Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Experimental evidence for diel variations of the carbon isotope composition in leaf, stem and phloem sap organic matter in Ricinus communis

Identifieur interne : 002C02 ( PascalFrancis/Curation ); précédent : 002C01; suivant : 002C03

Experimental evidence for diel variations of the carbon isotope composition in leaf, stem and phloem sap organic matter in Ricinus communis

Auteurs : Arthur Gessler [Australie] ; Guillaume Tcherkez [Australie, France] ; Andreas D. Peuke [Australie] ; Jaleh Ghashghaie [France] ; Graham D. Farquhar [Australie]

Source :

RBID : Pascal:08-0325615

Descripteurs français

English descriptors

Abstract

Carbon isotope fractionation in metabolic processes following carboxylation of ribulose-1,5-bisphosphate (RuBP) is not as well described as the discrimination during photosynthetic CO2 fixation. However, post-carboxylation fractionation can influence the diel variation of δ13C of leaf-exported organic matter and can cause inter-organ differences in δ13C. To obtain a more mechanistic understanding of post-carboxylation modification of the isotopic signal as governed by physiological and environmental controls, we combined the modelling approach of Tcherkez et al., which describes the isotopic fractionation in primary metabolism with the experimental determination of δ13C in leaf and phloem sap and root carbon pools during a full diel course. There was a strong diel variation of leaf watersoluble organic matter and phloem sap sugars with relatively 13C depleted carbon produced and exported during the day and enriched carbon during the night. The isotopic modelling approach reproduces the experimentally determined day-night differences in δ13C of leaf-exported carbon in Ricinus communis. These findings support the idea that patterns of transitory starch accumulation and remobilization govern the diel rhythm of δ13C in organic matter exported by leaves. Integrated over the whole 24 h day, leaf-exported carbon was enriched in 13C as compared with the primary assimilates This may contribute to the well-known - yet poorly explained - relative 13C depletion of autotrophic organs compared with other plant parts. We thus emphasize the need to consider post-carboxylation fractionations for studies that use δ13C for assessing environmental effects like water availability on ratio of mole fractions of CO2 inside and outside the leaf (e.g. tree ring studies), or for partitioning of CO2 fluxes at the ecosystem level.
pA  
A01 01  1    @0 0140-7791
A02 01      @0 PLCEDV
A03   1    @0 Plant cell environ. : (Print)
A05       @2 31
A06       @2 7
A08 01  1  ENG  @1 Experimental evidence for diel variations of the carbon isotope composition in leaf, stem and phloem sap organic matter in Ricinus communis
A11 01  1    @1 GESSLER (Arthur)
A11 02  1    @1 TCHERKEZ (Guillaume)
A11 03  1    @1 PEUKE (Andreas D.)
A11 04  1    @1 GHASHGHAIE (Jaleh)
A11 05  1    @1 FARQUHAR (Graham D.)
A14 01      @1 Environmental Biology Group, Research School of Biological Sciences, Australian National University, GPO Box 475 @2 Canberra, ACT 2601 @3 AUS @Z 1 aut. @Z 2 aut. @Z 5 aut.
A14 02      @1 Laboratoire d'Ecologie, Systématique et Evolution, Département d'Ecophysiologie Végétale, CNRS-UMR 8079, IFR 87, Centre scientifique d'Orsay, Bâtiment 362, Université Paris-Sud XI @2 91405 Orsay @3 FRA @Z 2 aut. @Z 4 aut.
A14 03      @1 School of Biological, Earth and Environmental Sciences, University of New South Wales @2 Sydney, New South Wales 2052 @3 AUS @Z 3 aut.
A20       @1 941-953
A21       @1 2008
A23 01      @0 ENG
A43 01      @1 INIST @2 17987 @5 354000197846290050
A44       @0 0000 @1 © 2008 INIST-CNRS. All rights reserved.
A45       @0 1 p.1/2
A47 01  1    @0 08-0325615
A60       @1 P
A61       @0 A
A64 01  1    @0 Plant, cell and environment : (Print)
A66 01      @0 GBR
C01 01    ENG  @0 Carbon isotope fractionation in metabolic processes following carboxylation of ribulose-1,5-bisphosphate (RuBP) is not as well described as the discrimination during photosynthetic CO2 fixation. However, post-carboxylation fractionation can influence the diel variation of δ13C of leaf-exported organic matter and can cause inter-organ differences in δ13C. To obtain a more mechanistic understanding of post-carboxylation modification of the isotopic signal as governed by physiological and environmental controls, we combined the modelling approach of Tcherkez et al., which describes the isotopic fractionation in primary metabolism with the experimental determination of δ13C in leaf and phloem sap and root carbon pools during a full diel course. There was a strong diel variation of leaf watersoluble organic matter and phloem sap sugars with relatively 13C depleted carbon produced and exported during the day and enriched carbon during the night. The isotopic modelling approach reproduces the experimentally determined day-night differences in δ13C of leaf-exported carbon in Ricinus communis. These findings support the idea that patterns of transitory starch accumulation and remobilization govern the diel rhythm of δ13C in organic matter exported by leaves. Integrated over the whole 24 h day, leaf-exported carbon was enriched in 13C as compared with the primary assimilates This may contribute to the well-known - yet poorly explained - relative 13C depletion of autotrophic organs compared with other plant parts. We thus emphasize the need to consider post-carboxylation fractionations for studies that use δ13C for assessing environmental effects like water availability on ratio of mole fractions of CO2 inside and outside the leaf (e.g. tree ring studies), or for partitioning of CO2 fluxes at the ecosystem level.
C02 01  X    @0 002A10E02
C03 01  X  FRE  @0 Feuille végétal @5 01
C03 01  X  ENG  @0 Plant leaf @5 01
C03 01  X  SPA  @0 Hoja vegetal @5 01
C03 02  X  FRE  @0 Tige @5 02
C03 02  X  ENG  @0 Stem @5 02
C03 02  X  SPA  @0 Tallo @5 02
C03 03  X  FRE  @0 Phloème @5 03
C03 03  X  ENG  @0 Phloem @5 03
C03 03  X  SPA  @0 Liber @5 03
C03 04  X  FRE  @0 Matière organique @5 04
C03 04  X  ENG  @0 Organic matter @5 04
C03 04  X  SPA  @0 Materia orgánica @5 04
C03 05  X  FRE  @0 Amidon @5 05
C03 05  X  ENG  @0 Starch @5 05
C03 05  X  SPA  @0 Almidón @5 05
C03 06  X  FRE  @0 Ricinus communis @2 NS @5 10
C03 06  X  ENG  @0 Ricinus communis @2 NS @5 10
C03 06  X  SPA  @0 Ricinus communis @2 NS @5 10
C07 01  X  FRE  @0 Euphorbiaceae @2 NS
C07 01  X  ENG  @0 Euphorbiaceae @2 NS
C07 01  X  SPA  @0 Euphorbiaceae @2 NS
C07 02  X  FRE  @0 Dicotyledones @2 NS
C07 02  X  ENG  @0 Dicotyledones @2 NS
C07 02  X  SPA  @0 Dicotyledones @2 NS
C07 03  X  FRE  @0 Angiospermae @2 NS
C07 03  X  ENG  @0 Angiospermae @2 NS
C07 03  X  SPA  @0 Angiospermae @2 NS
C07 04  X  FRE  @0 Spermatophyta @2 NS
C07 04  X  ENG  @0 Spermatophyta @2 NS
C07 04  X  SPA  @0 Spermatophyta @2 NS
N21       @1 203
N44 01      @1 OTO
N82       @1 OTO

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:08-0325615

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Experimental evidence for diel variations of the carbon isotope composition in leaf, stem and phloem sap organic matter in Ricinus communis</title>
<author>
<name sortKey="Gessler, Arthur" sort="Gessler, Arthur" uniqKey="Gessler A" first="Arthur" last="Gessler">Arthur Gessler</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Environmental Biology Group, Research School of Biological Sciences, Australian National University, GPO Box 475</s1>
<s2>Canberra, ACT 2601</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
<author>
<name sortKey="Tcherkez, Guillaume" sort="Tcherkez, Guillaume" uniqKey="Tcherkez G" first="Guillaume" last="Tcherkez">Guillaume Tcherkez</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Environmental Biology Group, Research School of Biological Sciences, Australian National University, GPO Box 475</s1>
<s2>Canberra, ACT 2601</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Laboratoire d'Ecologie, Systématique et Evolution, Département d'Ecophysiologie Végétale, CNRS-UMR 8079, IFR 87, Centre scientifique d'Orsay, Bâtiment 362, Université Paris-Sud XI</s1>
<s2>91405 Orsay</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Peuke, Andreas D" sort="Peuke, Andreas D" uniqKey="Peuke A" first="Andreas D." last="Peuke">Andreas D. Peuke</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>School of Biological, Earth and Environmental Sciences, University of New South Wales</s1>
<s2>Sydney, New South Wales 2052</s2>
<s3>AUS</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
<author>
<name sortKey="Ghashghaie, Jaleh" sort="Ghashghaie, Jaleh" uniqKey="Ghashghaie J" first="Jaleh" last="Ghashghaie">Jaleh Ghashghaie</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Laboratoire d'Ecologie, Systématique et Evolution, Département d'Ecophysiologie Végétale, CNRS-UMR 8079, IFR 87, Centre scientifique d'Orsay, Bâtiment 362, Université Paris-Sud XI</s1>
<s2>91405 Orsay</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Farquhar, Graham D" sort="Farquhar, Graham D" uniqKey="Farquhar G" first="Graham D." last="Farquhar">Graham D. Farquhar</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Environmental Biology Group, Research School of Biological Sciences, Australian National University, GPO Box 475</s1>
<s2>Canberra, ACT 2601</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">08-0325615</idno>
<date when="2008">2008</date>
<idno type="stanalyst">PASCAL 08-0325615 INIST</idno>
<idno type="RBID">Pascal:08-0325615</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">003447</idno>
<idno type="wicri:Area/PascalFrancis/Curation">002C02</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Experimental evidence for diel variations of the carbon isotope composition in leaf, stem and phloem sap organic matter in Ricinus communis</title>
<author>
<name sortKey="Gessler, Arthur" sort="Gessler, Arthur" uniqKey="Gessler A" first="Arthur" last="Gessler">Arthur Gessler</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Environmental Biology Group, Research School of Biological Sciences, Australian National University, GPO Box 475</s1>
<s2>Canberra, ACT 2601</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
<author>
<name sortKey="Tcherkez, Guillaume" sort="Tcherkez, Guillaume" uniqKey="Tcherkez G" first="Guillaume" last="Tcherkez">Guillaume Tcherkez</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Environmental Biology Group, Research School of Biological Sciences, Australian National University, GPO Box 475</s1>
<s2>Canberra, ACT 2601</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Laboratoire d'Ecologie, Systématique et Evolution, Département d'Ecophysiologie Végétale, CNRS-UMR 8079, IFR 87, Centre scientifique d'Orsay, Bâtiment 362, Université Paris-Sud XI</s1>
<s2>91405 Orsay</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Peuke, Andreas D" sort="Peuke, Andreas D" uniqKey="Peuke A" first="Andreas D." last="Peuke">Andreas D. Peuke</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>School of Biological, Earth and Environmental Sciences, University of New South Wales</s1>
<s2>Sydney, New South Wales 2052</s2>
<s3>AUS</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
<author>
<name sortKey="Ghashghaie, Jaleh" sort="Ghashghaie, Jaleh" uniqKey="Ghashghaie J" first="Jaleh" last="Ghashghaie">Jaleh Ghashghaie</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Laboratoire d'Ecologie, Systématique et Evolution, Département d'Ecophysiologie Végétale, CNRS-UMR 8079, IFR 87, Centre scientifique d'Orsay, Bâtiment 362, Université Paris-Sud XI</s1>
<s2>91405 Orsay</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Farquhar, Graham D" sort="Farquhar, Graham D" uniqKey="Farquhar G" first="Graham D." last="Farquhar">Graham D. Farquhar</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Environmental Biology Group, Research School of Biological Sciences, Australian National University, GPO Box 475</s1>
<s2>Canberra, ACT 2601</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Plant, cell and environment : (Print)</title>
<title level="j" type="abbreviated">Plant cell environ. : (Print)</title>
<idno type="ISSN">0140-7791</idno>
<imprint>
<date when="2008">2008</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Plant, cell and environment : (Print)</title>
<title level="j" type="abbreviated">Plant cell environ. : (Print)</title>
<idno type="ISSN">0140-7791</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Organic matter</term>
<term>Phloem</term>
<term>Plant leaf</term>
<term>Ricinus communis</term>
<term>Starch</term>
<term>Stem</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Feuille végétal</term>
<term>Tige</term>
<term>Phloème</term>
<term>Matière organique</term>
<term>Amidon</term>
<term>Ricinus communis</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Amidon</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Carbon isotope fractionation in metabolic processes following carboxylation of ribulose-1,5-bisphosphate (RuBP) is not as well described as the discrimination during photosynthetic CO
<sub>2</sub>
fixation. However, post-carboxylation fractionation can influence the diel variation of δ
<sup>13</sup>
C of leaf-exported organic matter and can cause inter-organ differences in δ
<sup>13</sup>
C. To obtain a more mechanistic understanding of post-carboxylation modification of the isotopic signal as governed by physiological and environmental controls, we combined the modelling approach of Tcherkez et al., which describes the isotopic fractionation in primary metabolism with the experimental determination of δ
<sup>13</sup>
C in leaf and phloem sap and root carbon pools during a full diel course. There was a strong diel variation of leaf watersoluble organic matter and phloem sap sugars with relatively
<sup>13</sup>
C depleted carbon produced and exported during the day and enriched carbon during the night. The isotopic modelling approach reproduces the experimentally determined day-night differences in δ
<sup>13</sup>
C of leaf-exported carbon in Ricinus communis. These findings support the idea that patterns of transitory starch accumulation and remobilization govern the diel rhythm of δ
<sup>13</sup>
C in organic matter exported by leaves. Integrated over the whole 24 h day, leaf-exported carbon was enriched in
<sup>13</sup>
C as compared with the primary assimilates This may contribute to the well-known - yet poorly explained - relative
<sup>13</sup>
C depletion of autotrophic organs compared with other plant parts. We thus emphasize the need to consider post-carboxylation fractionations for studies that use δ
<sup>13</sup>
C for assessing environmental effects like water availability on ratio of mole fractions of CO
<sub>2</sub>
inside and outside the leaf (e.g. tree ring studies), or for partitioning of CO
<sub>2</sub>
fluxes at the ecosystem level.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0140-7791</s0>
</fA01>
<fA02 i1="01">
<s0>PLCEDV</s0>
</fA02>
<fA03 i2="1">
<s0>Plant cell environ. : (Print)</s0>
</fA03>
<fA05>
<s2>31</s2>
</fA05>
<fA06>
<s2>7</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Experimental evidence for diel variations of the carbon isotope composition in leaf, stem and phloem sap organic matter in Ricinus communis</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>GESSLER (Arthur)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>TCHERKEZ (Guillaume)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>PEUKE (Andreas D.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>GHASHGHAIE (Jaleh)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>FARQUHAR (Graham D.)</s1>
</fA11>
<fA14 i1="01">
<s1>Environmental Biology Group, Research School of Biological Sciences, Australian National University, GPO Box 475</s1>
<s2>Canberra, ACT 2601</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Laboratoire d'Ecologie, Systématique et Evolution, Département d'Ecophysiologie Végétale, CNRS-UMR 8079, IFR 87, Centre scientifique d'Orsay, Bâtiment 362, Université Paris-Sud XI</s1>
<s2>91405 Orsay</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>School of Biological, Earth and Environmental Sciences, University of New South Wales</s1>
<s2>Sydney, New South Wales 2052</s2>
<s3>AUS</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA20>
<s1>941-953</s1>
</fA20>
<fA21>
<s1>2008</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>17987</s2>
<s5>354000197846290050</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2008 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>1 p.1/2</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>08-0325615</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Plant, cell and environment : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Carbon isotope fractionation in metabolic processes following carboxylation of ribulose-1,5-bisphosphate (RuBP) is not as well described as the discrimination during photosynthetic CO
<sub>2</sub>
fixation. However, post-carboxylation fractionation can influence the diel variation of δ
<sup>13</sup>
C of leaf-exported organic matter and can cause inter-organ differences in δ
<sup>13</sup>
C. To obtain a more mechanistic understanding of post-carboxylation modification of the isotopic signal as governed by physiological and environmental controls, we combined the modelling approach of Tcherkez et al., which describes the isotopic fractionation in primary metabolism with the experimental determination of δ
<sup>13</sup>
C in leaf and phloem sap and root carbon pools during a full diel course. There was a strong diel variation of leaf watersoluble organic matter and phloem sap sugars with relatively
<sup>13</sup>
C depleted carbon produced and exported during the day and enriched carbon during the night. The isotopic modelling approach reproduces the experimentally determined day-night differences in δ
<sup>13</sup>
C of leaf-exported carbon in Ricinus communis. These findings support the idea that patterns of transitory starch accumulation and remobilization govern the diel rhythm of δ
<sup>13</sup>
C in organic matter exported by leaves. Integrated over the whole 24 h day, leaf-exported carbon was enriched in
<sup>13</sup>
C as compared with the primary assimilates This may contribute to the well-known - yet poorly explained - relative
<sup>13</sup>
C depletion of autotrophic organs compared with other plant parts. We thus emphasize the need to consider post-carboxylation fractionations for studies that use δ
<sup>13</sup>
C for assessing environmental effects like water availability on ratio of mole fractions of CO
<sub>2</sub>
inside and outside the leaf (e.g. tree ring studies), or for partitioning of CO
<sub>2</sub>
fluxes at the ecosystem level.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>002A10E02</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Feuille végétal</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Plant leaf</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Hoja vegetal</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Tige</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Stem</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Tallo</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Phloème</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Phloem</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Liber</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Matière organique</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Organic matter</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Materia orgánica</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Amidon</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Starch</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Almidón</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Ricinus communis</s0>
<s2>NS</s2>
<s5>10</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Ricinus communis</s0>
<s2>NS</s2>
<s5>10</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Ricinus communis</s0>
<s2>NS</s2>
<s5>10</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Euphorbiaceae</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>Euphorbiaceae</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Euphorbiaceae</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="02" i2="X" l="FRE">
<s0>Dicotyledones</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="02" i2="X" l="ENG">
<s0>Dicotyledones</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="02" i2="X" l="SPA">
<s0>Dicotyledones</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="03" i2="X" l="FRE">
<s0>Angiospermae</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="03" i2="X" l="ENG">
<s0>Angiospermae</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="03" i2="X" l="SPA">
<s0>Angiospermae</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="04" i2="X" l="FRE">
<s0>Spermatophyta</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="04" i2="X" l="ENG">
<s0>Spermatophyta</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="04" i2="X" l="SPA">
<s0>Spermatophyta</s0>
<s2>NS</s2>
</fC07>
<fN21>
<s1>203</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PascalFrancis/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002C02 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Curation/biblio.hfd -nk 002C02 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PascalFrancis
   |étape=   Curation
   |type=    RBID
   |clé=     Pascal:08-0325615
   |texte=   Experimental evidence for diel variations of the carbon isotope composition in leaf, stem and phloem sap organic matter in Ricinus communis
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024