaluate the derived thermodynamic and cloud property profiles, a radiative closure study was performed with independent surface radiation measurements. In clear sky, average differences between calculated and observed surface fluxes are less than 2% and 4% for the short wave and long wave part, respectively. In cloudy situations, differences between simulated and observed fluxes, particularly in the short wave part, are much larger, but most of these can be related to broken cloud situations. The daytime cloud radiative effect (CRE), i.e. the difference of cloudy and clear-sky net fluxes, has been analysed for the whole nine-month period. For overcast, single-layer water clouds, sensitivity studies revealed that the CRE uncertainty is likewise determined by uncertainties in liquid water content and effective radius. For low LWP clouds, CRE uncertainty is dominated by LWP uncertainty; therefore refined retrievals, such as using infrared and/or higher microwave frequencies, are needed.</s0>
</fC01>
<fC02 i1="01" i2="2">
<s0>001E02H</s0>
</fC02>
<fC02 i1="02" i2="2">
<s0>001E02D</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Nuage aqueux</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Water cloud</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Nube acuosa</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="2" l="FRE">
<s0>Massif montagneux</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="2" l="ENG">
<s0>mountains</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="2" l="SPA">
<s0>Macizo montañoso</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Rayonnement atmosphérique</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Atmospheric radiation</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Radiación atmosférica</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="2" l="FRE">
<s0>Précipitation atmosphérique</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="2" l="ENG">
<s0>atmospheric precipitation</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="2" l="SPA">
<s0>Precipitación atmosférica</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="2" l="FRE">
<s0>Propriété thermodynamique</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="2" l="ENG">
<s0>thermodynamic properties</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Couche mélangée</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Mixed layer</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Capa mezclada</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Trajet eau liquide</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Liquid water path</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Recorrido agua líquida</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Ciel serein</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Clear sky</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Cielo sereno</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="2" l="FRE">
<s0>Onde courte période</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="2" l="ENG">
<s0>short period waves</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="2" l="SPA">
<s0>Onda corto periodo</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Onde longue</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Long wave</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Onda larga</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Ciel couvert</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Cloudy sky</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Cielo cubierto</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="2" l="FRE">
<s0>Analyse sensibilité</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="2" l="ENG">
<s0>sensitivity analysis</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="2" l="FRE">
<s0>Incertitude</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="2" l="ENG">
<s0>uncertainties</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="2" l="FRE">
<s0>Teneur eau</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="2" l="ENG">
<s0>water content</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="2" l="SPA">
<s0>Contenido en agua</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Rayon effectif</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Effective radius</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Radio efectivo</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="2" l="FRE">
<s0>Télédétection</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="2" l="ENG">
<s0>remote sensing</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="2" l="SPA">
<s0>Detección a distancia</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="2" l="FRE">
<s0>Forêt Noire</s0>
<s2>NG</s2>
<s5>21</s5>
</fC03>
<fC03 i1="17" i2="2" l="ENG">
<s0>Black Forest</s0>
<s2>NG</s2>
<s5>21</s5>
</fC03>
<fC03 i1="17" i2="2" l="SPA">
<s0>Bosque Negro</s0>
<s2>NG</s2>
<s5>21</s5>
</fC03>
<fC07 i1="01" i2="2" l="FRE">
<s0>Bade Wurtemberg</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="01" i2="2" l="ENG">
<s0>Baden-Wurttemberg Germany</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="01" i2="2" l="SPA">
<s0>Bade Wurtemberg</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="02" i2="2" l="FRE">
<s0>Allemagne</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="02" i2="2" l="ENG">
<s0>Germany</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="02" i2="2" l="SPA">
<s0>Alemania</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="03" i2="2" l="FRE">
<s0>Europe Centrale</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="03" i2="2" l="ENG">
<s0>Central Europe</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="03" i2="2" l="SPA">
<s0>Europa central</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="04" i2="2" l="FRE">
<s0>Europe</s0>
<s2>564</s2>
</fC07>
<fC07 i1="04" i2="2" l="ENG">
<s0>Europe</s0>
<s2>564</s2>
</fC07>
<fC07 i1="04" i2="2" l="SPA">
<s0>Europa</s0>
<s2>564</s2>
</fC07>
<fN21>
<s1>101</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PascalFrancis/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 004042 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Curation/biblio.hfd -nk 004042 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PascalFrancis
   |étape=   Curation
   |type=    RBID
   |clé=     Pascal:11-0163353
   |texte=   Cloud statistics and cloud radiative effect for a low-mountain site
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024