Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Assessment of different carbon sources and delivery techniques to promote an in situ reactive zone for bioprecipitation of metals in groundwater

Identifieur interne : 004793 ( PascalFrancis/Corpus ); précédent : 004792; suivant : 004794

Assessment of different carbon sources and delivery techniques to promote an in situ reactive zone for bioprecipitation of metals in groundwater

Auteurs : Bradley M. Patterson ; YAMIN MA ; Michelle E. Grassi ; Blair S. Robertson ; Greg B. Davis ; Mark Lipman ; Stuart Rhodes ; Allan J. Mckinley ; Andrew W. Rate

Source :

RBID : Pascal:05-0388959

Descripteurs français

English descriptors

Abstract

Large-scale soil column experiments were undertaken using low metal-sorbing soil to assess the efficiency of different carbon sources to promote and maintain a sulphate-reducing in situ reactive zone for bioprecipitation of metals in groundwater. Carbon sources were delivered by either direct injection (molasses), diffusion delivery through polymers (ethanol) or as a non-aqueous phase liquid (emulsified vegetable oil). All three carbon sources promoted denitrification with denitrification half lives between 1.3 and 2.1 days. However, only molasses and ethanol promoted sulphate reduction, with average sulphate-removal efficiencies of 53% and 95%, and sulphate reduction half lives of 8.3 and 1.2 days, respectively. Based on this information, ethanol was a more efficient carbon source in promoting and maintaining sulphate reduction within the column compared to molasses. Under these experimental conditions, non-aqueous phase vegetable oil amendment did not prove suitable as a carbon source to promote sulphate reduction. Substantial removal of zinc and copper (>98%) was observed in groundwater for both the ethanol-amended and molasses-amended columns. Zinc and copper were removed from the groundwater as it flowed past the sulphate-reducing regions of the columns, suggesting that the metals were deposited on the soil, possibly as zinc and copper sulphides. The longevity of sulphate reduction after ethanol and molasses delivery had ceased was in the order of two weeks or less, suggesting that in a field application, relatively continuous carbon addition would be required to maintain sulphate reduction for long-term treatment of metal-contaminated groundwater.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0144-7815
A05       @2 298
A08 01  1  ENG  @1 Assessment of different carbon sources and delivery techniques to promote an in situ reactive zone for bioprecipitation of metals in groundwater
A09 01  1  ENG  @1 Permeable reactive barriers : Belfast, March 2004
A11 01  1    @1 PATTERSON (Bradley M.)
A11 02  1    @1 YAMIN MA
A11 03  1    @1 GRASSI (Michelle E.)
A11 04  1    @1 ROBERTSON (Blair S.)
A11 05  1    @1 DAVIS (Greg B.)
A11 06  1    @1 LIPMAN (Mark)
A11 07  1    @1 RHODES (Stuart)
A11 08  1    @1 MCKINLEY (Allan J.)
A11 09  1    @1 RATE (Andrew W.)
A12 01  1    @1 BOSHOFF (Genevieve A.) @9 ed.
A12 02  1    @1 BONE (Brian D.) @9 ed.
A14 01      @1 CSIRO Land and Water, Private Bag No. 5 @2 Wembley, Western Australia 6913 @3 AUS @Z 1 aut. @Z 2 aut. @Z 3 aut. @Z 4 aut. @Z 5 aut.
A14 02      @1 The University of Western Australia @2 Nedlands, Western Australia 6009 @3 AUS @Z 2 aut. @Z 3 aut. @Z 8 aut. @Z 9 aut.
A14 03      @1 Rio Tinto Technical Services @2 Milsons Point, New South Wales 2061 @3 AUS @Z 6 aut. @Z 7 aut.
A18 01  1    @1 International Association of Hydrological Sciences @2 Paris @3 FRA @9 org-cong.
A20       @1 97-104
A21       @1 2005
A23 01      @0 ENG
A26 01      @0 1-901502-23-6
A43 01      @1 INIST @2 8967 @5 354000124509050120
A44       @0 0000 @1 © 2005 INIST-CNRS. All rights reserved.
A45       @0 8 ref.
A47 01  1    @0 05-0388959
A60       @1 P @2 C
A61       @0 A
A64 01  1    @0 IAHS-AISH publication
A66 01      @0 GBR
C01 01    ENG  @0 Large-scale soil column experiments were undertaken using low metal-sorbing soil to assess the efficiency of different carbon sources to promote and maintain a sulphate-reducing in situ reactive zone for bioprecipitation of metals in groundwater. Carbon sources were delivered by either direct injection (molasses), diffusion delivery through polymers (ethanol) or as a non-aqueous phase liquid (emulsified vegetable oil). All three carbon sources promoted denitrification with denitrification half lives between 1.3 and 2.1 days. However, only molasses and ethanol promoted sulphate reduction, with average sulphate-removal efficiencies of 53% and 95%, and sulphate reduction half lives of 8.3 and 1.2 days, respectively. Based on this information, ethanol was a more efficient carbon source in promoting and maintaining sulphate reduction within the column compared to molasses. Under these experimental conditions, non-aqueous phase vegetable oil amendment did not prove suitable as a carbon source to promote sulphate reduction. Substantial removal of zinc and copper (>98%) was observed in groundwater for both the ethanol-amended and molasses-amended columns. Zinc and copper were removed from the groundwater as it flowed past the sulphate-reducing regions of the columns, suggesting that the metals were deposited on the soil, possibly as zinc and copper sulphides. The longevity of sulphate reduction after ethanol and molasses delivery had ceased was in the order of two weeks or less, suggesting that in a field application, relatively continuous carbon addition would be required to maintain sulphate reduction for long-term treatment of metal-contaminated groundwater.
C02 01  2    @0 226A02
C02 02  2    @0 226B04
C02 03  2    @0 001E01N02
C02 04  2    @0 001E01O04
C03 01  2  FRE  @0 Carbone @5 01
C03 01  2  ENG  @0 carbon @5 01
C03 01  2  SPA  @0 Carbono @5 01
C03 02  2  FRE  @0 In situ @5 02
C03 02  2  ENG  @0 in situ @5 02
C03 03  2  FRE  @0 Elément métallique @5 03
C03 03  2  ENG  @0 metals @5 03
C03 03  2  SPA  @0 Elemento metálico @5 03
C03 04  2  FRE  @0 Eau souterraine @5 04
C03 04  2  ENG  @0 ground water @5 04
C03 04  2  SPA  @0 Agua subterránea @5 04
C03 05  2  FRE  @0 Aquifère @5 05
C03 05  2  ENG  @0 aquifers @5 05
C03 06  2  FRE  @0 Sol @5 06
C03 06  2  ENG  @0 soils @5 06
C03 06  2  SPA  @0 Suelo @5 06
C03 07  2  FRE  @0 Etude expérimentale @5 07
C03 07  2  ENG  @0 experimental studies @5 07
C03 08  2  FRE  @0 Efficacité @5 08
C03 08  2  ENG  @0 efficiency @5 08
C03 09  2  FRE  @0 Sulfate @5 09
C03 09  2  ENG  @0 sulfates @5 09
C03 09  2  SPA  @0 Sulfato @5 09
C03 10  2  FRE  @0 Injection @5 10
C03 10  2  ENG  @0 injection @5 10
C03 10  2  SPA  @0 Inyección @5 10
C03 11  2  FRE  @0 Diffusion @5 11
C03 11  2  ENG  @0 diffusion @5 11
C03 11  2  SPA  @0 Difusión @5 11
C03 12  2  FRE  @0 Polymère @5 12
C03 12  2  ENG  @0 polymers @5 12
C03 13  2  FRE  @0 Phase liquide @5 13
C03 13  2  ENG  @0 liquid phase @5 13
C03 13  2  SPA  @0 Fase líquida @5 13
C03 14  2  FRE  @0 Dénitrification @5 14
C03 14  2  ENG  @0 denitrification @5 14
C03 14  2  SPA  @0 Desnitrificación @5 14
C03 15  2  FRE  @0 Zinc @5 15
C03 15  2  ENG  @0 zinc @5 15
C03 15  2  SPA  @0 Zinc @5 15
C03 16  2  FRE  @0 Cuivre @5 16
C03 16  2  ENG  @0 copper @5 16
C03 16  2  SPA  @0 Cobre @5 16
C03 17  2  FRE  @0 Sulfure @5 17
C03 17  2  ENG  @0 sulfides @5 17
C03 17  2  SPA  @0 Sulfuro @5 17
C03 18  2  FRE  @0 Barrière géochimique @5 18
C03 18  2  ENG  @0 geochemical barriers @5 18
C03 19  2  FRE  @0 Biotraitement @5 19
C03 19  2  ENG  @0 bioremediation @5 19
C03 20  2  FRE  @0 Liquide non aqueux @5 20
C03 20  2  ENG  @0 nonaqueous phase liquids @5 20
C03 21  2  FRE  @0 Précipitation @5 21
C03 21  2  ENG  @0 precipitation @5 21
C03 21  2  SPA  @0 Precipitación @5 21
C03 22  2  FRE  @0 Réduction chimique @5 22
C03 22  2  ENG  @0 chemical reduction @5 22
C03 22  2  SPA  @0 Reducción química @5 22
C03 23  2  FRE  @0 Effluent @5 23
C03 23  2  ENG  @0 effluents @5 23
C03 23  2  SPA  @0 Efluente @5 23
C03 24  2  FRE  @0 Pollution @5 24
C03 24  2  ENG  @0 pollution @5 24
C03 24  2  SPA  @0 Polución @5 24
C03 25  2  FRE  @0 Barrière réactive perméable @4 INC @5 52
C06       @0 ILS @0 TA
N21       @1 269
pR  
A30 01  1  ENG  @1 International symposium on permeable reactive barriers @2 1 @3 Belfast GBR @4 2004-03

Format Inist (serveur)

NO : PASCAL 05-0388959 INIST
ET : Assessment of different carbon sources and delivery techniques to promote an in situ reactive zone for bioprecipitation of metals in groundwater
AU : PATTERSON (Bradley M.); YAMIN MA; GRASSI (Michelle E.); ROBERTSON (Blair S.); DAVIS (Greg B.); LIPMAN (Mark); RHODES (Stuart); MCKINLEY (Allan J.); RATE (Andrew W.); BOSHOFF (Genevieve A.); BONE (Brian D.)
AF : CSIRO Land and Water, Private Bag No. 5/Wembley, Western Australia 6913/Australie (1 aut., 2 aut., 3 aut., 4 aut., 5 aut.); The University of Western Australia/Nedlands, Western Australia 6009/Australie (2 aut., 3 aut., 8 aut., 9 aut.); Rio Tinto Technical Services/Milsons Point, New South Wales 2061/Australie (6 aut., 7 aut.)
DT : Publication en série; Congrès; Niveau analytique
SO : IAHS-AISH publication; ISSN 0144-7815; Royaume-Uni; Da. 2005; Vol. 298; Pp. 97-104; Bibl. 8 ref.
LA : Anglais
EA : Large-scale soil column experiments were undertaken using low metal-sorbing soil to assess the efficiency of different carbon sources to promote and maintain a sulphate-reducing in situ reactive zone for bioprecipitation of metals in groundwater. Carbon sources were delivered by either direct injection (molasses), diffusion delivery through polymers (ethanol) or as a non-aqueous phase liquid (emulsified vegetable oil). All three carbon sources promoted denitrification with denitrification half lives between 1.3 and 2.1 days. However, only molasses and ethanol promoted sulphate reduction, with average sulphate-removal efficiencies of 53% and 95%, and sulphate reduction half lives of 8.3 and 1.2 days, respectively. Based on this information, ethanol was a more efficient carbon source in promoting and maintaining sulphate reduction within the column compared to molasses. Under these experimental conditions, non-aqueous phase vegetable oil amendment did not prove suitable as a carbon source to promote sulphate reduction. Substantial removal of zinc and copper (>98%) was observed in groundwater for both the ethanol-amended and molasses-amended columns. Zinc and copper were removed from the groundwater as it flowed past the sulphate-reducing regions of the columns, suggesting that the metals were deposited on the soil, possibly as zinc and copper sulphides. The longevity of sulphate reduction after ethanol and molasses delivery had ceased was in the order of two weeks or less, suggesting that in a field application, relatively continuous carbon addition would be required to maintain sulphate reduction for long-term treatment of metal-contaminated groundwater.
CC : 226A02; 226B04; 001E01N02; 001E01O04
FD : Carbone; In situ; Elément métallique; Eau souterraine; Aquifère; Sol; Etude expérimentale; Efficacité; Sulfate; Injection; Diffusion; Polymère; Phase liquide; Dénitrification; Zinc; Cuivre; Sulfure; Barrière géochimique; Biotraitement; Liquide non aqueux; Précipitation; Réduction chimique; Effluent; Pollution; Barrière réactive perméable
ED : carbon; in situ; metals; ground water; aquifers; soils; experimental studies; efficiency; sulfates; injection; diffusion; polymers; liquid phase; denitrification; zinc; copper; sulfides; geochemical barriers; bioremediation; nonaqueous phase liquids; precipitation; chemical reduction; effluents; pollution
SD : Carbono; Elemento metálico; Agua subterránea; Suelo; Sulfato; Inyección; Difusión; Fase líquida; Desnitrificación; Zinc; Cobre; Sulfuro; Precipitación; Reducción química; Efluente; Polución
LO : INIST-8967.354000124509050120
ID : 05-0388959

Links to Exploration step

Pascal:05-0388959

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Assessment of different carbon sources and delivery techniques to promote an in situ reactive zone for bioprecipitation of metals in groundwater</title>
<author>
<name sortKey="Patterson, Bradley M" sort="Patterson, Bradley M" uniqKey="Patterson B" first="Bradley M." last="Patterson">Bradley M. Patterson</name>
<affiliation>
<inist:fA14 i1="01">
<s1>CSIRO Land and Water, Private Bag No. 5</s1>
<s2>Wembley, Western Australia 6913</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Yamin Ma" sort="Yamin Ma" uniqKey="Yamin Ma" last="Yamin Ma">YAMIN MA</name>
<affiliation>
<inist:fA14 i1="01">
<s1>CSIRO Land and Water, Private Bag No. 5</s1>
<s2>Wembley, Western Australia 6913</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>The University of Western Australia</s1>
<s2>Nedlands, Western Australia 6009</s2>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Grassi, Michelle E" sort="Grassi, Michelle E" uniqKey="Grassi M" first="Michelle E." last="Grassi">Michelle E. Grassi</name>
<affiliation>
<inist:fA14 i1="01">
<s1>CSIRO Land and Water, Private Bag No. 5</s1>
<s2>Wembley, Western Australia 6913</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>The University of Western Australia</s1>
<s2>Nedlands, Western Australia 6009</s2>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Robertson, Blair S" sort="Robertson, Blair S" uniqKey="Robertson B" first="Blair S." last="Robertson">Blair S. Robertson</name>
<affiliation>
<inist:fA14 i1="01">
<s1>CSIRO Land and Water, Private Bag No. 5</s1>
<s2>Wembley, Western Australia 6913</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Davis, Greg B" sort="Davis, Greg B" uniqKey="Davis G" first="Greg B." last="Davis">Greg B. Davis</name>
<affiliation>
<inist:fA14 i1="01">
<s1>CSIRO Land and Water, Private Bag No. 5</s1>
<s2>Wembley, Western Australia 6913</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Lipman, Mark" sort="Lipman, Mark" uniqKey="Lipman M" first="Mark" last="Lipman">Mark Lipman</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Rio Tinto Technical Services</s1>
<s2>Milsons Point, New South Wales 2061</s2>
<s3>AUS</s3>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Rhodes, Stuart" sort="Rhodes, Stuart" uniqKey="Rhodes S" first="Stuart" last="Rhodes">Stuart Rhodes</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Rio Tinto Technical Services</s1>
<s2>Milsons Point, New South Wales 2061</s2>
<s3>AUS</s3>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Mckinley, Allan J" sort="Mckinley, Allan J" uniqKey="Mckinley A" first="Allan J." last="Mckinley">Allan J. Mckinley</name>
<affiliation>
<inist:fA14 i1="02">
<s1>The University of Western Australia</s1>
<s2>Nedlands, Western Australia 6009</s2>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Rate, Andrew W" sort="Rate, Andrew W" uniqKey="Rate A" first="Andrew W." last="Rate">Andrew W. Rate</name>
<affiliation>
<inist:fA14 i1="02">
<s1>The University of Western Australia</s1>
<s2>Nedlands, Western Australia 6009</s2>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">05-0388959</idno>
<date when="2005">2005</date>
<idno type="stanalyst">PASCAL 05-0388959 INIST</idno>
<idno type="RBID">Pascal:05-0388959</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">004793</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Assessment of different carbon sources and delivery techniques to promote an in situ reactive zone for bioprecipitation of metals in groundwater</title>
<author>
<name sortKey="Patterson, Bradley M" sort="Patterson, Bradley M" uniqKey="Patterson B" first="Bradley M." last="Patterson">Bradley M. Patterson</name>
<affiliation>
<inist:fA14 i1="01">
<s1>CSIRO Land and Water, Private Bag No. 5</s1>
<s2>Wembley, Western Australia 6913</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Yamin Ma" sort="Yamin Ma" uniqKey="Yamin Ma" last="Yamin Ma">YAMIN MA</name>
<affiliation>
<inist:fA14 i1="01">
<s1>CSIRO Land and Water, Private Bag No. 5</s1>
<s2>Wembley, Western Australia 6913</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>The University of Western Australia</s1>
<s2>Nedlands, Western Australia 6009</s2>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Grassi, Michelle E" sort="Grassi, Michelle E" uniqKey="Grassi M" first="Michelle E." last="Grassi">Michelle E. Grassi</name>
<affiliation>
<inist:fA14 i1="01">
<s1>CSIRO Land and Water, Private Bag No. 5</s1>
<s2>Wembley, Western Australia 6913</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>The University of Western Australia</s1>
<s2>Nedlands, Western Australia 6009</s2>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Robertson, Blair S" sort="Robertson, Blair S" uniqKey="Robertson B" first="Blair S." last="Robertson">Blair S. Robertson</name>
<affiliation>
<inist:fA14 i1="01">
<s1>CSIRO Land and Water, Private Bag No. 5</s1>
<s2>Wembley, Western Australia 6913</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Davis, Greg B" sort="Davis, Greg B" uniqKey="Davis G" first="Greg B." last="Davis">Greg B. Davis</name>
<affiliation>
<inist:fA14 i1="01">
<s1>CSIRO Land and Water, Private Bag No. 5</s1>
<s2>Wembley, Western Australia 6913</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Lipman, Mark" sort="Lipman, Mark" uniqKey="Lipman M" first="Mark" last="Lipman">Mark Lipman</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Rio Tinto Technical Services</s1>
<s2>Milsons Point, New South Wales 2061</s2>
<s3>AUS</s3>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Rhodes, Stuart" sort="Rhodes, Stuart" uniqKey="Rhodes S" first="Stuart" last="Rhodes">Stuart Rhodes</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Rio Tinto Technical Services</s1>
<s2>Milsons Point, New South Wales 2061</s2>
<s3>AUS</s3>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Mckinley, Allan J" sort="Mckinley, Allan J" uniqKey="Mckinley A" first="Allan J." last="Mckinley">Allan J. Mckinley</name>
<affiliation>
<inist:fA14 i1="02">
<s1>The University of Western Australia</s1>
<s2>Nedlands, Western Australia 6009</s2>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Rate, Andrew W" sort="Rate, Andrew W" uniqKey="Rate A" first="Andrew W." last="Rate">Andrew W. Rate</name>
<affiliation>
<inist:fA14 i1="02">
<s1>The University of Western Australia</s1>
<s2>Nedlands, Western Australia 6009</s2>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">IAHS-AISH publication</title>
<idno type="ISSN">0144-7815</idno>
<imprint>
<date when="2005">2005</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">IAHS-AISH publication</title>
<idno type="ISSN">0144-7815</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>aquifers</term>
<term>bioremediation</term>
<term>carbon</term>
<term>chemical reduction</term>
<term>copper</term>
<term>denitrification</term>
<term>diffusion</term>
<term>efficiency</term>
<term>effluents</term>
<term>experimental studies</term>
<term>geochemical barriers</term>
<term>ground water</term>
<term>in situ</term>
<term>injection</term>
<term>liquid phase</term>
<term>metals</term>
<term>nonaqueous phase liquids</term>
<term>pollution</term>
<term>polymers</term>
<term>precipitation</term>
<term>soils</term>
<term>sulfates</term>
<term>sulfides</term>
<term>zinc</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Carbone</term>
<term>In situ</term>
<term>Elément métallique</term>
<term>Eau souterraine</term>
<term>Aquifère</term>
<term>Sol</term>
<term>Etude expérimentale</term>
<term>Efficacité</term>
<term>Sulfate</term>
<term>Injection</term>
<term>Diffusion</term>
<term>Polymère</term>
<term>Phase liquide</term>
<term>Dénitrification</term>
<term>Zinc</term>
<term>Cuivre</term>
<term>Sulfure</term>
<term>Barrière géochimique</term>
<term>Biotraitement</term>
<term>Liquide non aqueux</term>
<term>Précipitation</term>
<term>Réduction chimique</term>
<term>Effluent</term>
<term>Pollution</term>
<term>Barrière réactive perméable</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Large-scale soil column experiments were undertaken using low metal-sorbing soil to assess the efficiency of different carbon sources to promote and maintain a sulphate-reducing in situ reactive zone for bioprecipitation of metals in groundwater. Carbon sources were delivered by either direct injection (molasses), diffusion delivery through polymers (ethanol) or as a non-aqueous phase liquid (emulsified vegetable oil). All three carbon sources promoted denitrification with denitrification half lives between 1.3 and 2.1 days. However, only molasses and ethanol promoted sulphate reduction, with average sulphate-removal efficiencies of 53% and 95%, and sulphate reduction half lives of 8.3 and 1.2 days, respectively. Based on this information, ethanol was a more efficient carbon source in promoting and maintaining sulphate reduction within the column compared to molasses. Under these experimental conditions, non-aqueous phase vegetable oil amendment did not prove suitable as a carbon source to promote sulphate reduction. Substantial removal of zinc and copper (>98%) was observed in groundwater for both the ethanol-amended and molasses-amended columns. Zinc and copper were removed from the groundwater as it flowed past the sulphate-reducing regions of the columns, suggesting that the metals were deposited on the soil, possibly as zinc and copper sulphides. The longevity of sulphate reduction after ethanol and molasses delivery had ceased was in the order of two weeks or less, suggesting that in a field application, relatively continuous carbon addition would be required to maintain sulphate reduction for long-term treatment of metal-contaminated groundwater.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0144-7815</s0>
</fA01>
<fA05>
<s2>298</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Assessment of different carbon sources and delivery techniques to promote an in situ reactive zone for bioprecipitation of metals in groundwater</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Permeable reactive barriers : Belfast, March 2004</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>PATTERSON (Bradley M.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>YAMIN MA</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>GRASSI (Michelle E.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>ROBERTSON (Blair S.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>DAVIS (Greg B.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>LIPMAN (Mark)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>RHODES (Stuart)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>MCKINLEY (Allan J.)</s1>
</fA11>
<fA11 i1="09" i2="1">
<s1>RATE (Andrew W.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>BOSHOFF (Genevieve A.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>BONE (Brian D.)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>CSIRO Land and Water, Private Bag No. 5</s1>
<s2>Wembley, Western Australia 6913</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>The University of Western Australia</s1>
<s2>Nedlands, Western Australia 6009</s2>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Rio Tinto Technical Services</s1>
<s2>Milsons Point, New South Wales 2061</s2>
<s3>AUS</s3>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA18 i1="01" i2="1">
<s1>International Association of Hydrological Sciences</s1>
<s2>Paris</s2>
<s3>FRA</s3>
<s9>org-cong.</s9>
</fA18>
<fA20>
<s1>97-104</s1>
</fA20>
<fA21>
<s1>2005</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA26 i1="01">
<s0>1-901502-23-6</s0>
</fA26>
<fA43 i1="01">
<s1>INIST</s1>
<s2>8967</s2>
<s5>354000124509050120</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2005 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>8 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>05-0388959</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>IAHS-AISH publication</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Large-scale soil column experiments were undertaken using low metal-sorbing soil to assess the efficiency of different carbon sources to promote and maintain a sulphate-reducing in situ reactive zone for bioprecipitation of metals in groundwater. Carbon sources were delivered by either direct injection (molasses), diffusion delivery through polymers (ethanol) or as a non-aqueous phase liquid (emulsified vegetable oil). All three carbon sources promoted denitrification with denitrification half lives between 1.3 and 2.1 days. However, only molasses and ethanol promoted sulphate reduction, with average sulphate-removal efficiencies of 53% and 95%, and sulphate reduction half lives of 8.3 and 1.2 days, respectively. Based on this information, ethanol was a more efficient carbon source in promoting and maintaining sulphate reduction within the column compared to molasses. Under these experimental conditions, non-aqueous phase vegetable oil amendment did not prove suitable as a carbon source to promote sulphate reduction. Substantial removal of zinc and copper (>98%) was observed in groundwater for both the ethanol-amended and molasses-amended columns. Zinc and copper were removed from the groundwater as it flowed past the sulphate-reducing regions of the columns, suggesting that the metals were deposited on the soil, possibly as zinc and copper sulphides. The longevity of sulphate reduction after ethanol and molasses delivery had ceased was in the order of two weeks or less, suggesting that in a field application, relatively continuous carbon addition would be required to maintain sulphate reduction for long-term treatment of metal-contaminated groundwater.</s0>
</fC01>
<fC02 i1="01" i2="2">
<s0>226A02</s0>
</fC02>
<fC02 i1="02" i2="2">
<s0>226B04</s0>
</fC02>
<fC02 i1="03" i2="2">
<s0>001E01N02</s0>
</fC02>
<fC02 i1="04" i2="2">
<s0>001E01O04</s0>
</fC02>
<fC03 i1="01" i2="2" l="FRE">
<s0>Carbone</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="2" l="ENG">
<s0>carbon</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="2" l="SPA">
<s0>Carbono</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="2" l="FRE">
<s0>In situ</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="2" l="ENG">
<s0>in situ</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="2" l="FRE">
<s0>Elément métallique</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="2" l="ENG">
<s0>metals</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="2" l="SPA">
<s0>Elemento metálico</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="2" l="FRE">
<s0>Eau souterraine</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="2" l="ENG">
<s0>ground water</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="2" l="SPA">
<s0>Agua subterránea</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="2" l="FRE">
<s0>Aquifère</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="2" l="ENG">
<s0>aquifers</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="2" l="FRE">
<s0>Sol</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="2" l="ENG">
<s0>soils</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="2" l="SPA">
<s0>Suelo</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="2" l="FRE">
<s0>Etude expérimentale</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="2" l="ENG">
<s0>experimental studies</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="2" l="FRE">
<s0>Efficacité</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="2" l="ENG">
<s0>efficiency</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="2" l="FRE">
<s0>Sulfate</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="2" l="ENG">
<s0>sulfates</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="2" l="SPA">
<s0>Sulfato</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="2" l="FRE">
<s0>Injection</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="2" l="ENG">
<s0>injection</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="2" l="SPA">
<s0>Inyección</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="2" l="FRE">
<s0>Diffusion</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="2" l="ENG">
<s0>diffusion</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="2" l="SPA">
<s0>Difusión</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="2" l="FRE">
<s0>Polymère</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="2" l="ENG">
<s0>polymers</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="2" l="FRE">
<s0>Phase liquide</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="2" l="ENG">
<s0>liquid phase</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="2" l="SPA">
<s0>Fase líquida</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="2" l="FRE">
<s0>Dénitrification</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="2" l="ENG">
<s0>denitrification</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="2" l="SPA">
<s0>Desnitrificación</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="2" l="FRE">
<s0>Zinc</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="2" l="ENG">
<s0>zinc</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="2" l="SPA">
<s0>Zinc</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="2" l="FRE">
<s0>Cuivre</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="2" l="ENG">
<s0>copper</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="2" l="SPA">
<s0>Cobre</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="2" l="FRE">
<s0>Sulfure</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="2" l="ENG">
<s0>sulfides</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="2" l="SPA">
<s0>Sulfuro</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="2" l="FRE">
<s0>Barrière géochimique</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="2" l="ENG">
<s0>geochemical barriers</s0>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="2" l="FRE">
<s0>Biotraitement</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="2" l="ENG">
<s0>bioremediation</s0>
<s5>19</s5>
</fC03>
<fC03 i1="20" i2="2" l="FRE">
<s0>Liquide non aqueux</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="2" l="ENG">
<s0>nonaqueous phase liquids</s0>
<s5>20</s5>
</fC03>
<fC03 i1="21" i2="2" l="FRE">
<s0>Précipitation</s0>
<s5>21</s5>
</fC03>
<fC03 i1="21" i2="2" l="ENG">
<s0>precipitation</s0>
<s5>21</s5>
</fC03>
<fC03 i1="21" i2="2" l="SPA">
<s0>Precipitación</s0>
<s5>21</s5>
</fC03>
<fC03 i1="22" i2="2" l="FRE">
<s0>Réduction chimique</s0>
<s5>22</s5>
</fC03>
<fC03 i1="22" i2="2" l="ENG">
<s0>chemical reduction</s0>
<s5>22</s5>
</fC03>
<fC03 i1="22" i2="2" l="SPA">
<s0>Reducción química</s0>
<s5>22</s5>
</fC03>
<fC03 i1="23" i2="2" l="FRE">
<s0>Effluent</s0>
<s5>23</s5>
</fC03>
<fC03 i1="23" i2="2" l="ENG">
<s0>effluents</s0>
<s5>23</s5>
</fC03>
<fC03 i1="23" i2="2" l="SPA">
<s0>Efluente</s0>
<s5>23</s5>
</fC03>
<fC03 i1="24" i2="2" l="FRE">
<s0>Pollution</s0>
<s5>24</s5>
</fC03>
<fC03 i1="24" i2="2" l="ENG">
<s0>pollution</s0>
<s5>24</s5>
</fC03>
<fC03 i1="24" i2="2" l="SPA">
<s0>Polución</s0>
<s5>24</s5>
</fC03>
<fC03 i1="25" i2="2" l="FRE">
<s0>Barrière réactive perméable</s0>
<s4>INC</s4>
<s5>52</s5>
</fC03>
<fC06>
<s0>ILS</s0>
<s0>TA</s0>
</fC06>
<fN21>
<s1>269</s1>
</fN21>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>International symposium on permeable reactive barriers</s1>
<s2>1</s2>
<s3>Belfast GBR</s3>
<s4>2004-03</s4>
</fA30>
</pR>
</standard>
<server>
<NO>PASCAL 05-0388959 INIST</NO>
<ET>Assessment of different carbon sources and delivery techniques to promote an in situ reactive zone for bioprecipitation of metals in groundwater</ET>
<AU>PATTERSON (Bradley M.); YAMIN MA; GRASSI (Michelle E.); ROBERTSON (Blair S.); DAVIS (Greg B.); LIPMAN (Mark); RHODES (Stuart); MCKINLEY (Allan J.); RATE (Andrew W.); BOSHOFF (Genevieve A.); BONE (Brian D.)</AU>
<AF>CSIRO Land and Water, Private Bag No. 5/Wembley, Western Australia 6913/Australie (1 aut., 2 aut., 3 aut., 4 aut., 5 aut.); The University of Western Australia/Nedlands, Western Australia 6009/Australie (2 aut., 3 aut., 8 aut., 9 aut.); Rio Tinto Technical Services/Milsons Point, New South Wales 2061/Australie (6 aut., 7 aut.)</AF>
<DT>Publication en série; Congrès; Niveau analytique</DT>
<SO>IAHS-AISH publication; ISSN 0144-7815; Royaume-Uni; Da. 2005; Vol. 298; Pp. 97-104; Bibl. 8 ref.</SO>
<LA>Anglais</LA>
<EA>Large-scale soil column experiments were undertaken using low metal-sorbing soil to assess the efficiency of different carbon sources to promote and maintain a sulphate-reducing in situ reactive zone for bioprecipitation of metals in groundwater. Carbon sources were delivered by either direct injection (molasses), diffusion delivery through polymers (ethanol) or as a non-aqueous phase liquid (emulsified vegetable oil). All three carbon sources promoted denitrification with denitrification half lives between 1.3 and 2.1 days. However, only molasses and ethanol promoted sulphate reduction, with average sulphate-removal efficiencies of 53% and 95%, and sulphate reduction half lives of 8.3 and 1.2 days, respectively. Based on this information, ethanol was a more efficient carbon source in promoting and maintaining sulphate reduction within the column compared to molasses. Under these experimental conditions, non-aqueous phase vegetable oil amendment did not prove suitable as a carbon source to promote sulphate reduction. Substantial removal of zinc and copper (>98%) was observed in groundwater for both the ethanol-amended and molasses-amended columns. Zinc and copper were removed from the groundwater as it flowed past the sulphate-reducing regions of the columns, suggesting that the metals were deposited on the soil, possibly as zinc and copper sulphides. The longevity of sulphate reduction after ethanol and molasses delivery had ceased was in the order of two weeks or less, suggesting that in a field application, relatively continuous carbon addition would be required to maintain sulphate reduction for long-term treatment of metal-contaminated groundwater.</EA>
<CC>226A02; 226B04; 001E01N02; 001E01O04</CC>
<FD>Carbone; In situ; Elément métallique; Eau souterraine; Aquifère; Sol; Etude expérimentale; Efficacité; Sulfate; Injection; Diffusion; Polymère; Phase liquide; Dénitrification; Zinc; Cuivre; Sulfure; Barrière géochimique; Biotraitement; Liquide non aqueux; Précipitation; Réduction chimique; Effluent; Pollution; Barrière réactive perméable</FD>
<ED>carbon; in situ; metals; ground water; aquifers; soils; experimental studies; efficiency; sulfates; injection; diffusion; polymers; liquid phase; denitrification; zinc; copper; sulfides; geochemical barriers; bioremediation; nonaqueous phase liquids; precipitation; chemical reduction; effluents; pollution</ED>
<SD>Carbono; Elemento metálico; Agua subterránea; Suelo; Sulfato; Inyección; Difusión; Fase líquida; Desnitrificación; Zinc; Cobre; Sulfuro; Precipitación; Reducción química; Efluente; Polución</SD>
<LO>INIST-8967.354000124509050120</LO>
<ID>05-0388959</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 004793 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 004793 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:05-0388959
   |texte=   Assessment of different carbon sources and delivery techniques to promote an in situ reactive zone for bioprecipitation of metals in groundwater
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024