Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Brittle fracture during folding of rocks : A finite element study

Identifieur interne : 002F70 ( PascalFrancis/Corpus ); précédent : 002F69; suivant : 002F71

Brittle fracture during folding of rocks : A finite element study

Auteurs : P. J Ger ; S. M. Schmalholz ; D. W. Schmid ; E. Kuhl

Source :

RBID : Pascal:09-0126196

Descripteurs français

English descriptors

Abstract

The goal of the present work is the development of a novel computational analysis tool to elaborate folding-induced fracture of geological structures. Discrete failure of brittle rocks is characterised by three sets of governing equations: the bulk problem, the interface problem and the crack problem. The former two sets which define the deformation field are highly nonlinear and strongly coupled. They are solved iteratively within a Hansbo-type finite element setting. The latter set defines the crack kinematics. It is linear and solved in a single post-processing step. To elaborate the features of the computational algorithm, we define a unique benchmark problem of a single, geometrically nonlinear plate, which is subjected to layer-parallel in-plane compression combined with different levels of superposed in-plane shear. The resulting folding, or buckling, induces brittle failure in the tensile regime. By systematically increasing the shear strain at constant compression, we develop crack deviation angle versus shear-to-compression ratio tables. We determine the corresponding damage zones, analyse the folding modes and elaborate the force versus amplification diagrams. The proposed two-field folding-induced fracture algorithm can ultimately be applied to interpret natural folded rocks and understand their evolution, structural development and histology.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 1478-6435
A03   1    @0 Philos. mag. : (2003, Print)
A05       @2 88
A06       @2 28-29
A08 01  1  ENG  @1 Brittle fracture during folding of rocks : A finite element study
A09 01  1  ENG  @1 Instabilities Across The Scales: Part 2
A11 01  1    @1 JÄGER (P.)
A11 02  1    @1 SCHMALHOLZ (S. M.)
A11 03  1    @1 SCHMID (D. W.)
A11 04  1    @1 KUHL (E.)
A12 01  1    @1 SUIKER (Akke S. J.) @9 ed.
A12 02  1    @1 SLUYS (Lambertus J.) @9 ed.
A12 03  1    @1 BUSSO (Esteban P.) @9 ed.
A12 04  1    @1 BENALLAL (Ahmed) @9 ed.
A12 05  1    @1 MÜHLHAUS (Hans-Bernd) @9 ed.
A14 01      @1 Department of Mechanical Engineering, University of Kaiserslautern @2 Kaiserslautern @3 DEU @Z 1 aut.
A14 02      @1 Geological Institute, ETH Zürich @2 Zürich @3 CHE @Z 2 aut.
A14 03      @1 Physics of Geological Processes, University of Oslo @2 Oslo @3 NOR @Z 3 aut.
A14 04      @1 Department of Mechanical Engineering, Stanford University @2 Stanford @3 USA @Z 4 aut.
A15 01      @1 Faculty of Aerospece Engineering, Delft University of Technology @3 NLD @Z 1 aut.
A15 02      @1 Faculty of Civil Engineering and Geosciences, Delft University of Technology @3 NLD @Z 2 aut.
A15 03      @1 Centre des Matériaux, Ecole des Mines de Paris @3 FRA @Z 3 aut.
A15 04      @1 LMT-Cachan, ENS de Cachan/CNRS/Université Paris 6 @3 FRA @Z 4 aut.
A15 05      @1 Earth Systems Science Computational Centre (ESSCC) & The Australian Computational Earth Systems Simulator (ACcESS), a Major National Research Facility, The University of Queensland @2 Brisbane, 4072 @3 AUS @Z 5 aut.
A20       @1 3245-3263
A21       @1 2008
A23 01      @0 ENG
A43 01      @1 INIST @2 134A3 @5 354000184160330030
A44       @0 0000 @1 © 2009 INIST-CNRS. All rights reserved.
A45       @0 24 ref.
A47 01  1    @0 09-0126196
A60       @1 P
A61       @0 A
A64 01  1    @0 Philosophical magazine : (2003. Print)
A66 01      @0 GBR
C01 01    ENG  @0 The goal of the present work is the development of a novel computational analysis tool to elaborate folding-induced fracture of geological structures. Discrete failure of brittle rocks is characterised by three sets of governing equations: the bulk problem, the interface problem and the crack problem. The former two sets which define the deformation field are highly nonlinear and strongly coupled. They are solved iteratively within a Hansbo-type finite element setting. The latter set defines the crack kinematics. It is linear and solved in a single post-processing step. To elaborate the features of the computational algorithm, we define a unique benchmark problem of a single, geometrically nonlinear plate, which is subjected to layer-parallel in-plane compression combined with different levels of superposed in-plane shear. The resulting folding, or buckling, induces brittle failure in the tensile regime. By systematically increasing the shear strain at constant compression, we develop crack deviation angle versus shear-to-compression ratio tables. We determine the corresponding damage zones, analyse the folding modes and elaborate the force versus amplification diagrams. The proposed two-field folding-induced fracture algorithm can ultimately be applied to interpret natural folded rocks and understand their evolution, structural development and histology.
C02 01  3    @0 001B60B20M
C03 01  3  FRE  @0 Rupture fragile @5 01
C03 01  3  ENG  @0 Brittle fracture @5 01
C03 02  3  FRE  @0 Méthode élément fini @5 02
C03 02  3  ENG  @0 Finite element method @5 02
C03 03  3  FRE  @0 Fracture @5 03
C03 03  3  ENG  @0 Fractures @5 03
C03 04  X  FRE  @0 Fissure interface @5 04
C03 04  X  ENG  @0 Interface crack @5 04
C03 04  X  SPA  @0 Fisura interfase @5 04
C03 05  3  FRE  @0 Déformation @5 05
C03 05  3  ENG  @0 Deformation @5 05
C03 06  X  FRE  @0 Effet non linéaire @5 06
C03 06  X  ENG  @0 Non linear effect @5 06
C03 06  X  SPA  @0 Efecto no lineal @5 06
C03 07  3  FRE  @0 Méthode itérative @5 07
C03 07  3  ENG  @0 Iterative methods @5 07
C03 08  X  FRE  @0 Traitement matériau @5 08
C03 08  X  ENG  @0 Material processing @5 08
C03 08  X  SPA  @0 Tratamiento material @5 08
C03 09  3  FRE  @0 Algorithme @5 09
C03 09  3  ENG  @0 Algorithms @5 09
C03 10  3  FRE  @0 Cisaillement @5 10
C03 10  3  ENG  @0 Shear @5 10
C03 11  3  FRE  @0 Flambage @5 11
C03 11  3  ENG  @0 Buckling @5 11
C03 12  3  FRE  @0 Endommagement @5 12
C03 12  3  ENG  @0 Damage @5 12
C03 13  3  FRE  @0 Amplification @5 13
C03 13  3  ENG  @0 Amplification @5 13
C03 14  3  FRE  @0 Roche @5 14
C03 14  3  ENG  @0 Rocks @5 14
C03 15  3  FRE  @0 6220M @4 INC @5 65
N21       @1 089

Format Inist (serveur)

NO : PASCAL 09-0126196 INIST
ET : Brittle fracture during folding of rocks : A finite element study
AU : JÄGER (P.); SCHMALHOLZ (S. M.); SCHMID (D. W.); KUHL (E.); SUIKER (Akke S. J.); SLUYS (Lambertus J.); BUSSO (Esteban P.); BENALLAL (Ahmed); MÜHLHAUS (Hans-Bernd)
AF : Department of Mechanical Engineering, University of Kaiserslautern/Kaiserslautern/Allemagne (1 aut.); Geological Institute, ETH Zürich/Zürich/Suisse (2 aut.); Physics of Geological Processes, University of Oslo/Oslo/Norvège (3 aut.); Department of Mechanical Engineering, Stanford University/Stanford/Etats-Unis (4 aut.); Faculty of Aerospece Engineering, Delft University of Technology/Pays-Bas (1 aut.); Faculty of Civil Engineering and Geosciences, Delft University of Technology/Pays-Bas (2 aut.); Centre des Matériaux, Ecole des Mines de Paris/France (3 aut.); LMT-Cachan, ENS de Cachan/CNRS/Université Paris 6/France (4 aut.); Earth Systems Science Computational Centre (ESSCC) & The Australian Computational Earth Systems Simulator (ACcESS), a Major National Research Facility, The University of Queensland/Brisbane, 4072/Australie (5 aut.)
DT : Publication en série; Niveau analytique
SO : Philosophical magazine : (2003. Print); ISSN 1478-6435; Royaume-Uni; Da. 2008; Vol. 88; No. 28-29; Pp. 3245-3263; Bibl. 24 ref.
LA : Anglais
EA : The goal of the present work is the development of a novel computational analysis tool to elaborate folding-induced fracture of geological structures. Discrete failure of brittle rocks is characterised by three sets of governing equations: the bulk problem, the interface problem and the crack problem. The former two sets which define the deformation field are highly nonlinear and strongly coupled. They are solved iteratively within a Hansbo-type finite element setting. The latter set defines the crack kinematics. It is linear and solved in a single post-processing step. To elaborate the features of the computational algorithm, we define a unique benchmark problem of a single, geometrically nonlinear plate, which is subjected to layer-parallel in-plane compression combined with different levels of superposed in-plane shear. The resulting folding, or buckling, induces brittle failure in the tensile regime. By systematically increasing the shear strain at constant compression, we develop crack deviation angle versus shear-to-compression ratio tables. We determine the corresponding damage zones, analyse the folding modes and elaborate the force versus amplification diagrams. The proposed two-field folding-induced fracture algorithm can ultimately be applied to interpret natural folded rocks and understand their evolution, structural development and histology.
CC : 001B60B20M
FD : Rupture fragile; Méthode élément fini; Fracture; Fissure interface; Déformation; Effet non linéaire; Méthode itérative; Traitement matériau; Algorithme; Cisaillement; Flambage; Endommagement; Amplification; Roche; 6220M
ED : Brittle fracture; Finite element method; Fractures; Interface crack; Deformation; Non linear effect; Iterative methods; Material processing; Algorithms; Shear; Buckling; Damage; Amplification; Rocks
SD : Fisura interfase; Efecto no lineal; Tratamiento material
LO : INIST-134A3.354000184160330030
ID : 09-0126196

Links to Exploration step

Pascal:09-0126196

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Brittle fracture during folding of rocks : A finite element study</title>
<author>
<name sortKey="J Ger, P" sort="J Ger, P" uniqKey="J Ger P" first="P." last="J Ger">P. J Ger</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Mechanical Engineering, University of Kaiserslautern</s1>
<s2>Kaiserslautern</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Schmalholz, S M" sort="Schmalholz, S M" uniqKey="Schmalholz S" first="S. M." last="Schmalholz">S. M. Schmalholz</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Geological Institute, ETH Zürich</s1>
<s2>Zürich</s2>
<s3>CHE</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Schmid, D W" sort="Schmid, D W" uniqKey="Schmid D" first="D. W." last="Schmid">D. W. Schmid</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Physics of Geological Processes, University of Oslo</s1>
<s2>Oslo</s2>
<s3>NOR</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Kuhl, E" sort="Kuhl, E" uniqKey="Kuhl E" first="E." last="Kuhl">E. Kuhl</name>
<affiliation>
<inist:fA14 i1="04">
<s1>Department of Mechanical Engineering, Stanford University</s1>
<s2>Stanford</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">09-0126196</idno>
<date when="2008">2008</date>
<idno type="stanalyst">PASCAL 09-0126196 INIST</idno>
<idno type="RBID">Pascal:09-0126196</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">002F70</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Brittle fracture during folding of rocks : A finite element study</title>
<author>
<name sortKey="J Ger, P" sort="J Ger, P" uniqKey="J Ger P" first="P." last="J Ger">P. J Ger</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Mechanical Engineering, University of Kaiserslautern</s1>
<s2>Kaiserslautern</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Schmalholz, S M" sort="Schmalholz, S M" uniqKey="Schmalholz S" first="S. M." last="Schmalholz">S. M. Schmalholz</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Geological Institute, ETH Zürich</s1>
<s2>Zürich</s2>
<s3>CHE</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Schmid, D W" sort="Schmid, D W" uniqKey="Schmid D" first="D. W." last="Schmid">D. W. Schmid</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Physics of Geological Processes, University of Oslo</s1>
<s2>Oslo</s2>
<s3>NOR</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Kuhl, E" sort="Kuhl, E" uniqKey="Kuhl E" first="E." last="Kuhl">E. Kuhl</name>
<affiliation>
<inist:fA14 i1="04">
<s1>Department of Mechanical Engineering, Stanford University</s1>
<s2>Stanford</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Philosophical magazine : (2003. Print)</title>
<title level="j" type="abbreviated">Philos. mag. : (2003, Print)</title>
<idno type="ISSN">1478-6435</idno>
<imprint>
<date when="2008">2008</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Philosophical magazine : (2003. Print)</title>
<title level="j" type="abbreviated">Philos. mag. : (2003, Print)</title>
<idno type="ISSN">1478-6435</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Algorithms</term>
<term>Amplification</term>
<term>Brittle fracture</term>
<term>Buckling</term>
<term>Damage</term>
<term>Deformation</term>
<term>Finite element method</term>
<term>Fractures</term>
<term>Interface crack</term>
<term>Iterative methods</term>
<term>Material processing</term>
<term>Non linear effect</term>
<term>Rocks</term>
<term>Shear</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Rupture fragile</term>
<term>Méthode élément fini</term>
<term>Fracture</term>
<term>Fissure interface</term>
<term>Déformation</term>
<term>Effet non linéaire</term>
<term>Méthode itérative</term>
<term>Traitement matériau</term>
<term>Algorithme</term>
<term>Cisaillement</term>
<term>Flambage</term>
<term>Endommagement</term>
<term>Amplification</term>
<term>Roche</term>
<term>6220M</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The goal of the present work is the development of a novel computational analysis tool to elaborate folding-induced fracture of geological structures. Discrete failure of brittle rocks is characterised by three sets of governing equations: the bulk problem, the interface problem and the crack problem. The former two sets which define the deformation field are highly nonlinear and strongly coupled. They are solved iteratively within a Hansbo-type finite element setting. The latter set defines the crack kinematics. It is linear and solved in a single post-processing step. To elaborate the features of the computational algorithm, we define a unique benchmark problem of a single, geometrically nonlinear plate, which is subjected to layer-parallel in-plane compression combined with different levels of superposed in-plane shear. The resulting folding, or buckling, induces brittle failure in the tensile regime. By systematically increasing the shear strain at constant compression, we develop crack deviation angle versus shear-to-compression ratio tables. We determine the corresponding damage zones, analyse the folding modes and elaborate the force versus amplification diagrams. The proposed two-field folding-induced fracture algorithm can ultimately be applied to interpret natural folded rocks and understand their evolution, structural development and histology.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1478-6435</s0>
</fA01>
<fA03 i2="1">
<s0>Philos. mag. : (2003, Print)</s0>
</fA03>
<fA05>
<s2>88</s2>
</fA05>
<fA06>
<s2>28-29</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Brittle fracture during folding of rocks : A finite element study</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Instabilities Across The Scales: Part 2</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>JÄGER (P.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>SCHMALHOLZ (S. M.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>SCHMID (D. W.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>KUHL (E.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>SUIKER (Akke S. J.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>SLUYS (Lambertus J.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="03" i2="1">
<s1>BUSSO (Esteban P.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="04" i2="1">
<s1>BENALLAL (Ahmed)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="05" i2="1">
<s1>MÜHLHAUS (Hans-Bernd)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Department of Mechanical Engineering, University of Kaiserslautern</s1>
<s2>Kaiserslautern</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Geological Institute, ETH Zürich</s1>
<s2>Zürich</s2>
<s3>CHE</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Physics of Geological Processes, University of Oslo</s1>
<s2>Oslo</s2>
<s3>NOR</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Department of Mechanical Engineering, Stanford University</s1>
<s2>Stanford</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA15 i1="01">
<s1>Faculty of Aerospece Engineering, Delft University of Technology</s1>
<s3>NLD</s3>
<sZ>1 aut.</sZ>
</fA15>
<fA15 i1="02">
<s1>Faculty of Civil Engineering and Geosciences, Delft University of Technology</s1>
<s3>NLD</s3>
<sZ>2 aut.</sZ>
</fA15>
<fA15 i1="03">
<s1>Centre des Matériaux, Ecole des Mines de Paris</s1>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
</fA15>
<fA15 i1="04">
<s1>LMT-Cachan, ENS de Cachan/CNRS/Université Paris 6</s1>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
</fA15>
<fA15 i1="05">
<s1>Earth Systems Science Computational Centre (ESSCC) & The Australian Computational Earth Systems Simulator (ACcESS), a Major National Research Facility, The University of Queensland</s1>
<s2>Brisbane, 4072</s2>
<s3>AUS</s3>
<sZ>5 aut.</sZ>
</fA15>
<fA20>
<s1>3245-3263</s1>
</fA20>
<fA21>
<s1>2008</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>134A3</s2>
<s5>354000184160330030</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2009 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>24 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>09-0126196</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Philosophical magazine : (2003. Print)</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The goal of the present work is the development of a novel computational analysis tool to elaborate folding-induced fracture of geological structures. Discrete failure of brittle rocks is characterised by three sets of governing equations: the bulk problem, the interface problem and the crack problem. The former two sets which define the deformation field are highly nonlinear and strongly coupled. They are solved iteratively within a Hansbo-type finite element setting. The latter set defines the crack kinematics. It is linear and solved in a single post-processing step. To elaborate the features of the computational algorithm, we define a unique benchmark problem of a single, geometrically nonlinear plate, which is subjected to layer-parallel in-plane compression combined with different levels of superposed in-plane shear. The resulting folding, or buckling, induces brittle failure in the tensile regime. By systematically increasing the shear strain at constant compression, we develop crack deviation angle versus shear-to-compression ratio tables. We determine the corresponding damage zones, analyse the folding modes and elaborate the force versus amplification diagrams. The proposed two-field folding-induced fracture algorithm can ultimately be applied to interpret natural folded rocks and understand their evolution, structural development and histology.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B60B20M</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Rupture fragile</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Brittle fracture</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Méthode élément fini</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Finite element method</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Fracture</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Fractures</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Fissure interface</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Interface crack</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Fisura interfase</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Déformation</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Deformation</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Effet non linéaire</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Non linear effect</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Efecto no lineal</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Méthode itérative</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Iterative methods</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Traitement matériau</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Material processing</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Tratamiento material</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Algorithme</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Algorithms</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Cisaillement</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Shear</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Flambage</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Buckling</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Endommagement</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Damage</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Amplification</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Amplification</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Roche</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Rocks</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>6220M</s0>
<s4>INC</s4>
<s5>65</s5>
</fC03>
<fN21>
<s1>089</s1>
</fN21>
</pA>
</standard>
<server>
<NO>PASCAL 09-0126196 INIST</NO>
<ET>Brittle fracture during folding of rocks : A finite element study</ET>
<AU>JÄGER (P.); SCHMALHOLZ (S. M.); SCHMID (D. W.); KUHL (E.); SUIKER (Akke S. J.); SLUYS (Lambertus J.); BUSSO (Esteban P.); BENALLAL (Ahmed); MÜHLHAUS (Hans-Bernd)</AU>
<AF>Department of Mechanical Engineering, University of Kaiserslautern/Kaiserslautern/Allemagne (1 aut.); Geological Institute, ETH Zürich/Zürich/Suisse (2 aut.); Physics of Geological Processes, University of Oslo/Oslo/Norvège (3 aut.); Department of Mechanical Engineering, Stanford University/Stanford/Etats-Unis (4 aut.); Faculty of Aerospece Engineering, Delft University of Technology/Pays-Bas (1 aut.); Faculty of Civil Engineering and Geosciences, Delft University of Technology/Pays-Bas (2 aut.); Centre des Matériaux, Ecole des Mines de Paris/France (3 aut.); LMT-Cachan, ENS de Cachan/CNRS/Université Paris 6/France (4 aut.); Earth Systems Science Computational Centre (ESSCC) & The Australian Computational Earth Systems Simulator (ACcESS), a Major National Research Facility, The University of Queensland/Brisbane, 4072/Australie (5 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Philosophical magazine : (2003. Print); ISSN 1478-6435; Royaume-Uni; Da. 2008; Vol. 88; No. 28-29; Pp. 3245-3263; Bibl. 24 ref.</SO>
<LA>Anglais</LA>
<EA>The goal of the present work is the development of a novel computational analysis tool to elaborate folding-induced fracture of geological structures. Discrete failure of brittle rocks is characterised by three sets of governing equations: the bulk problem, the interface problem and the crack problem. The former two sets which define the deformation field are highly nonlinear and strongly coupled. They are solved iteratively within a Hansbo-type finite element setting. The latter set defines the crack kinematics. It is linear and solved in a single post-processing step. To elaborate the features of the computational algorithm, we define a unique benchmark problem of a single, geometrically nonlinear plate, which is subjected to layer-parallel in-plane compression combined with different levels of superposed in-plane shear. The resulting folding, or buckling, induces brittle failure in the tensile regime. By systematically increasing the shear strain at constant compression, we develop crack deviation angle versus shear-to-compression ratio tables. We determine the corresponding damage zones, analyse the folding modes and elaborate the force versus amplification diagrams. The proposed two-field folding-induced fracture algorithm can ultimately be applied to interpret natural folded rocks and understand their evolution, structural development and histology.</EA>
<CC>001B60B20M</CC>
<FD>Rupture fragile; Méthode élément fini; Fracture; Fissure interface; Déformation; Effet non linéaire; Méthode itérative; Traitement matériau; Algorithme; Cisaillement; Flambage; Endommagement; Amplification; Roche; 6220M</FD>
<ED>Brittle fracture; Finite element method; Fractures; Interface crack; Deformation; Non linear effect; Iterative methods; Material processing; Algorithms; Shear; Buckling; Damage; Amplification; Rocks</ED>
<SD>Fisura interfase; Efecto no lineal; Tratamiento material</SD>
<LO>INIST-134A3.354000184160330030</LO>
<ID>09-0126196</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002F70 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 002F70 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:09-0126196
   |texte=   Brittle fracture during folding of rocks : A finite element study
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024