Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Evolution of the glacial landscape of the Southern Alps of New Zealand : Insights from a glacial erosion model

Identifieur interne : 002C83 ( PascalFrancis/Curation ); précédent : 002C82; suivant : 002C84

Evolution of the glacial landscape of the Southern Alps of New Zealand : Insights from a glacial erosion model

Auteurs : Frédéric Herman [Australie, États-Unis, Suisse] ; Jean Braun [France]

Source :

RBID : Pascal:08-0395030

Descripteurs français

English descriptors

Abstract

[1] A new version of a landscape evolution model that includes the evolution of an ice cap at a 103 to 105 year timescale and its associated erosion patterns is presented and applied to the Southern Alps of New Zealand. Modeling of the ice cap evolution is performed on a higher-resolution grid (i.e., ∼100 m) than previously (Braun et al., 1998). It predicts which parts of the landscape are, and have been, affected by glacial erosion. The model results highlight the complexity of the erosion patterns induced by ice caps and glaciers. Glacial erosion in a tectonically active area is, as suggested by the model, not uniform across the mountain range. Furthermore, high rock uplift rates, heavy precipitation, and climatic oscillations constantly interact. The feedback mechanisms are such that they render the landform very dynamic and transient. However, under conditions of reduced rock uplift rate and precipitation, the landform becomes more stable at the timescale of the glacial cycle. Finally, the modeling results favor a tectonic model in the Southern Alps in which the maximum rock uplift is offset from the Alpine Fault.
pA  
A01 01  1    @0 0148-0227
A03   1    @0 J. geophys. res.
A05       @2 113
A06       @2 F2
A08 01  1  ENG  @1 Evolution of the glacial landscape of the Southern Alps of New Zealand : Insights from a glacial erosion model
A11 01  1    @1 HERMAN (Frédéric)
A11 02  1    @1 BRAUN (Jean)
A14 01      @1 Research School of Earth Sciences, Australian National University @2 Canberra, ACT @3 AUS @Z 1 aut.
A14 02      @1 Geological and Planetary Science Division, California Institute of Technology @2 Pasadena, California @3 USA @Z 1 aut.
A14 03      @1 Geologisches Institut, ETH Zurich @2 Zurich @3 CHE @Z 1 aut.
A14 04      @1 Géosciences Rennes, Université de Rennes 1 @2 Rennes @3 FRA @Z 2 aut.
A20       @2 F02009.1-F02009.24
A21       @1 2008
A23 01      @0 ENG
A43 01      @1 INIST @2 3144 @5 354000197384270090
A44       @0 0000 @1 © 2008 INIST-CNRS. All rights reserved.
A45       @0 1 p.1/2
A47 01  1    @0 08-0395030
A60       @1 P
A61       @0 A
A64 01  1    @0 Journal of geophysical research
A66 01      @0 USA
C01 01    ENG  @0 [1] A new version of a landscape evolution model that includes the evolution of an ice cap at a 103 to 105 year timescale and its associated erosion patterns is presented and applied to the Southern Alps of New Zealand. Modeling of the ice cap evolution is performed on a higher-resolution grid (i.e., ∼100 m) than previously (Braun et al., 1998). It predicts which parts of the landscape are, and have been, affected by glacial erosion. The model results highlight the complexity of the erosion patterns induced by ice caps and glaciers. Glacial erosion in a tectonically active area is, as suggested by the model, not uniform across the mountain range. Furthermore, high rock uplift rates, heavy precipitation, and climatic oscillations constantly interact. The feedback mechanisms are such that they render the landform very dynamic and transient. However, under conditions of reduced rock uplift rate and precipitation, the landform becomes more stable at the timescale of the glacial cycle. Finally, the modeling results favor a tectonic model in the Southern Alps in which the maximum rock uplift is offset from the Alpine Fault.
C02 01  3    @0 001E
C02 02  2    @0 001E01
C02 03  2    @0 220
C03 01  2  FRE  @0 Paysage @5 01
C03 01  2  ENG  @0 landscapes @5 01
C03 01  2  SPA  @0 Paisaje @5 01
C03 02  2  FRE  @0 Erosion glaciaire @5 02
C03 02  2  ENG  @0 glacial erosion @5 02
C03 02  2  SPA  @0 Erosión glaciar @5 02
C03 03  2  FRE  @0 Modèle tectonique @5 03
C03 03  2  ENG  @0 tectonic models @5 03
C03 04  2  FRE  @0 Calotte glaciaire @5 04
C03 04  2  ENG  @0 ice caps @5 04
C03 04  2  SPA  @0 Casquete glaciar @5 04
C03 05  X  FRE  @0 Modélisation @5 05
C03 05  X  ENG  @0 Modeling @5 05
C03 05  X  SPA  @0 Modelización @5 05
C03 06  2  FRE  @0 Aluminium @5 06
C03 06  2  ENG  @0 aluminum @5 06
C03 06  2  SPA  @0 Aluminio @5 06
C03 07  X  FRE  @0 Complexité @5 07
C03 07  X  ENG  @0 Complexity @5 07
C03 07  X  SPA  @0 Complejidad @5 07
C03 08  2  FRE  @0 Glacier @5 08
C03 08  2  ENG  @0 glaciers @5 08
C03 08  2  SPA  @0 Glaciar @5 08
C03 09  2  FRE  @0 Massif montagneux @5 09
C03 09  2  ENG  @0 mountains @5 09
C03 09  2  SPA  @0 Macizo montañoso @5 09
C03 10  2  FRE  @0 Surrection @5 11
C03 10  2  ENG  @0 uplifts @5 11
C03 11  2  FRE  @0 Précipitation atmosphérique @5 12
C03 11  2  ENG  @0 atmospheric precipitation @5 12
C03 11  2  SPA  @0 Precipitación atmosférica @5 12
C03 12  2  FRE  @0 Oscillation @5 13
C03 12  2  ENG  @0 oscillations @5 13
C03 12  2  SPA  @0 Oscilación @5 13
C03 13  2  FRE  @0 Rétroaction @5 14
C03 13  2  ENG  @0 feedback @5 14
C03 14  X  FRE  @0 Boucle réaction @5 15
C03 14  X  ENG  @0 Feedback @5 15
C03 14  X  SPA  @0 Retroalimentación @5 15
C03 15  2  FRE  @0 Forme relief @5 16
C03 15  2  ENG  @0 landforms @5 16
C03 16  2  FRE  @0 Dynamique @5 17
C03 16  2  ENG  @0 dynamics @5 17
C03 16  2  SPA  @0 Dinámica @5 17
C03 17  2  FRE  @0 Phénomène transitoire @5 18
C03 17  2  ENG  @0 transient phenomena @5 18
C03 18  2  FRE  @0 Cycle @5 19
C03 18  2  ENG  @0 cycles @5 19
C03 19  2  FRE  @0 Alpes @2 NG @5 61
C03 19  2  ENG  @0 Alps @2 NG @5 61
C03 19  2  SPA  @0 Alpes @2 NG @5 61
C03 20  2  FRE  @0 Nouvelle Zélande @2 NG @5 62
C03 20  2  ENG  @0 New Zealand @2 NG @5 62
C03 20  2  SPA  @0 Nueva Zelandia @2 NG @5 62
C03 21  2  FRE  @0 Faille Alpine @2 NG @5 64
C03 21  2  ENG  @0 Alpine Fault @2 NG @5 64
C03 21  2  SPA  @0 Falla Alpina @2 NG @5 64
C07 01  2  FRE  @0 Europe @2 564
C07 01  2  ENG  @0 Europe @2 564
C07 01  2  SPA  @0 Europa @2 564
C07 02  2  FRE  @0 Australasie
C07 02  2  ENG  @0 Australasia
C07 02  2  SPA  @0 Australasia
C07 03  2  FRE  @0 Nouvelle Zélande Ile Sud @2 NG
C07 03  2  ENG  @0 South Island @2 NG
C07 03  2  SPA  @0 Nueva Zelanda Isla Sur @2 NG
N21       @1 252
N44 01      @1 OTO
N82       @1 OTO

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:08-0395030

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Evolution of the glacial landscape of the Southern Alps of New Zealand : Insights from a glacial erosion model</title>
<author>
<name sortKey="Herman, Frederic" sort="Herman, Frederic" uniqKey="Herman F" first="Frédéric" last="Herman">Frédéric Herman</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Research School of Earth Sciences, Australian National University</s1>
<s2>Canberra, ACT</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Geological and Planetary Science Division, California Institute of Technology</s1>
<s2>Pasadena, California</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Geologisches Institut, ETH Zurich</s1>
<s2>Zurich</s2>
<s3>CHE</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>Suisse</country>
</affiliation>
</author>
<author>
<name sortKey="Braun, Jean" sort="Braun, Jean" uniqKey="Braun J" first="Jean" last="Braun">Jean Braun</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Géosciences Rennes, Université de Rennes 1</s1>
<s2>Rennes</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">08-0395030</idno>
<date when="2008">2008</date>
<idno type="stanalyst">PASCAL 08-0395030 INIST</idno>
<idno type="RBID">Pascal:08-0395030</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">003369</idno>
<idno type="wicri:Area/PascalFrancis/Curation">002C83</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Evolution of the glacial landscape of the Southern Alps of New Zealand : Insights from a glacial erosion model</title>
<author>
<name sortKey="Herman, Frederic" sort="Herman, Frederic" uniqKey="Herman F" first="Frédéric" last="Herman">Frédéric Herman</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Research School of Earth Sciences, Australian National University</s1>
<s2>Canberra, ACT</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Geological and Planetary Science Division, California Institute of Technology</s1>
<s2>Pasadena, California</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Geologisches Institut, ETH Zurich</s1>
<s2>Zurich</s2>
<s3>CHE</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>Suisse</country>
</affiliation>
</author>
<author>
<name sortKey="Braun, Jean" sort="Braun, Jean" uniqKey="Braun J" first="Jean" last="Braun">Jean Braun</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Géosciences Rennes, Université de Rennes 1</s1>
<s2>Rennes</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Journal of geophysical research</title>
<title level="j" type="abbreviated">J. geophys. res.</title>
<idno type="ISSN">0148-0227</idno>
<imprint>
<date when="2008">2008</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Journal of geophysical research</title>
<title level="j" type="abbreviated">J. geophys. res.</title>
<idno type="ISSN">0148-0227</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Alpine Fault</term>
<term>Alps</term>
<term>Complexity</term>
<term>Feedback</term>
<term>Modeling</term>
<term>New Zealand</term>
<term>aluminum</term>
<term>atmospheric precipitation</term>
<term>cycles</term>
<term>dynamics</term>
<term>feedback</term>
<term>glacial erosion</term>
<term>glaciers</term>
<term>ice caps</term>
<term>landforms</term>
<term>landscapes</term>
<term>mountains</term>
<term>oscillations</term>
<term>tectonic models</term>
<term>transient phenomena</term>
<term>uplifts</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Paysage</term>
<term>Erosion glaciaire</term>
<term>Modèle tectonique</term>
<term>Calotte glaciaire</term>
<term>Modélisation</term>
<term>Aluminium</term>
<term>Complexité</term>
<term>Glacier</term>
<term>Massif montagneux</term>
<term>Surrection</term>
<term>Précipitation atmosphérique</term>
<term>Oscillation</term>
<term>Rétroaction</term>
<term>Boucle réaction</term>
<term>Forme relief</term>
<term>Dynamique</term>
<term>Phénomène transitoire</term>
<term>Cycle</term>
<term>Alpes</term>
<term>Nouvelle Zélande</term>
<term>Faille Alpine</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Aluminium</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">[1] A new version of a landscape evolution model that includes the evolution of an ice cap at a 10
<sup>3</sup>
to 10
<sup>5</sup>
year timescale and its associated erosion patterns is presented and applied to the Southern Alps of New Zealand. Modeling of the ice cap evolution is performed on a higher-resolution grid (i.e., ∼100 m) than previously (Braun et al., 1998). It predicts which parts of the landscape are, and have been, affected by glacial erosion. The model results highlight the complexity of the erosion patterns induced by ice caps and glaciers. Glacial erosion in a tectonically active area is, as suggested by the model, not uniform across the mountain range. Furthermore, high rock uplift rates, heavy precipitation, and climatic oscillations constantly interact. The feedback mechanisms are such that they render the landform very dynamic and transient. However, under conditions of reduced rock uplift rate and precipitation, the landform becomes more stable at the timescale of the glacial cycle. Finally, the modeling results favor a tectonic model in the Southern Alps in which the maximum rock uplift is offset from the Alpine Fault.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0148-0227</s0>
</fA01>
<fA03 i2="1">
<s0>J. geophys. res.</s0>
</fA03>
<fA05>
<s2>113</s2>
</fA05>
<fA06>
<s2>F2</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Evolution of the glacial landscape of the Southern Alps of New Zealand : Insights from a glacial erosion model</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>HERMAN (Frédéric)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>BRAUN (Jean)</s1>
</fA11>
<fA14 i1="01">
<s1>Research School of Earth Sciences, Australian National University</s1>
<s2>Canberra, ACT</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Geological and Planetary Science Division, California Institute of Technology</s1>
<s2>Pasadena, California</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Geologisches Institut, ETH Zurich</s1>
<s2>Zurich</s2>
<s3>CHE</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Géosciences Rennes, Université de Rennes 1</s1>
<s2>Rennes</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA20>
<s2>F02009.1-F02009.24</s2>
</fA20>
<fA21>
<s1>2008</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>3144</s2>
<s5>354000197384270090</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2008 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>1 p.1/2</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>08-0395030</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of geophysical research</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>[1] A new version of a landscape evolution model that includes the evolution of an ice cap at a 10
<sup>3</sup>
to 10
<sup>5</sup>
year timescale and its associated erosion patterns is presented and applied to the Southern Alps of New Zealand. Modeling of the ice cap evolution is performed on a higher-resolution grid (i.e., ∼100 m) than previously (Braun et al., 1998). It predicts which parts of the landscape are, and have been, affected by glacial erosion. The model results highlight the complexity of the erosion patterns induced by ice caps and glaciers. Glacial erosion in a tectonically active area is, as suggested by the model, not uniform across the mountain range. Furthermore, high rock uplift rates, heavy precipitation, and climatic oscillations constantly interact. The feedback mechanisms are such that they render the landform very dynamic and transient. However, under conditions of reduced rock uplift rate and precipitation, the landform becomes more stable at the timescale of the glacial cycle. Finally, the modeling results favor a tectonic model in the Southern Alps in which the maximum rock uplift is offset from the Alpine Fault.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001E</s0>
</fC02>
<fC02 i1="02" i2="2">
<s0>001E01</s0>
</fC02>
<fC02 i1="03" i2="2">
<s0>220</s0>
</fC02>
<fC03 i1="01" i2="2" l="FRE">
<s0>Paysage</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="2" l="ENG">
<s0>landscapes</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="2" l="SPA">
<s0>Paisaje</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="2" l="FRE">
<s0>Erosion glaciaire</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="2" l="ENG">
<s0>glacial erosion</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="2" l="SPA">
<s0>Erosión glaciar</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="2" l="FRE">
<s0>Modèle tectonique</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="2" l="ENG">
<s0>tectonic models</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="2" l="FRE">
<s0>Calotte glaciaire</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="2" l="ENG">
<s0>ice caps</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="2" l="SPA">
<s0>Casquete glaciar</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Modélisation</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Modeling</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Modelización</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="2" l="FRE">
<s0>Aluminium</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="2" l="ENG">
<s0>aluminum</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="2" l="SPA">
<s0>Aluminio</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Complexité</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Complexity</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Complejidad</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="2" l="FRE">
<s0>Glacier</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="2" l="ENG">
<s0>glaciers</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="2" l="SPA">
<s0>Glaciar</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="2" l="FRE">
<s0>Massif montagneux</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="2" l="ENG">
<s0>mountains</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="2" l="SPA">
<s0>Macizo montañoso</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="2" l="FRE">
<s0>Surrection</s0>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="2" l="ENG">
<s0>uplifts</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="2" l="FRE">
<s0>Précipitation atmosphérique</s0>
<s5>12</s5>
</fC03>
<fC03 i1="11" i2="2" l="ENG">
<s0>atmospheric precipitation</s0>
<s5>12</s5>
</fC03>
<fC03 i1="11" i2="2" l="SPA">
<s0>Precipitación atmosférica</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="2" l="FRE">
<s0>Oscillation</s0>
<s5>13</s5>
</fC03>
<fC03 i1="12" i2="2" l="ENG">
<s0>oscillations</s0>
<s5>13</s5>
</fC03>
<fC03 i1="12" i2="2" l="SPA">
<s0>Oscilación</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="2" l="FRE">
<s0>Rétroaction</s0>
<s5>14</s5>
</fC03>
<fC03 i1="13" i2="2" l="ENG">
<s0>feedback</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Boucle réaction</s0>
<s5>15</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Feedback</s0>
<s5>15</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Retroalimentación</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="2" l="FRE">
<s0>Forme relief</s0>
<s5>16</s5>
</fC03>
<fC03 i1="15" i2="2" l="ENG">
<s0>landforms</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="2" l="FRE">
<s0>Dynamique</s0>
<s5>17</s5>
</fC03>
<fC03 i1="16" i2="2" l="ENG">
<s0>dynamics</s0>
<s5>17</s5>
</fC03>
<fC03 i1="16" i2="2" l="SPA">
<s0>Dinámica</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="2" l="FRE">
<s0>Phénomène transitoire</s0>
<s5>18</s5>
</fC03>
<fC03 i1="17" i2="2" l="ENG">
<s0>transient phenomena</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="2" l="FRE">
<s0>Cycle</s0>
<s5>19</s5>
</fC03>
<fC03 i1="18" i2="2" l="ENG">
<s0>cycles</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="2" l="FRE">
<s0>Alpes</s0>
<s2>NG</s2>
<s5>61</s5>
</fC03>
<fC03 i1="19" i2="2" l="ENG">
<s0>Alps</s0>
<s2>NG</s2>
<s5>61</s5>
</fC03>
<fC03 i1="19" i2="2" l="SPA">
<s0>Alpes</s0>
<s2>NG</s2>
<s5>61</s5>
</fC03>
<fC03 i1="20" i2="2" l="FRE">
<s0>Nouvelle Zélande</s0>
<s2>NG</s2>
<s5>62</s5>
</fC03>
<fC03 i1="20" i2="2" l="ENG">
<s0>New Zealand</s0>
<s2>NG</s2>
<s5>62</s5>
</fC03>
<fC03 i1="20" i2="2" l="SPA">
<s0>Nueva Zelandia</s0>
<s2>NG</s2>
<s5>62</s5>
</fC03>
<fC03 i1="21" i2="2" l="FRE">
<s0>Faille Alpine</s0>
<s2>NG</s2>
<s5>64</s5>
</fC03>
<fC03 i1="21" i2="2" l="ENG">
<s0>Alpine Fault</s0>
<s2>NG</s2>
<s5>64</s5>
</fC03>
<fC03 i1="21" i2="2" l="SPA">
<s0>Falla Alpina</s0>
<s2>NG</s2>
<s5>64</s5>
</fC03>
<fC07 i1="01" i2="2" l="FRE">
<s0>Europe</s0>
<s2>564</s2>
</fC07>
<fC07 i1="01" i2="2" l="ENG">
<s0>Europe</s0>
<s2>564</s2>
</fC07>
<fC07 i1="01" i2="2" l="SPA">
<s0>Europa</s0>
<s2>564</s2>
</fC07>
<fC07 i1="02" i2="2" l="FRE">
<s0>Australasie</s0>
</fC07>
<fC07 i1="02" i2="2" l="ENG">
<s0>Australasia</s0>
</fC07>
<fC07 i1="02" i2="2" l="SPA">
<s0>Australasia</s0>
</fC07>
<fC07 i1="03" i2="2" l="FRE">
<s0>Nouvelle Zélande Ile Sud</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="03" i2="2" l="ENG">
<s0>South Island</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="03" i2="2" l="SPA">
<s0>Nueva Zelanda Isla Sur</s0>
<s2>NG</s2>
</fC07>
<fN21>
<s1>252</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PascalFrancis/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002C83 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Curation/biblio.hfd -nk 002C83 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PascalFrancis
   |étape=   Curation
   |type=    RBID
   |clé=     Pascal:08-0395030
   |texte=   Evolution of the glacial landscape of the Southern Alps of New Zealand : Insights from a glacial erosion model
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024