Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Frequency conversion from near-infrared to mid-infrared in highly nonlinear optical fibres

Identifieur interne : 003D81 ( PascalFrancis/Curation ); précédent : 003D80; suivant : 003D82

Frequency conversion from near-infrared to mid-infrared in highly nonlinear optical fibres

Auteurs : Nicolas Ducros [France] ; Franck Morin [France] ; Kevin Cook [Australie] ; Alexis Labruyere [France] ; Sébastien Fevrier [France] ; Georges Humbert [France] ; Frédéric Druon [France] ; Marc Hanna [France] ; Patrick Georges [France] ; J. Canning [Australie] ; Ryszard Buczynski [Pologne] ; Darius Pysz [Pologne] ; Ryszard Stepien [Pologne]

Source :

RBID : Pascal:11-0015340

Descripteurs français

English descriptors

Abstract

Chalcogenide or heavy metal oxide glasses are well known for their good transparency in the mid-infrared (MIR) domain as well as their high nonlinear refractive index (n2) tens to hundreds times higher than that of silica. We have investigated the nonlinear frequency conversion processes, based upon either stimulated Raman scattering (SRS) or soliton fission and soliton self-frequency shift (SSFS) in fibres made up with such highly nonlinear infrared transmitting glasses. First, SRS has been investigated in a chalcogenide As2S3 step index fibre. In the single pass configuration, under quasi continuous wave 1550 nm pumping, Raman cascade up to the forth Stokes order has been obtained in a 3 m long piece of fibre. The possibility to build a Raman laser thanks to in-fibre written Bragg gratings has also been investigated. A 5 dB Bragg grating has been written successfully in the core. Then, nonlinear frequency conversion in ultra-short pulse regime has been studied in a heavy metal oxide (lead-bismuth-gallium ternary system) glass photonic crystal fibre. Broadband radiation, from 800 nm up to 2.8 μm, has been obtained by pumping an 8 cm long piece of fibre at 1600 nm in sub-picosecond pulsed regime. The nonlinear frequency conversion process was assessed by numerical modelling taking into account the actual fibre cross-section as well as the measured linear and nonlinear parameters and was found to be due to soliton fission and Raman-induced SSFS.
pA  
A01 01  1    @0 0277-786X
A02 01      @0 PSISDG
A03   1    @0 Proc. SPIE Int. Soc. Opt. Eng.
A05       @2 7714
A08 01  1  ENG  @1 Frequency conversion from near-infrared to mid-infrared in highly nonlinear optical fibres
A09 01  1  ENG  @1 Photonic crystal fibers IV : 14-16 April 2010, Brussels, Belgium
A11 01  1    @1 DUCROS (Nicolas)
A11 02  1    @1 MORIN (Franck)
A11 03  1    @1 COOK (Kevin)
A11 04  1    @1 LABRUYERE (Alexis)
A11 05  1    @1 FEVRIER (Sébastien)
A11 06  1    @1 HUMBERT (Georges)
A11 07  1    @1 DRUON (Frédéric)
A11 08  1    @1 HANNA (Marc)
A11 09  1    @1 GEORGES (Patrick)
A11 10  1    @1 CANNING (J.)
A11 11  1    @1 BUCZYNSKI (Ryszard)
A11 12  1    @1 PYSZ (Darius)
A11 13  1    @1 STEPIEN (Ryszard)
A12 01  1    @1 KALLI (Kyriacos) @9 ed.
A12 02  1    @1 URBA========Nacute;CZYK (Wacław) @9 ed.
A14 01      @1 Xlim UMR CNRS 6172, 123 avenue A. Thomas @2 87060 Limoges @3 FRA @Z 1 aut. @Z 4 aut. @Z 5 aut. @Z 6 aut.
A14 02      @1 Laboratoire Charles Fabry de l'Institut d'Optique, Université Paris-Sud @2 91127 Palaiseau @3 FRA @Z 2 aut. @Z 7 aut. @Z 8 aut. @Z 9 aut.
A14 03      @1 Interdisciplinary Photonics Laboratories, School of Chemistry, University of Sydney @2 NSW, 2006 @3 AUS @Z 3 aut. @Z 10 aut.
A14 04      @1 Faculty of Physics, University of Warsaw, Pasteura, 7 @2 02-093 Warsaw @3 POL @Z 11 aut.
A14 05      @1 Glass Laboratory, Institute of Electronic Materials Technology, Wólczyńska, 133 @2 01-919 Warsaw @3 POL @Z 12 aut. @Z 13 aut.
A18 01  1    @1 SPIE @3 USA @9 org-cong.
A18 02  1    @1 B-BHOT--Brussels Photonics Team @3 BEL @9 org-cong.
A18 03  1    @1 Comité belge d'optique @3 BEL @9 org-cong.
A20       @2 77140B.1-77140B.8
A21       @1 2010
A23 01      @0 ENG
A25 01      @1 SPIE @2 Bellingham, Wash.
A26 01      @0 0-8194-8187-4
A26 02      @0 978-0-8194-8187-0
A43 01      @1 INIST @2 21760 @5 354000174704520090
A44       @0 0000 @1 © 2011 INIST-CNRS. All rights reserved.
A45       @0 24 ref.
A47 01  1    @0 11-0015340
A60       @1 P @2 C
A61       @0 A
A64 01  1    @0 Proceedings of SPIE, the International Society for Optical Engineering
A66 01      @0 USA
C01 01    ENG  @0 Chalcogenide or heavy metal oxide glasses are well known for their good transparency in the mid-infrared (MIR) domain as well as their high nonlinear refractive index (n2) tens to hundreds times higher than that of silica. We have investigated the nonlinear frequency conversion processes, based upon either stimulated Raman scattering (SRS) or soliton fission and soliton self-frequency shift (SSFS) in fibres made up with such highly nonlinear infrared transmitting glasses. First, SRS has been investigated in a chalcogenide As2S3 step index fibre. In the single pass configuration, under quasi continuous wave 1550 nm pumping, Raman cascade up to the forth Stokes order has been obtained in a 3 m long piece of fibre. The possibility to build a Raman laser thanks to in-fibre written Bragg gratings has also been investigated. A 5 dB Bragg grating has been written successfully in the core. Then, nonlinear frequency conversion in ultra-short pulse regime has been studied in a heavy metal oxide (lead-bismuth-gallium ternary system) glass photonic crystal fibre. Broadband radiation, from 800 nm up to 2.8 μm, has been obtained by pumping an 8 cm long piece of fibre at 1600 nm in sub-picosecond pulsed regime. The nonlinear frequency conversion process was assessed by numerical modelling taking into account the actual fibre cross-section as well as the measured linear and nonlinear parameters and was found to be due to soliton fission and Raman-induced SSFS.
C02 01  3    @0 001B00A30C
C02 02  3    @0 001B40B65K
C02 03  3    @0 001B40B65D
C02 04  3    @0 001B40B65T
C03 01  3  FRE  @0 Conversion fréquence optique @5 03
C03 01  3  ENG  @0 Optical frequency conversion @5 03
C03 02  3  FRE  @0 Diffusion Raman stimulée @5 04
C03 02  3  ENG  @0 Stimulated Raman scattering @5 04
C03 03  3  FRE  @0 Soliton optique @5 05
C03 03  3  ENG  @0 Optical solitons @5 05
C03 04  X  FRE  @0 Déplacement fréquence @5 06
C03 04  X  ENG  @0 Frequency shift @5 06
C03 04  X  SPA  @0 Desplazamiento frecuencia @5 06
C03 05  X  FRE  @0 Saut indice @5 07
C03 05  X  ENG  @0 Step index @5 07
C03 05  X  SPA  @0 Salto indicativo @5 07
C03 06  X  FRE  @0 Impulsion ultracourte @5 08
C03 06  X  ENG  @0 Ultrashort pulse @5 08
C03 06  X  SPA  @0 Impulsión ultracorto @5 08
C03 07  3  FRE  @0 Réseau diffraction @5 09
C03 07  3  ENG  @0 Diffraction gratings @5 09
C03 08  X  FRE  @0 Réseau dans fibre @5 11
C03 08  X  ENG  @0 Grating in fiber @5 11
C03 08  X  SPA  @0 Red en fibra @5 11
C03 09  3  FRE  @0 Réseau Bragg @5 12
C03 09  3  ENG  @0 Bragg gratings @5 12
C03 10  3  FRE  @0 Optique non linéaire @5 17
C03 10  3  ENG  @0 Nonlinear optics @5 17
C03 11  3  FRE  @0 Indice réfraction @5 41
C03 11  3  ENG  @0 Refractive index @5 41
C03 12  X  FRE  @0 Subpicoseconde @5 42
C03 12  X  ENG  @0 Subpicosecond @5 42
C03 12  X  SPA  @0 Subpicosegundo @5 42
C03 13  3  FRE  @0 Fibre optique @5 47
C03 13  3  ENG  @0 Optical fibers @5 47
C03 14  3  FRE  @0 Fibre microstructurée @5 48
C03 14  3  ENG  @0 Microstructured fiber @5 48
C03 15  3  FRE  @0 Composé binaire @5 50
C03 15  3  ENG  @0 Binary compounds @5 50
C03 16  3  FRE  @0 Sulfure d'arsenic @2 NK @5 51
C03 16  3  ENG  @0 Arsenic sulfides @2 NK @5 51
C03 17  3  FRE  @0 Silice @2 NK @5 57
C03 17  3  ENG  @0 Silica @2 NK @5 57
C03 18  3  FRE  @0 Chalcogénure @2 NA @5 61
C03 18  3  ENG  @0 Chalcogenides @2 NA @5 61
C03 19  X  FRE  @0 Métal lourd @5 62
C03 19  X  ENG  @0 Heavy metal @5 62
C03 19  X  SPA  @0 Metal pesado @5 62
C03 20  3  FRE  @0 Oxyde métallique @5 63
C03 20  3  ENG  @0 Metal oxides @5 63
C03 21  3  FRE  @0 Verre @5 64
C03 21  3  ENG  @0 Glass @5 64
C03 22  3  FRE  @0 Gallium @2 NC @5 65
C03 22  3  ENG  @0 Gallium @2 NC @5 65
C03 23  3  FRE  @0 As2S3 @4 INC @5 71
C03 24  3  FRE  @0 As S @4 INC @5 75
C03 25  3  FRE  @0 0130C @4 INC @5 83
C03 26  3  FRE  @0 4265R @4 INC @5 84
C03 27  3  FRE  @0 4281 @4 INC @5 85
C03 28  3  FRE  @0 4279D @4 INC @5 86
C03 29  3  FRE  @0 4265K @4 INC @5 91
C03 30  3  FRE  @0 4265D @4 INC @5 92
C03 31  3  FRE  @0 4265T @4 INC @5 93
C03 32  3  FRE  @0 4281W @4 INC @5 94
C03 33  3  FRE  @0 Indice réfraction non linéaire @4 CD @5 96
C03 33  3  ENG  @0 Nonlinear refractive index @4 CD @5 96
C07 01  3  FRE  @0 Diffusion stimulée
C07 01  3  ENG  @0 Stimulated scattering
N21       @1 003
N44 01      @1 OTO
N82       @1 OTO
pR  
A30 01  1  ENG  @1 Photonic crystal fibers @2 04 @3 Brussels BEL @4 2010

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:11-0015340

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Frequency conversion from near-infrared to mid-infrared in highly nonlinear optical fibres</title>
<author>
<name sortKey="Ducros, Nicolas" sort="Ducros, Nicolas" uniqKey="Ducros N" first="Nicolas" last="Ducros">Nicolas Ducros</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Xlim UMR CNRS 6172, 123 avenue A. Thomas</s1>
<s2>87060 Limoges</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Morin, Franck" sort="Morin, Franck" uniqKey="Morin F" first="Franck" last="Morin">Franck Morin</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Laboratoire Charles Fabry de l'Institut d'Optique, Université Paris-Sud</s1>
<s2>91127 Palaiseau</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Cook, Kevin" sort="Cook, Kevin" uniqKey="Cook K" first="Kevin" last="Cook">Kevin Cook</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Interdisciplinary Photonics Laboratories, School of Chemistry, University of Sydney</s1>
<s2>NSW, 2006</s2>
<s3>AUS</s3>
<sZ>3 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
<author>
<name sortKey="Labruyere, Alexis" sort="Labruyere, Alexis" uniqKey="Labruyere A" first="Alexis" last="Labruyere">Alexis Labruyere</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Xlim UMR CNRS 6172, 123 avenue A. Thomas</s1>
<s2>87060 Limoges</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Fevrier, Sebastien" sort="Fevrier, Sebastien" uniqKey="Fevrier S" first="Sébastien" last="Fevrier">Sébastien Fevrier</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Xlim UMR CNRS 6172, 123 avenue A. Thomas</s1>
<s2>87060 Limoges</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Humbert, Georges" sort="Humbert, Georges" uniqKey="Humbert G" first="Georges" last="Humbert">Georges Humbert</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Xlim UMR CNRS 6172, 123 avenue A. Thomas</s1>
<s2>87060 Limoges</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Druon, Frederic" sort="Druon, Frederic" uniqKey="Druon F" first="Frédéric" last="Druon">Frédéric Druon</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Laboratoire Charles Fabry de l'Institut d'Optique, Université Paris-Sud</s1>
<s2>91127 Palaiseau</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Hanna, Marc" sort="Hanna, Marc" uniqKey="Hanna M" first="Marc" last="Hanna">Marc Hanna</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Laboratoire Charles Fabry de l'Institut d'Optique, Université Paris-Sud</s1>
<s2>91127 Palaiseau</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Georges, Patrick" sort="Georges, Patrick" uniqKey="Georges P" first="Patrick" last="Georges">Patrick Georges</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Laboratoire Charles Fabry de l'Institut d'Optique, Université Paris-Sud</s1>
<s2>91127 Palaiseau</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Canning, J" sort="Canning, J" uniqKey="Canning J" first="J." last="Canning">J. Canning</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Interdisciplinary Photonics Laboratories, School of Chemistry, University of Sydney</s1>
<s2>NSW, 2006</s2>
<s3>AUS</s3>
<sZ>3 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
<author>
<name sortKey="Buczynski, Ryszard" sort="Buczynski, Ryszard" uniqKey="Buczynski R" first="Ryszard" last="Buczynski">Ryszard Buczynski</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Faculty of Physics, University of Warsaw, Pasteura, 7</s1>
<s2>02-093 Warsaw</s2>
<s3>POL</s3>
<sZ>11 aut.</sZ>
</inist:fA14>
<country>Pologne</country>
</affiliation>
</author>
<author>
<name sortKey="Pysz, Darius" sort="Pysz, Darius" uniqKey="Pysz D" first="Darius" last="Pysz">Darius Pysz</name>
<affiliation wicri:level="1">
<inist:fA14 i1="05">
<s1>Glass Laboratory, Institute of Electronic Materials Technology, Wólczyńska, 133</s1>
<s2>01-919 Warsaw</s2>
<s3>POL</s3>
<sZ>12 aut.</sZ>
<sZ>13 aut.</sZ>
</inist:fA14>
<country>Pologne</country>
</affiliation>
</author>
<author>
<name sortKey="Stepien, Ryszard" sort="Stepien, Ryszard" uniqKey="Stepien R" first="Ryszard" last="Stepien">Ryszard Stepien</name>
<affiliation wicri:level="1">
<inist:fA14 i1="05">
<s1>Glass Laboratory, Institute of Electronic Materials Technology, Wólczyńska, 133</s1>
<s2>01-919 Warsaw</s2>
<s3>POL</s3>
<sZ>12 aut.</sZ>
<sZ>13 aut.</sZ>
</inist:fA14>
<country>Pologne</country>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">11-0015340</idno>
<date when="2010">2010</date>
<idno type="stanalyst">PASCAL 11-0015340 INIST</idno>
<idno type="RBID">Pascal:11-0015340</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">002146</idno>
<idno type="wicri:Area/PascalFrancis/Curation">003D81</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Frequency conversion from near-infrared to mid-infrared in highly nonlinear optical fibres</title>
<author>
<name sortKey="Ducros, Nicolas" sort="Ducros, Nicolas" uniqKey="Ducros N" first="Nicolas" last="Ducros">Nicolas Ducros</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Xlim UMR CNRS 6172, 123 avenue A. Thomas</s1>
<s2>87060 Limoges</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Morin, Franck" sort="Morin, Franck" uniqKey="Morin F" first="Franck" last="Morin">Franck Morin</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Laboratoire Charles Fabry de l'Institut d'Optique, Université Paris-Sud</s1>
<s2>91127 Palaiseau</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Cook, Kevin" sort="Cook, Kevin" uniqKey="Cook K" first="Kevin" last="Cook">Kevin Cook</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Interdisciplinary Photonics Laboratories, School of Chemistry, University of Sydney</s1>
<s2>NSW, 2006</s2>
<s3>AUS</s3>
<sZ>3 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
<author>
<name sortKey="Labruyere, Alexis" sort="Labruyere, Alexis" uniqKey="Labruyere A" first="Alexis" last="Labruyere">Alexis Labruyere</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Xlim UMR CNRS 6172, 123 avenue A. Thomas</s1>
<s2>87060 Limoges</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Fevrier, Sebastien" sort="Fevrier, Sebastien" uniqKey="Fevrier S" first="Sébastien" last="Fevrier">Sébastien Fevrier</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Xlim UMR CNRS 6172, 123 avenue A. Thomas</s1>
<s2>87060 Limoges</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Humbert, Georges" sort="Humbert, Georges" uniqKey="Humbert G" first="Georges" last="Humbert">Georges Humbert</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Xlim UMR CNRS 6172, 123 avenue A. Thomas</s1>
<s2>87060 Limoges</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Druon, Frederic" sort="Druon, Frederic" uniqKey="Druon F" first="Frédéric" last="Druon">Frédéric Druon</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Laboratoire Charles Fabry de l'Institut d'Optique, Université Paris-Sud</s1>
<s2>91127 Palaiseau</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Hanna, Marc" sort="Hanna, Marc" uniqKey="Hanna M" first="Marc" last="Hanna">Marc Hanna</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Laboratoire Charles Fabry de l'Institut d'Optique, Université Paris-Sud</s1>
<s2>91127 Palaiseau</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Georges, Patrick" sort="Georges, Patrick" uniqKey="Georges P" first="Patrick" last="Georges">Patrick Georges</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Laboratoire Charles Fabry de l'Institut d'Optique, Université Paris-Sud</s1>
<s2>91127 Palaiseau</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Canning, J" sort="Canning, J" uniqKey="Canning J" first="J." last="Canning">J. Canning</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Interdisciplinary Photonics Laboratories, School of Chemistry, University of Sydney</s1>
<s2>NSW, 2006</s2>
<s3>AUS</s3>
<sZ>3 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
<author>
<name sortKey="Buczynski, Ryszard" sort="Buczynski, Ryszard" uniqKey="Buczynski R" first="Ryszard" last="Buczynski">Ryszard Buczynski</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Faculty of Physics, University of Warsaw, Pasteura, 7</s1>
<s2>02-093 Warsaw</s2>
<s3>POL</s3>
<sZ>11 aut.</sZ>
</inist:fA14>
<country>Pologne</country>
</affiliation>
</author>
<author>
<name sortKey="Pysz, Darius" sort="Pysz, Darius" uniqKey="Pysz D" first="Darius" last="Pysz">Darius Pysz</name>
<affiliation wicri:level="1">
<inist:fA14 i1="05">
<s1>Glass Laboratory, Institute of Electronic Materials Technology, Wólczyńska, 133</s1>
<s2>01-919 Warsaw</s2>
<s3>POL</s3>
<sZ>12 aut.</sZ>
<sZ>13 aut.</sZ>
</inist:fA14>
<country>Pologne</country>
</affiliation>
</author>
<author>
<name sortKey="Stepien, Ryszard" sort="Stepien, Ryszard" uniqKey="Stepien R" first="Ryszard" last="Stepien">Ryszard Stepien</name>
<affiliation wicri:level="1">
<inist:fA14 i1="05">
<s1>Glass Laboratory, Institute of Electronic Materials Technology, Wólczyńska, 133</s1>
<s2>01-919 Warsaw</s2>
<s3>POL</s3>
<sZ>12 aut.</sZ>
<sZ>13 aut.</sZ>
</inist:fA14>
<country>Pologne</country>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Proceedings of SPIE, the International Society for Optical Engineering</title>
<title level="j" type="abbreviated">Proc. SPIE Int. Soc. Opt. Eng.</title>
<idno type="ISSN">0277-786X</idno>
<imprint>
<date when="2010">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Proceedings of SPIE, the International Society for Optical Engineering</title>
<title level="j" type="abbreviated">Proc. SPIE Int. Soc. Opt. Eng.</title>
<idno type="ISSN">0277-786X</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Arsenic sulfides</term>
<term>Binary compounds</term>
<term>Bragg gratings</term>
<term>Chalcogenides</term>
<term>Diffraction gratings</term>
<term>Frequency shift</term>
<term>Gallium</term>
<term>Glass</term>
<term>Grating in fiber</term>
<term>Heavy metal</term>
<term>Metal oxides</term>
<term>Microstructured fiber</term>
<term>Nonlinear optics</term>
<term>Nonlinear refractive index</term>
<term>Optical fibers</term>
<term>Optical frequency conversion</term>
<term>Optical solitons</term>
<term>Refractive index</term>
<term>Silica</term>
<term>Step index</term>
<term>Stimulated Raman scattering</term>
<term>Subpicosecond</term>
<term>Ultrashort pulse</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Conversion fréquence optique</term>
<term>Diffusion Raman stimulée</term>
<term>Soliton optique</term>
<term>Déplacement fréquence</term>
<term>Saut indice</term>
<term>Impulsion ultracourte</term>
<term>Réseau diffraction</term>
<term>Réseau dans fibre</term>
<term>Réseau Bragg</term>
<term>Optique non linéaire</term>
<term>Indice réfraction</term>
<term>Subpicoseconde</term>
<term>Fibre optique</term>
<term>Fibre microstructurée</term>
<term>Composé binaire</term>
<term>Sulfure d'arsenic</term>
<term>Silice</term>
<term>Chalcogénure</term>
<term>Métal lourd</term>
<term>Oxyde métallique</term>
<term>Verre</term>
<term>Gallium</term>
<term>As2S3</term>
<term>As S</term>
<term>0130C</term>
<term>4265R</term>
<term>4281</term>
<term>4279D</term>
<term>4265K</term>
<term>4265D</term>
<term>4265T</term>
<term>4281W</term>
<term>Indice réfraction non linéaire</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Métal lourd</term>
<term>Verre</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Chalcogenide or heavy metal oxide glasses are well known for their good transparency in the mid-infrared (MIR) domain as well as their high nonlinear refractive index (n
<sub>2</sub>
) tens to hundreds times higher than that of silica. We have investigated the nonlinear frequency conversion processes, based upon either stimulated Raman scattering (SRS) or soliton fission and soliton self-frequency shift (SSFS) in fibres made up with such highly nonlinear infrared transmitting glasses. First, SRS has been investigated in a chalcogenide As
<sub>2</sub>
S
<sub>3</sub>
step index fibre. In the single pass configuration, under quasi continuous wave 1550 nm pumping, Raman cascade up to the forth Stokes order has been obtained in a 3 m long piece of fibre. The possibility to build a Raman laser thanks to in-fibre written Bragg gratings has also been investigated. A 5 dB Bragg grating has been written successfully in the core. Then, nonlinear frequency conversion in ultra-short pulse regime has been studied in a heavy metal oxide (lead-bismuth-gallium ternary system) glass photonic crystal fibre. Broadband radiation, from 800 nm up to 2.8 μm, has been obtained by pumping an 8 cm long piece of fibre at 1600 nm in sub-picosecond pulsed regime. The nonlinear frequency conversion process was assessed by numerical modelling taking into account the actual fibre cross-section as well as the measured linear and nonlinear parameters and was found to be due to soliton fission and Raman-induced SSFS.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0277-786X</s0>
</fA01>
<fA02 i1="01">
<s0>PSISDG</s0>
</fA02>
<fA03 i2="1">
<s0>Proc. SPIE Int. Soc. Opt. Eng.</s0>
</fA03>
<fA05>
<s2>7714</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Frequency conversion from near-infrared to mid-infrared in highly nonlinear optical fibres</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Photonic crystal fibers IV : 14-16 April 2010, Brussels, Belgium</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>DUCROS (Nicolas)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>MORIN (Franck)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>COOK (Kevin)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>LABRUYERE (Alexis)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>FEVRIER (Sébastien)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>HUMBERT (Georges)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>DRUON (Frédéric)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>HANNA (Marc)</s1>
</fA11>
<fA11 i1="09" i2="1">
<s1>GEORGES (Patrick)</s1>
</fA11>
<fA11 i1="10" i2="1">
<s1>CANNING (J.)</s1>
</fA11>
<fA11 i1="11" i2="1">
<s1>BUCZYNSKI (Ryszard)</s1>
</fA11>
<fA11 i1="12" i2="1">
<s1>PYSZ (Darius)</s1>
</fA11>
<fA11 i1="13" i2="1">
<s1>STEPIEN (Ryszard)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>KALLI (Kyriacos)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>URBA========Nacute;CZYK (Wacław)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Xlim UMR CNRS 6172, 123 avenue A. Thomas</s1>
<s2>87060 Limoges</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Laboratoire Charles Fabry de l'Institut d'Optique, Université Paris-Sud</s1>
<s2>91127 Palaiseau</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Interdisciplinary Photonics Laboratories, School of Chemistry, University of Sydney</s1>
<s2>NSW, 2006</s2>
<s3>AUS</s3>
<sZ>3 aut.</sZ>
<sZ>10 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Faculty of Physics, University of Warsaw, Pasteura, 7</s1>
<s2>02-093 Warsaw</s2>
<s3>POL</s3>
<sZ>11 aut.</sZ>
</fA14>
<fA14 i1="05">
<s1>Glass Laboratory, Institute of Electronic Materials Technology, Wólczyńska, 133</s1>
<s2>01-919 Warsaw</s2>
<s3>POL</s3>
<sZ>12 aut.</sZ>
<sZ>13 aut.</sZ>
</fA14>
<fA18 i1="01" i2="1">
<s1>SPIE</s1>
<s3>USA</s3>
<s9>org-cong.</s9>
</fA18>
<fA18 i1="02" i2="1">
<s1>B-BHOT--Brussels Photonics Team</s1>
<s3>BEL</s3>
<s9>org-cong.</s9>
</fA18>
<fA18 i1="03" i2="1">
<s1>Comité belge d'optique</s1>
<s3>BEL</s3>
<s9>org-cong.</s9>
</fA18>
<fA20>
<s2>77140B.1-77140B.8</s2>
</fA20>
<fA21>
<s1>2010</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA25 i1="01">
<s1>SPIE</s1>
<s2>Bellingham, Wash.</s2>
</fA25>
<fA26 i1="01">
<s0>0-8194-8187-4</s0>
</fA26>
<fA26 i1="02">
<s0>978-0-8194-8187-0</s0>
</fA26>
<fA43 i1="01">
<s1>INIST</s1>
<s2>21760</s2>
<s5>354000174704520090</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2011 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>24 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>11-0015340</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Proceedings of SPIE, the International Society for Optical Engineering</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Chalcogenide or heavy metal oxide glasses are well known for their good transparency in the mid-infrared (MIR) domain as well as their high nonlinear refractive index (n
<sub>2</sub>
) tens to hundreds times higher than that of silica. We have investigated the nonlinear frequency conversion processes, based upon either stimulated Raman scattering (SRS) or soliton fission and soliton self-frequency shift (SSFS) in fibres made up with such highly nonlinear infrared transmitting glasses. First, SRS has been investigated in a chalcogenide As
<sub>2</sub>
S
<sub>3</sub>
step index fibre. In the single pass configuration, under quasi continuous wave 1550 nm pumping, Raman cascade up to the forth Stokes order has been obtained in a 3 m long piece of fibre. The possibility to build a Raman laser thanks to in-fibre written Bragg gratings has also been investigated. A 5 dB Bragg grating has been written successfully in the core. Then, nonlinear frequency conversion in ultra-short pulse regime has been studied in a heavy metal oxide (lead-bismuth-gallium ternary system) glass photonic crystal fibre. Broadband radiation, from 800 nm up to 2.8 μm, has been obtained by pumping an 8 cm long piece of fibre at 1600 nm in sub-picosecond pulsed regime. The nonlinear frequency conversion process was assessed by numerical modelling taking into account the actual fibre cross-section as well as the measured linear and nonlinear parameters and was found to be due to soliton fission and Raman-induced SSFS.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B00A30C</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B40B65K</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B40B65D</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B40B65T</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Conversion fréquence optique</s0>
<s5>03</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Optical frequency conversion</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Diffusion Raman stimulée</s0>
<s5>04</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Stimulated Raman scattering</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Soliton optique</s0>
<s5>05</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Optical solitons</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Déplacement fréquence</s0>
<s5>06</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Frequency shift</s0>
<s5>06</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Desplazamiento frecuencia</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Saut indice</s0>
<s5>07</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Step index</s0>
<s5>07</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Salto indicativo</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Impulsion ultracourte</s0>
<s5>08</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Ultrashort pulse</s0>
<s5>08</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Impulsión ultracorto</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Réseau diffraction</s0>
<s5>09</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Diffraction gratings</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Réseau dans fibre</s0>
<s5>11</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Grating in fiber</s0>
<s5>11</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Red en fibra</s0>
<s5>11</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Réseau Bragg</s0>
<s5>12</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Bragg gratings</s0>
<s5>12</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Optique non linéaire</s0>
<s5>17</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Nonlinear optics</s0>
<s5>17</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Indice réfraction</s0>
<s5>41</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Refractive index</s0>
<s5>41</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Subpicoseconde</s0>
<s5>42</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Subpicosecond</s0>
<s5>42</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Subpicosegundo</s0>
<s5>42</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Fibre optique</s0>
<s5>47</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Optical fibers</s0>
<s5>47</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Fibre microstructurée</s0>
<s5>48</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Microstructured fiber</s0>
<s5>48</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Composé binaire</s0>
<s5>50</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Binary compounds</s0>
<s5>50</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Sulfure d'arsenic</s0>
<s2>NK</s2>
<s5>51</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Arsenic sulfides</s0>
<s2>NK</s2>
<s5>51</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Silice</s0>
<s2>NK</s2>
<s5>57</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Silica</s0>
<s2>NK</s2>
<s5>57</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Chalcogénure</s0>
<s2>NA</s2>
<s5>61</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Chalcogenides</s0>
<s2>NA</s2>
<s5>61</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Métal lourd</s0>
<s5>62</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Heavy metal</s0>
<s5>62</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Metal pesado</s0>
<s5>62</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Oxyde métallique</s0>
<s5>63</s5>
</fC03>
<fC03 i1="20" i2="3" l="ENG">
<s0>Metal oxides</s0>
<s5>63</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>Verre</s0>
<s5>64</s5>
</fC03>
<fC03 i1="21" i2="3" l="ENG">
<s0>Glass</s0>
<s5>64</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>Gallium</s0>
<s2>NC</s2>
<s5>65</s5>
</fC03>
<fC03 i1="22" i2="3" l="ENG">
<s0>Gallium</s0>
<s2>NC</s2>
<s5>65</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>As2S3</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>As S</s0>
<s4>INC</s4>
<s5>75</s5>
</fC03>
<fC03 i1="25" i2="3" l="FRE">
<s0>0130C</s0>
<s4>INC</s4>
<s5>83</s5>
</fC03>
<fC03 i1="26" i2="3" l="FRE">
<s0>4265R</s0>
<s4>INC</s4>
<s5>84</s5>
</fC03>
<fC03 i1="27" i2="3" l="FRE">
<s0>4281</s0>
<s4>INC</s4>
<s5>85</s5>
</fC03>
<fC03 i1="28" i2="3" l="FRE">
<s0>4279D</s0>
<s4>INC</s4>
<s5>86</s5>
</fC03>
<fC03 i1="29" i2="3" l="FRE">
<s0>4265K</s0>
<s4>INC</s4>
<s5>91</s5>
</fC03>
<fC03 i1="30" i2="3" l="FRE">
<s0>4265D</s0>
<s4>INC</s4>
<s5>92</s5>
</fC03>
<fC03 i1="31" i2="3" l="FRE">
<s0>4265T</s0>
<s4>INC</s4>
<s5>93</s5>
</fC03>
<fC03 i1="32" i2="3" l="FRE">
<s0>4281W</s0>
<s4>INC</s4>
<s5>94</s5>
</fC03>
<fC03 i1="33" i2="3" l="FRE">
<s0>Indice réfraction non linéaire</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="33" i2="3" l="ENG">
<s0>Nonlinear refractive index</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC07 i1="01" i2="3" l="FRE">
<s0>Diffusion stimulée</s0>
</fC07>
<fC07 i1="01" i2="3" l="ENG">
<s0>Stimulated scattering</s0>
</fC07>
<fN21>
<s1>003</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>Photonic crystal fibers</s1>
<s2>04</s2>
<s3>Brussels BEL</s3>
<s4>2010</s4>
</fA30>
</pR>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PascalFrancis/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003D81 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Curation/biblio.hfd -nk 003D81 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PascalFrancis
   |étape=   Curation
   |type=    RBID
   |clé=     Pascal:11-0015340
   |texte=   Frequency conversion from near-infrared to mid-infrared in highly nonlinear optical fibres
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024