Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Brittle fracture during folding of rocks : A finite element study

Identifieur interne : 003048 ( PascalFrancis/Curation ); précédent : 003047; suivant : 003049

Brittle fracture during folding of rocks : A finite element study

Auteurs : P. J Ger [Allemagne] ; S. M. Schmalholz [Suisse] ; D. W. Schmid [Norvège] ; E. Kuhl [États-Unis]

Source :

RBID : Pascal:09-0126196

Descripteurs français

English descriptors

Abstract

The goal of the present work is the development of a novel computational analysis tool to elaborate folding-induced fracture of geological structures. Discrete failure of brittle rocks is characterised by three sets of governing equations: the bulk problem, the interface problem and the crack problem. The former two sets which define the deformation field are highly nonlinear and strongly coupled. They are solved iteratively within a Hansbo-type finite element setting. The latter set defines the crack kinematics. It is linear and solved in a single post-processing step. To elaborate the features of the computational algorithm, we define a unique benchmark problem of a single, geometrically nonlinear plate, which is subjected to layer-parallel in-plane compression combined with different levels of superposed in-plane shear. The resulting folding, or buckling, induces brittle failure in the tensile regime. By systematically increasing the shear strain at constant compression, we develop crack deviation angle versus shear-to-compression ratio tables. We determine the corresponding damage zones, analyse the folding modes and elaborate the force versus amplification diagrams. The proposed two-field folding-induced fracture algorithm can ultimately be applied to interpret natural folded rocks and understand their evolution, structural development and histology.
pA  
A01 01  1    @0 1478-6435
A03   1    @0 Philos. mag. : (2003, Print)
A05       @2 88
A06       @2 28-29
A08 01  1  ENG  @1 Brittle fracture during folding of rocks : A finite element study
A09 01  1  ENG  @1 Instabilities Across The Scales: Part 2
A11 01  1    @1 JÄGER (P.)
A11 02  1    @1 SCHMALHOLZ (S. M.)
A11 03  1    @1 SCHMID (D. W.)
A11 04  1    @1 KUHL (E.)
A12 01  1    @1 SUIKER (Akke S. J.) @9 ed.
A12 02  1    @1 SLUYS (Lambertus J.) @9 ed.
A12 03  1    @1 BUSSO (Esteban P.) @9 ed.
A12 04  1    @1 BENALLAL (Ahmed) @9 ed.
A12 05  1    @1 MÜHLHAUS (Hans-Bernd) @9 ed.
A14 01      @1 Department of Mechanical Engineering, University of Kaiserslautern @2 Kaiserslautern @3 DEU @Z 1 aut.
A14 02      @1 Geological Institute, ETH Zürich @2 Zürich @3 CHE @Z 2 aut.
A14 03      @1 Physics of Geological Processes, University of Oslo @2 Oslo @3 NOR @Z 3 aut.
A14 04      @1 Department of Mechanical Engineering, Stanford University @2 Stanford @3 USA @Z 4 aut.
A15 01      @1 Faculty of Aerospece Engineering, Delft University of Technology @3 NLD @Z 1 aut.
A15 02      @1 Faculty of Civil Engineering and Geosciences, Delft University of Technology @3 NLD @Z 2 aut.
A15 03      @1 Centre des Matériaux, Ecole des Mines de Paris @3 FRA @Z 3 aut.
A15 04      @1 LMT-Cachan, ENS de Cachan/CNRS/Université Paris 6 @3 FRA @Z 4 aut.
A15 05      @1 Earth Systems Science Computational Centre (ESSCC) & The Australian Computational Earth Systems Simulator (ACcESS), a Major National Research Facility, The University of Queensland @2 Brisbane, 4072 @3 AUS @Z 5 aut.
A20       @1 3245-3263
A21       @1 2008
A23 01      @0 ENG
A43 01      @1 INIST @2 134A3 @5 354000184160330030
A44       @0 0000 @1 © 2009 INIST-CNRS. All rights reserved.
A45       @0 24 ref.
A47 01  1    @0 09-0126196
A60       @1 P
A61       @0 A
A64 01  1    @0 Philosophical magazine : (2003. Print)
A66 01      @0 GBR
C01 01    ENG  @0 The goal of the present work is the development of a novel computational analysis tool to elaborate folding-induced fracture of geological structures. Discrete failure of brittle rocks is characterised by three sets of governing equations: the bulk problem, the interface problem and the crack problem. The former two sets which define the deformation field are highly nonlinear and strongly coupled. They are solved iteratively within a Hansbo-type finite element setting. The latter set defines the crack kinematics. It is linear and solved in a single post-processing step. To elaborate the features of the computational algorithm, we define a unique benchmark problem of a single, geometrically nonlinear plate, which is subjected to layer-parallel in-plane compression combined with different levels of superposed in-plane shear. The resulting folding, or buckling, induces brittle failure in the tensile regime. By systematically increasing the shear strain at constant compression, we develop crack deviation angle versus shear-to-compression ratio tables. We determine the corresponding damage zones, analyse the folding modes and elaborate the force versus amplification diagrams. The proposed two-field folding-induced fracture algorithm can ultimately be applied to interpret natural folded rocks and understand their evolution, structural development and histology.
C02 01  3    @0 001B60B20M
C03 01  3  FRE  @0 Rupture fragile @5 01
C03 01  3  ENG  @0 Brittle fracture @5 01
C03 02  3  FRE  @0 Méthode élément fini @5 02
C03 02  3  ENG  @0 Finite element method @5 02
C03 03  3  FRE  @0 Fracture @5 03
C03 03  3  ENG  @0 Fractures @5 03
C03 04  X  FRE  @0 Fissure interface @5 04
C03 04  X  ENG  @0 Interface crack @5 04
C03 04  X  SPA  @0 Fisura interfase @5 04
C03 05  3  FRE  @0 Déformation @5 05
C03 05  3  ENG  @0 Deformation @5 05
C03 06  X  FRE  @0 Effet non linéaire @5 06
C03 06  X  ENG  @0 Non linear effect @5 06
C03 06  X  SPA  @0 Efecto no lineal @5 06
C03 07  3  FRE  @0 Méthode itérative @5 07
C03 07  3  ENG  @0 Iterative methods @5 07
C03 08  X  FRE  @0 Traitement matériau @5 08
C03 08  X  ENG  @0 Material processing @5 08
C03 08  X  SPA  @0 Tratamiento material @5 08
C03 09  3  FRE  @0 Algorithme @5 09
C03 09  3  ENG  @0 Algorithms @5 09
C03 10  3  FRE  @0 Cisaillement @5 10
C03 10  3  ENG  @0 Shear @5 10
C03 11  3  FRE  @0 Flambage @5 11
C03 11  3  ENG  @0 Buckling @5 11
C03 12  3  FRE  @0 Endommagement @5 12
C03 12  3  ENG  @0 Damage @5 12
C03 13  3  FRE  @0 Amplification @5 13
C03 13  3  ENG  @0 Amplification @5 13
C03 14  3  FRE  @0 Roche @5 14
C03 14  3  ENG  @0 Rocks @5 14
C03 15  3  FRE  @0 6220M @4 INC @5 65
N21       @1 089

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:09-0126196

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Brittle fracture during folding of rocks : A finite element study</title>
<author>
<name sortKey="J Ger, P" sort="J Ger, P" uniqKey="J Ger P" first="P." last="J Ger">P. J Ger</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Mechanical Engineering, University of Kaiserslautern</s1>
<s2>Kaiserslautern</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
</affiliation>
</author>
<author>
<name sortKey="Schmalholz, S M" sort="Schmalholz, S M" uniqKey="Schmalholz S" first="S. M." last="Schmalholz">S. M. Schmalholz</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Geological Institute, ETH Zürich</s1>
<s2>Zürich</s2>
<s3>CHE</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Suisse</country>
</affiliation>
</author>
<author>
<name sortKey="Schmid, D W" sort="Schmid, D W" uniqKey="Schmid D" first="D. W." last="Schmid">D. W. Schmid</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Physics of Geological Processes, University of Oslo</s1>
<s2>Oslo</s2>
<s3>NOR</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Norvège</country>
</affiliation>
</author>
<author>
<name sortKey="Kuhl, E" sort="Kuhl, E" uniqKey="Kuhl E" first="E." last="Kuhl">E. Kuhl</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Department of Mechanical Engineering, Stanford University</s1>
<s2>Stanford</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">09-0126196</idno>
<date when="2008">2008</date>
<idno type="stanalyst">PASCAL 09-0126196 INIST</idno>
<idno type="RBID">Pascal:09-0126196</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">002F70</idno>
<idno type="wicri:Area/PascalFrancis/Curation">003048</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Brittle fracture during folding of rocks : A finite element study</title>
<author>
<name sortKey="J Ger, P" sort="J Ger, P" uniqKey="J Ger P" first="P." last="J Ger">P. J Ger</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Mechanical Engineering, University of Kaiserslautern</s1>
<s2>Kaiserslautern</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
</affiliation>
</author>
<author>
<name sortKey="Schmalholz, S M" sort="Schmalholz, S M" uniqKey="Schmalholz S" first="S. M." last="Schmalholz">S. M. Schmalholz</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Geological Institute, ETH Zürich</s1>
<s2>Zürich</s2>
<s3>CHE</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Suisse</country>
</affiliation>
</author>
<author>
<name sortKey="Schmid, D W" sort="Schmid, D W" uniqKey="Schmid D" first="D. W." last="Schmid">D. W. Schmid</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Physics of Geological Processes, University of Oslo</s1>
<s2>Oslo</s2>
<s3>NOR</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Norvège</country>
</affiliation>
</author>
<author>
<name sortKey="Kuhl, E" sort="Kuhl, E" uniqKey="Kuhl E" first="E." last="Kuhl">E. Kuhl</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Department of Mechanical Engineering, Stanford University</s1>
<s2>Stanford</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Philosophical magazine : (2003. Print)</title>
<title level="j" type="abbreviated">Philos. mag. : (2003, Print)</title>
<idno type="ISSN">1478-6435</idno>
<imprint>
<date when="2008">2008</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Philosophical magazine : (2003. Print)</title>
<title level="j" type="abbreviated">Philos. mag. : (2003, Print)</title>
<idno type="ISSN">1478-6435</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Algorithms</term>
<term>Amplification</term>
<term>Brittle fracture</term>
<term>Buckling</term>
<term>Damage</term>
<term>Deformation</term>
<term>Finite element method</term>
<term>Fractures</term>
<term>Interface crack</term>
<term>Iterative methods</term>
<term>Material processing</term>
<term>Non linear effect</term>
<term>Rocks</term>
<term>Shear</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Rupture fragile</term>
<term>Méthode élément fini</term>
<term>Fracture</term>
<term>Fissure interface</term>
<term>Déformation</term>
<term>Effet non linéaire</term>
<term>Méthode itérative</term>
<term>Traitement matériau</term>
<term>Algorithme</term>
<term>Cisaillement</term>
<term>Flambage</term>
<term>Endommagement</term>
<term>Amplification</term>
<term>Roche</term>
<term>6220M</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The goal of the present work is the development of a novel computational analysis tool to elaborate folding-induced fracture of geological structures. Discrete failure of brittle rocks is characterised by three sets of governing equations: the bulk problem, the interface problem and the crack problem. The former two sets which define the deformation field are highly nonlinear and strongly coupled. They are solved iteratively within a Hansbo-type finite element setting. The latter set defines the crack kinematics. It is linear and solved in a single post-processing step. To elaborate the features of the computational algorithm, we define a unique benchmark problem of a single, geometrically nonlinear plate, which is subjected to layer-parallel in-plane compression combined with different levels of superposed in-plane shear. The resulting folding, or buckling, induces brittle failure in the tensile regime. By systematically increasing the shear strain at constant compression, we develop crack deviation angle versus shear-to-compression ratio tables. We determine the corresponding damage zones, analyse the folding modes and elaborate the force versus amplification diagrams. The proposed two-field folding-induced fracture algorithm can ultimately be applied to interpret natural folded rocks and understand their evolution, structural development and histology.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1478-6435</s0>
</fA01>
<fA03 i2="1">
<s0>Philos. mag. : (2003, Print)</s0>
</fA03>
<fA05>
<s2>88</s2>
</fA05>
<fA06>
<s2>28-29</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Brittle fracture during folding of rocks : A finite element study</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Instabilities Across The Scales: Part 2</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>JÄGER (P.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>SCHMALHOLZ (S. M.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>SCHMID (D. W.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>KUHL (E.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>SUIKER (Akke S. J.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>SLUYS (Lambertus J.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="03" i2="1">
<s1>BUSSO (Esteban P.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="04" i2="1">
<s1>BENALLAL (Ahmed)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="05" i2="1">
<s1>MÜHLHAUS (Hans-Bernd)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Department of Mechanical Engineering, University of Kaiserslautern</s1>
<s2>Kaiserslautern</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Geological Institute, ETH Zürich</s1>
<s2>Zürich</s2>
<s3>CHE</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Physics of Geological Processes, University of Oslo</s1>
<s2>Oslo</s2>
<s3>NOR</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Department of Mechanical Engineering, Stanford University</s1>
<s2>Stanford</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA15 i1="01">
<s1>Faculty of Aerospece Engineering, Delft University of Technology</s1>
<s3>NLD</s3>
<sZ>1 aut.</sZ>
</fA15>
<fA15 i1="02">
<s1>Faculty of Civil Engineering and Geosciences, Delft University of Technology</s1>
<s3>NLD</s3>
<sZ>2 aut.</sZ>
</fA15>
<fA15 i1="03">
<s1>Centre des Matériaux, Ecole des Mines de Paris</s1>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
</fA15>
<fA15 i1="04">
<s1>LMT-Cachan, ENS de Cachan/CNRS/Université Paris 6</s1>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
</fA15>
<fA15 i1="05">
<s1>Earth Systems Science Computational Centre (ESSCC) & The Australian Computational Earth Systems Simulator (ACcESS), a Major National Research Facility, The University of Queensland</s1>
<s2>Brisbane, 4072</s2>
<s3>AUS</s3>
<sZ>5 aut.</sZ>
</fA15>
<fA20>
<s1>3245-3263</s1>
</fA20>
<fA21>
<s1>2008</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>134A3</s2>
<s5>354000184160330030</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2009 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>24 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>09-0126196</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Philosophical magazine : (2003. Print)</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The goal of the present work is the development of a novel computational analysis tool to elaborate folding-induced fracture of geological structures. Discrete failure of brittle rocks is characterised by three sets of governing equations: the bulk problem, the interface problem and the crack problem. The former two sets which define the deformation field are highly nonlinear and strongly coupled. They are solved iteratively within a Hansbo-type finite element setting. The latter set defines the crack kinematics. It is linear and solved in a single post-processing step. To elaborate the features of the computational algorithm, we define a unique benchmark problem of a single, geometrically nonlinear plate, which is subjected to layer-parallel in-plane compression combined with different levels of superposed in-plane shear. The resulting folding, or buckling, induces brittle failure in the tensile regime. By systematically increasing the shear strain at constant compression, we develop crack deviation angle versus shear-to-compression ratio tables. We determine the corresponding damage zones, analyse the folding modes and elaborate the force versus amplification diagrams. The proposed two-field folding-induced fracture algorithm can ultimately be applied to interpret natural folded rocks and understand their evolution, structural development and histology.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B60B20M</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Rupture fragile</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Brittle fracture</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Méthode élément fini</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Finite element method</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Fracture</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Fractures</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Fissure interface</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Interface crack</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Fisura interfase</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Déformation</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Deformation</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Effet non linéaire</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Non linear effect</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Efecto no lineal</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Méthode itérative</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Iterative methods</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Traitement matériau</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Material processing</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Tratamiento material</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Algorithme</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Algorithms</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Cisaillement</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Shear</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Flambage</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Buckling</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Endommagement</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Damage</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Amplification</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Amplification</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Roche</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Rocks</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>6220M</s0>
<s4>INC</s4>
<s5>65</s5>
</fC03>
<fN21>
<s1>089</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PascalFrancis/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003048 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Curation/biblio.hfd -nk 003048 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PascalFrancis
   |étape=   Curation
   |type=    RBID
   |clé=     Pascal:09-0126196
   |texte=   Brittle fracture during folding of rocks : A finite element study
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024