Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Optical decoherence and persistent spectral hole burning in Tm3+:LiNbO3

Identifieur interne : 003A76 ( PascalFrancis/Curation ); précédent : 003A75; suivant : 003A77

Optical decoherence and persistent spectral hole burning in Tm3+:LiNbO3

Auteurs : C. W. Thiel [États-Unis] ; Y. Sun [États-Unis] ; T. Böttger [États-Unis] ; W. R. Babbitt [États-Unis] ; R. L. Cone [États-Unis]

Source :

RBID : Pascal:10-0351220

Descripteurs français

English descriptors

Abstract

We report studies of decoherence and spectral hole burning for the 794 nm optical transition of thulium-doped lithium niobate. In addition to transient spectral holes due to the 3H4 and 3F4 excited states of Tm3+, persistent spectral holes with lifetimes of up to minutes were observed when a magnetic field of a few hundred Gauss was applied. The observed anti-hole structure identified the hole burning mechanism as population storage in the 169Tm nuclear hyperfine levels. In addition, the magnetic field was effective in suppressing spectral diffusion, increasing the phase memory lifetime from 11 μs at zero field to 23 μs in a field of 320 Gauss applied along the crystal's c-axis. Coupling between Tm3+ and the 7Li and 93Nb spins in the host lattice was also observed and a quadrupole shift of 22 kHz was measured for 7Li at 1.7 K. A Stark shift of 18 kHz cm/V was measured for the optical transition with the electric field applied parallel to the c-axis.
pA  
A01 01  1    @0 0022-2313
A02 01      @0 JLUMA8
A03   1    @0 J. lumin.
A05       @2 130
A06       @2 9
A08 01  1  ENG  @1 Optical decoherence and persistent spectral hole burning in Tm3+:LiNbO3
A09 01  1  ENG  @1 Special Issue based on the Proceedings of the Tenth International Meeting on Hole Burning, Single Molecule, and Related Spectroscopies: Science and Applications (HBSM 2009), Palm cove, Australia, June 22-27, 2009. Issue dedicated to Ivan Lorgeré and Oliver Guillot-Noël
A11 01  1    @1 THIEL (C. W.)
A11 02  1    @1 SUN (Y.)
A11 03  1    @1 BÖTTGER (T.)
A11 04  1    @1 BABBITT (W. R.)
A11 05  1    @1 CONE (R. L.)
A12 01  1    @1 CHANELIERE (Thierry) @9 ed.
A12 02  1    @1 SELLARS (Matt J.) @9 ed.
A12 03  1    @1 MANSON (Neil B.) @9 ed.
A14 01      @1 Department of Physics, Montana State University, EPS 264 @2 Bozeman, MT 59717 @3 USA @Z 1 aut. @Z 4 aut. @Z 5 aut.
A14 02      @1 Spectrum Lab, Montana State University @2 Bozeman, MT 59717 @3 USA @Z 1 aut. @Z 4 aut.
A14 03      @1 Department of Physics, University of South Dakota @2 Vermillion, SD 57069 @3 USA @Z 2 aut.
A14 04      @1 Department of Physics, University of San Francisco @2 San Francisco, CA 94117 @3 USA @Z 3 aut.
A15 01      @1 Laboratoire Aimé Cotton, CNRS-UPR 3321, Univ. Paris-Sud, Bât. 505 @2 91405 Orsay @3 FRA @Z 1 aut.
A15 02      @1 Laser Physics Centre, Research School of Physics and Engineering, The Australian National University @2 Canberra, ACT 0200 @3 AUS @Z 2 aut. @Z 3 aut.
A20       @1 1598-1602
A21       @1 2010
A23 01      @0 ENG
A43 01      @1 INIST @2 14666 @5 354000193752120070
A44       @0 0000 @1 © 2010 INIST-CNRS. All rights reserved.
A45       @0 39 ref.
A47 01  1    @0 10-0351220
A60       @1 P @2 C
A61       @0 A
A64 01  1    @0 Journal of luminescence
A66 01      @0 NLD
C01 01    ENG  @0 We report studies of decoherence and spectral hole burning for the 794 nm optical transition of thulium-doped lithium niobate. In addition to transient spectral holes due to the 3H4 and 3F4 excited states of Tm3+, persistent spectral holes with lifetimes of up to minutes were observed when a magnetic field of a few hundred Gauss was applied. The observed anti-hole structure identified the hole burning mechanism as population storage in the 169Tm nuclear hyperfine levels. In addition, the magnetic field was effective in suppressing spectral diffusion, increasing the phase memory lifetime from 11 μs at zero field to 23 μs in a field of 320 Gauss applied along the crystal's c-axis. Coupling between Tm3+ and the 7Li and 93Nb spins in the host lattice was also observed and a quadrupole shift of 22 kHz was measured for 7Li at 1.7 K. A Stark shift of 18 kHz cm/V was measured for the optical transition with the electric field applied parallel to the c-axis.
C02 01  3    @0 001B70H47
C03 01  3  FRE  @0 Hole burning @5 02
C03 01  3  ENG  @0 Hole burning @5 02
C03 02  X  FRE  @0 Transition optique @5 03
C03 02  X  ENG  @0 Optical transition @5 03
C03 02  X  SPA  @0 Transición óptica @5 03
C03 03  X  FRE  @0 Dopage @5 04
C03 03  X  ENG  @0 Doping @5 04
C03 03  X  SPA  @0 Doping @5 04
C03 04  3  FRE  @0 Addition thulium @5 05
C03 04  3  ENG  @0 Thulium additions @5 05
C03 05  3  FRE  @0 Etat excité @5 06
C03 05  3  ENG  @0 Excited states @5 06
C03 06  3  FRE  @0 Durée vie porteur charge @5 07
C03 06  3  ENG  @0 Carrier lifetime @5 07
C03 07  X  FRE  @0 Décomposition quadripolaire @5 08
C03 07  X  ENG  @0 Quadrupolar splitting @5 08
C03 07  X  SPA  @0 Descomposición cuadripolar @5 08
C03 08  3  FRE  @0 Effet Stark @5 13
C03 08  3  ENG  @0 Stark effect @5 13
C03 09  3  FRE  @0 Effet champ électrique @5 14
C03 09  3  ENG  @0 Electric field effects @5 14
C03 10  3  FRE  @0 Niobate de lithium @2 NK @5 15
C03 10  3  ENG  @0 Lithium niobates @2 NK @5 15
C03 11  3  FRE  @0 LiNbO3 @4 INC @5 52
N21       @1 221
pR  
A30 01  1  ENG  @1 International Conference on Hole Burning, Single Molecule, and Related Spectroscopies: Science and Applications (HBSM 2009) @2 10 @3 Palm Cove AUS @4 2009-06-22

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:10-0351220

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Optical decoherence and persistent spectral hole burning in Tm
<sup>3+</sup>
:LiNbO
<sub>3</sub>
</title>
<author>
<name sortKey="Thiel, C W" sort="Thiel, C W" uniqKey="Thiel C" first="C. W." last="Thiel">C. W. Thiel</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics, Montana State University, EPS 264</s1>
<s2>Bozeman, MT 59717</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Spectrum Lab, Montana State University</s1>
<s2>Bozeman, MT 59717</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Sun, Y" sort="Sun, Y" uniqKey="Sun Y" first="Y." last="Sun">Y. Sun</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Department of Physics, University of South Dakota</s1>
<s2>Vermillion, SD 57069</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Bottger, T" sort="Bottger, T" uniqKey="Bottger T" first="T." last="Böttger">T. Böttger</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Department of Physics, University of San Francisco</s1>
<s2>San Francisco, CA 94117</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Babbitt, W R" sort="Babbitt, W R" uniqKey="Babbitt W" first="W. R." last="Babbitt">W. R. Babbitt</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics, Montana State University, EPS 264</s1>
<s2>Bozeman, MT 59717</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Spectrum Lab, Montana State University</s1>
<s2>Bozeman, MT 59717</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Cone, R L" sort="Cone, R L" uniqKey="Cone R" first="R. L." last="Cone">R. L. Cone</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics, Montana State University, EPS 264</s1>
<s2>Bozeman, MT 59717</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">10-0351220</idno>
<date when="2010">2010</date>
<idno type="stanalyst">PASCAL 10-0351220 INIST</idno>
<idno type="RBID">Pascal:10-0351220</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">002510</idno>
<idno type="wicri:Area/PascalFrancis/Curation">003A76</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Optical decoherence and persistent spectral hole burning in Tm
<sup>3+</sup>
:LiNbO
<sub>3</sub>
</title>
<author>
<name sortKey="Thiel, C W" sort="Thiel, C W" uniqKey="Thiel C" first="C. W." last="Thiel">C. W. Thiel</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics, Montana State University, EPS 264</s1>
<s2>Bozeman, MT 59717</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Spectrum Lab, Montana State University</s1>
<s2>Bozeman, MT 59717</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Sun, Y" sort="Sun, Y" uniqKey="Sun Y" first="Y." last="Sun">Y. Sun</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Department of Physics, University of South Dakota</s1>
<s2>Vermillion, SD 57069</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Bottger, T" sort="Bottger, T" uniqKey="Bottger T" first="T." last="Böttger">T. Böttger</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Department of Physics, University of San Francisco</s1>
<s2>San Francisco, CA 94117</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Babbitt, W R" sort="Babbitt, W R" uniqKey="Babbitt W" first="W. R." last="Babbitt">W. R. Babbitt</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics, Montana State University, EPS 264</s1>
<s2>Bozeman, MT 59717</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Spectrum Lab, Montana State University</s1>
<s2>Bozeman, MT 59717</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Cone, R L" sort="Cone, R L" uniqKey="Cone R" first="R. L." last="Cone">R. L. Cone</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics, Montana State University, EPS 264</s1>
<s2>Bozeman, MT 59717</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Journal of luminescence</title>
<title level="j" type="abbreviated">J. lumin.</title>
<idno type="ISSN">0022-2313</idno>
<imprint>
<date when="2010">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Journal of luminescence</title>
<title level="j" type="abbreviated">J. lumin.</title>
<idno type="ISSN">0022-2313</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Carrier lifetime</term>
<term>Doping</term>
<term>Electric field effects</term>
<term>Excited states</term>
<term>Hole burning</term>
<term>Lithium niobates</term>
<term>Optical transition</term>
<term>Quadrupolar splitting</term>
<term>Stark effect</term>
<term>Thulium additions</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Hole burning</term>
<term>Transition optique</term>
<term>Dopage</term>
<term>Addition thulium</term>
<term>Etat excité</term>
<term>Durée vie porteur charge</term>
<term>Décomposition quadripolaire</term>
<term>Effet Stark</term>
<term>Effet champ électrique</term>
<term>Niobate de lithium</term>
<term>LiNbO3</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Dopage</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We report studies of decoherence and spectral hole burning for the 794 nm optical transition of thulium-doped lithium niobate. In addition to transient spectral holes due to the
<sup>3</sup>
H
<sub>4</sub>
and
<sup>3</sup>
F
<sub>4</sub>
excited states of Tm
<sup>3+</sup>
, persistent spectral holes with lifetimes of up to minutes were observed when a magnetic field of a few hundred Gauss was applied. The observed anti-hole structure identified the hole burning mechanism as population storage in the
<sup>169</sup>
Tm nuclear hyperfine levels. In addition, the magnetic field was effective in suppressing spectral diffusion, increasing the phase memory lifetime from 11 μs at zero field to 23 μs in a field of 320 Gauss applied along the crystal's c-axis. Coupling between Tm
<sup>3+</sup>
and the
<sup>7</sup>
Li and
<sup>93</sup>
Nb spins in the host lattice was also observed and a quadrupole shift of 22 kHz was measured for
<sup>7</sup>
Li at 1.7 K. A Stark shift of 18 kHz cm/V was measured for the optical transition with the electric field applied parallel to the c-axis.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0022-2313</s0>
</fA01>
<fA02 i1="01">
<s0>JLUMA8</s0>
</fA02>
<fA03 i2="1">
<s0>J. lumin.</s0>
</fA03>
<fA05>
<s2>130</s2>
</fA05>
<fA06>
<s2>9</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Optical decoherence and persistent spectral hole burning in Tm
<sup>3+</sup>
:LiNbO
<sub>3</sub>
</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Special Issue based on the Proceedings of the Tenth International Meeting on Hole Burning, Single Molecule, and Related Spectroscopies: Science and Applications (HBSM 2009), Palm cove, Australia, June 22-27, 2009. Issue dedicated to Ivan Lorgeré and Oliver Guillot-Noël</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>THIEL (C. W.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>SUN (Y.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>BÖTTGER (T.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>BABBITT (W. R.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>CONE (R. L.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>CHANELIERE (Thierry)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>SELLARS (Matt J.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="03" i2="1">
<s1>MANSON (Neil B.)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Department of Physics, Montana State University, EPS 264</s1>
<s2>Bozeman, MT 59717</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Spectrum Lab, Montana State University</s1>
<s2>Bozeman, MT 59717</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Department of Physics, University of South Dakota</s1>
<s2>Vermillion, SD 57069</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Department of Physics, University of San Francisco</s1>
<s2>San Francisco, CA 94117</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA15 i1="01">
<s1>Laboratoire Aimé Cotton, CNRS-UPR 3321, Univ. Paris-Sud, Bât. 505</s1>
<s2>91405 Orsay</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</fA15>
<fA15 i1="02">
<s1>Laser Physics Centre, Research School of Physics and Engineering, The Australian National University</s1>
<s2>Canberra, ACT 0200</s2>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA15>
<fA20>
<s1>1598-1602</s1>
</fA20>
<fA21>
<s1>2010</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>14666</s2>
<s5>354000193752120070</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2010 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>39 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>10-0351220</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of luminescence</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>We report studies of decoherence and spectral hole burning for the 794 nm optical transition of thulium-doped lithium niobate. In addition to transient spectral holes due to the
<sup>3</sup>
H
<sub>4</sub>
and
<sup>3</sup>
F
<sub>4</sub>
excited states of Tm
<sup>3+</sup>
, persistent spectral holes with lifetimes of up to minutes were observed when a magnetic field of a few hundred Gauss was applied. The observed anti-hole structure identified the hole burning mechanism as population storage in the
<sup>169</sup>
Tm nuclear hyperfine levels. In addition, the magnetic field was effective in suppressing spectral diffusion, increasing the phase memory lifetime from 11 μs at zero field to 23 μs in a field of 320 Gauss applied along the crystal's c-axis. Coupling between Tm
<sup>3+</sup>
and the
<sup>7</sup>
Li and
<sup>93</sup>
Nb spins in the host lattice was also observed and a quadrupole shift of 22 kHz was measured for
<sup>7</sup>
Li at 1.7 K. A Stark shift of 18 kHz cm/V was measured for the optical transition with the electric field applied parallel to the c-axis.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70H47</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Hole burning</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Hole burning</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Transition optique</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Optical transition</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Transición óptica</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Dopage</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Doping</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Doping</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Addition thulium</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Thulium additions</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Etat excité</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Excited states</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Durée vie porteur charge</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Carrier lifetime</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Décomposition quadripolaire</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Quadrupolar splitting</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Descomposición cuadripolar</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Effet Stark</s0>
<s5>13</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Stark effect</s0>
<s5>13</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Effet champ électrique</s0>
<s5>14</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Electric field effects</s0>
<s5>14</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Niobate de lithium</s0>
<s2>NK</s2>
<s5>15</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Lithium niobates</s0>
<s2>NK</s2>
<s5>15</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>LiNbO3</s0>
<s4>INC</s4>
<s5>52</s5>
</fC03>
<fN21>
<s1>221</s1>
</fN21>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>International Conference on Hole Burning, Single Molecule, and Related Spectroscopies: Science and Applications (HBSM 2009)</s1>
<s2>10</s2>
<s3>Palm Cove AUS</s3>
<s4>2009-06-22</s4>
</fA30>
</pR>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PascalFrancis/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003A76 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Curation/biblio.hfd -nk 003A76 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PascalFrancis
   |étape=   Curation
   |type=    RBID
   |clé=     Pascal:10-0351220
   |texte=   Optical decoherence and persistent spectral hole burning in Tm3+:LiNbO3
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024