Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Physical and chemical conditions in methanol maser selected hot cores and UCH II regions

Identifieur interne : 002F04 ( PascalFrancis/Corpus ); précédent : 002F03; suivant : 002F05

Physical and chemical conditions in methanol maser selected hot cores and UCH II regions

Auteurs : C. R. Purcell ; S. N. Longmore ; M. G. Burton ; A. J. Walsh ; V. Minier ; M. R. Cunningham ; R. Balasubramanyam

Source :

RBID : Pascal:09-0150586

Descripteurs français

English descriptors

Abstract

We present the results of a targeted 3-mm spectral line survey towards the eighty-three 6.67 GHz methanol maser selected star-forming clumps observed by Purcell. In addition to the previously reported measurements of HCO+ (1-0), H13CO+ (1-0) and CH3CN (5-4) and (6-5), we used the Mopra antenna to detect emission lines of N2H+ (1-0), HCN(1-0) and HNC (1-0) towards 82/83 clumps (99 per cent), and CH3OH (2-1) towards 78/83 clumps (94 per cent). The molecular line data have been used to derive virial and local thermodynamic equilibrium masses, rotational temperatures and chemical abundances in the clumps, and these properties have been compared between subsamples associated with different indicators of evolution. The greatest differences are found between clumps associated with 8.6 GHz radio emission, indicating the presence of an Ultra-Compact H II (UCHII) region, and 'isolated' masers (without associated radio emission), and between clumps exhibiting CH3CN emission and those without. In particular, thermal CH3OH is found to be brighter and more abundant in UCHII regions and in sources with detected CH3CN, and may constitute a crude molecular clock in single dish observations. Clumps associated with 8.6 GHz radio emission tend to be more massive and more luminous than clumps without radio emission. This is likely because the most massive clumps evolve so rapidly that a Hyper-Compact H II or UCH II region is the first visible tracer of star formation. The gas mass to submm/infrared luminosity relation for the combined sample was found to be L M0.68, considerably shallower than expected for massive main-sequence stars. This implies that the mass of the clumps is comparable to, or greater than, the mass of the stellar content. We also find that the mass of the hot core is correlated with the mass of the clump in which it is embedded.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0035-8711
A02 01      @0 MNRAA4
A03   1    @0 Mon. Not. R. Astron. Soc.
A05       @2 394
A06       @2 1
A08 01  1  ENG  @1 Physical and chemical conditions in methanol maser selected hot cores and UCH II regions
A11 01  1    @1 PURCELL (C. R.)
A11 02  1    @1 LONGMORE (S. N.)
A11 03  1    @1 BURTON (M. G.)
A11 04  1    @1 WALSH (A. J.)
A11 05  1    @1 MINIER (V.)
A11 06  1    @1 CUNNINGHAM (M. R.)
A11 07  1    @1 BALASUBRAMANYAM (R.)
A14 01      @1 University of Manchester, Jodrell Bank Observatory, Macclesfield @2 Cheshire SK1I 9DL @3 GBR @Z 1 aut.
A14 02      @1 School of Physics, University of New South Wales @2 Sydney, NSW 2052 @3 AUS @Z 1 aut. @Z 2 aut. @Z 3 aut. @Z 4 aut. @Z 5 aut. @Z 6 aut. @Z 7 aut.
A14 03      @1 Harvard-Smithsonian Center For Astrophysics, 60 Garden Street @2 Cambridge, MA 02138 @3 USA @Z 2 aut.
A14 04      @1 CSIRO Australia Telescope National Facility, PO Box 76 @2 Epping, NSW 1710 @3 AUS @Z 2 aut.
A14 05      @1 Centre for Astronomy, James Cook University @2 Townsville, QLD 4811 @3 AUS @Z 4 aut.
A14 06      @1 Service d'Astrophysique, DAPNIA/DSM/CEA Saclay @2 91191 Gif-sur-Yvette @3 FRA @Z 5 aut.
A14 07      @1 AIM, Unité Mixte de Recherche, CEA-CNRS-Université Paris VII, UMR 7158, CEA/Saclay @2 91191 Gif-sur-Yvette @3 FRA @Z 5 aut.
A14 08      @1 Raman Research Institute @2 Sadashivanagar, Bangalore 560 080 @3 IND @Z 7 aut.
A20       @1 323-339
A21       @1 2009
A23 01      @0 ENG
A43 01      @1 INIST @2 2067 @5 354000185551290250
A44       @0 0000 @1 © 2009 INIST-CNRS. All rights reserved.
A45       @0 3/4 p.
A47 01  1    @0 09-0150586
A60       @1 P
A61       @0 A
A64 01  1    @0 Monthly Notices of the Royal Astronomical Society
A66 01      @0 GBR
C01 01    ENG  @0 We present the results of a targeted 3-mm spectral line survey towards the eighty-three 6.67 GHz methanol maser selected star-forming clumps observed by Purcell. In addition to the previously reported measurements of HCO+ (1-0), H13CO+ (1-0) and CH3CN (5-4) and (6-5), we used the Mopra antenna to detect emission lines of N2H+ (1-0), HCN(1-0) and HNC (1-0) towards 82/83 clumps (99 per cent), and CH3OH (2-1) towards 78/83 clumps (94 per cent). The molecular line data have been used to derive virial and local thermodynamic equilibrium masses, rotational temperatures and chemical abundances in the clumps, and these properties have been compared between subsamples associated with different indicators of evolution. The greatest differences are found between clumps associated with 8.6 GHz radio emission, indicating the presence of an Ultra-Compact H II (UCHII) region, and 'isolated' masers (without associated radio emission), and between clumps exhibiting CH3CN emission and those without. In particular, thermal CH3OH is found to be brighter and more abundant in UCHII regions and in sources with detected CH3CN, and may constitute a crude molecular clock in single dish observations. Clumps associated with 8.6 GHz radio emission tend to be more massive and more luminous than clumps without radio emission. This is likely because the most massive clumps evolve so rapidly that a Hyper-Compact H II or UCH II region is the first visible tracer of star formation. The gas mass to submm/infrared luminosity relation for the combined sample was found to be L <is proportional to> M0.68, considerably shallower than expected for massive main-sequence stars. This implies that the mass of the clumps is comparable to, or greater than, the mass of the stellar content. We also find that the mass of the hot core is correlated with the mass of the clump in which it is embedded.
C02 01  3    @0 001E03
C03 01  3  FRE  @0 Méthanol @2 NK @5 26
C03 01  3  ENG  @0 Methanol @2 NK @5 26
C03 02  3  FRE  @0 Maser @5 27
C03 02  3  ENG  @0 Masers @5 27
C03 03  X  FRE  @0 Raie émission @5 28
C03 03  X  ENG  @0 Emission line @5 28
C03 03  X  SPA  @0 Raya emisión @5 28
C03 04  X  FRE  @0 Cyanure d'hydrogène @5 29
C03 04  X  ENG  @0 Hydrogen cyanides @5 29
C03 04  X  SPA  @0 Hidrogeno cianuro @5 29
C03 05  3  FRE  @0 Equilibre thermodynamique local @5 30
C03 05  3  ENG  @0 LTE @5 30
C03 06  X  FRE  @0 Température rotationnelle @5 31
C03 06  X  ENG  @0 Rotational temperature @5 31
C03 06  X  SPA  @0 Temperatura rotacional @5 31
C03 07  3  FRE  @0 Abondance @5 32
C03 07  3  ENG  @0 Abundance @5 32
C03 08  X  FRE  @0 Emission radioélectrique @5 33
C03 08  X  ENG  @0 Radio emission @5 33
C03 08  X  SPA  @0 Emisión radioeléctrica @5 33
C03 09  3  FRE  @0 Région HII @5 34
C03 09  3  ENG  @0 HII regions @5 34
C03 10  3  FRE  @0 Traceur @5 35
C03 10  3  ENG  @0 Tracers @5 35
C03 11  3  FRE  @0 Formation stellaire @5 36
C03 11  3  ENG  @0 Star formation @5 36
C03 12  3  FRE  @0 Luminosité @5 37
C03 12  3  ENG  @0 Luminosity @5 37
C03 13  3  FRE  @0 Etoile massive @5 38
C03 13  3  ENG  @0 Massive stars @5 38
C03 14  3  FRE  @0 Etoile séquence principale @5 39
C03 14  3  ENG  @0 Main sequence stars @5 39
C03 15  X  FRE  @0 Contenu stellaire @5 40
C03 15  X  ENG  @0 Stellar content @5 40
C03 15  X  SPA  @0 Contenido estelar @5 40
N21       @1 103
N44 01      @1 OTO
N82       @1 OTO

Format Inist (serveur)

NO : PASCAL 09-0150586 INIST
ET : Physical and chemical conditions in methanol maser selected hot cores and UCH II regions
AU : PURCELL (C. R.); LONGMORE (S. N.); BURTON (M. G.); WALSH (A. J.); MINIER (V.); CUNNINGHAM (M. R.); BALASUBRAMANYAM (R.)
AF : University of Manchester, Jodrell Bank Observatory, Macclesfield/Cheshire SK1I 9DL/Royaume-Uni (1 aut.); School of Physics, University of New South Wales/Sydney, NSW 2052/Australie (1 aut., 2 aut., 3 aut., 4 aut., 5 aut., 6 aut., 7 aut.); Harvard-Smithsonian Center For Astrophysics, 60 Garden Street/Cambridge, MA 02138/Etats-Unis (2 aut.); CSIRO Australia Telescope National Facility, PO Box 76/Epping, NSW 1710/Australie (2 aut.); Centre for Astronomy, James Cook University/Townsville, QLD 4811/Australie (4 aut.); Service d'Astrophysique, DAPNIA/DSM/CEA Saclay/91191 Gif-sur-Yvette/France (5 aut.); AIM, Unité Mixte de Recherche, CEA-CNRS-Université Paris VII, UMR 7158, CEA/Saclay/91191 Gif-sur-Yvette/France (5 aut.); Raman Research Institute/Sadashivanagar, Bangalore 560 080/Inde (7 aut.)
DT : Publication en série; Niveau analytique
SO : Monthly Notices of the Royal Astronomical Society; ISSN 0035-8711; Coden MNRAA4; Royaume-Uni; Da. 2009; Vol. 394; No. 1; Pp. 323-339; Bibl. 3/4 p.
LA : Anglais
EA : We present the results of a targeted 3-mm spectral line survey towards the eighty-three 6.67 GHz methanol maser selected star-forming clumps observed by Purcell. In addition to the previously reported measurements of HCO+ (1-0), H13CO+ (1-0) and CH3CN (5-4) and (6-5), we used the Mopra antenna to detect emission lines of N2H+ (1-0), HCN(1-0) and HNC (1-0) towards 82/83 clumps (99 per cent), and CH3OH (2-1) towards 78/83 clumps (94 per cent). The molecular line data have been used to derive virial and local thermodynamic equilibrium masses, rotational temperatures and chemical abundances in the clumps, and these properties have been compared between subsamples associated with different indicators of evolution. The greatest differences are found between clumps associated with 8.6 GHz radio emission, indicating the presence of an Ultra-Compact H II (UCHII) region, and 'isolated' masers (without associated radio emission), and between clumps exhibiting CH3CN emission and those without. In particular, thermal CH3OH is found to be brighter and more abundant in UCHII regions and in sources with detected CH3CN, and may constitute a crude molecular clock in single dish observations. Clumps associated with 8.6 GHz radio emission tend to be more massive and more luminous than clumps without radio emission. This is likely because the most massive clumps evolve so rapidly that a Hyper-Compact H II or UCH II region is the first visible tracer of star formation. The gas mass to submm/infrared luminosity relation for the combined sample was found to be L <is proportional to> M0.68, considerably shallower than expected for massive main-sequence stars. This implies that the mass of the clumps is comparable to, or greater than, the mass of the stellar content. We also find that the mass of the hot core is correlated with the mass of the clump in which it is embedded.
CC : 001E03
FD : Méthanol; Maser; Raie émission; Cyanure d'hydrogène; Equilibre thermodynamique local; Température rotationnelle; Abondance; Emission radioélectrique; Région HII; Traceur; Formation stellaire; Luminosité; Etoile massive; Etoile séquence principale; Contenu stellaire
ED : Methanol; Masers; Emission line; Hydrogen cyanides; LTE; Rotational temperature; Abundance; Radio emission; HII regions; Tracers; Star formation; Luminosity; Massive stars; Main sequence stars; Stellar content
SD : Raya emisión; Hidrogeno cianuro; Temperatura rotacional; Emisión radioeléctrica; Contenido estelar
LO : INIST-2067.354000185551290250
ID : 09-0150586

Links to Exploration step

Pascal:09-0150586

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Physical and chemical conditions in methanol maser selected hot cores and UCH II regions</title>
<author>
<name sortKey="Purcell, C R" sort="Purcell, C R" uniqKey="Purcell C" first="C. R." last="Purcell">C. R. Purcell</name>
<affiliation>
<inist:fA14 i1="01">
<s1>University of Manchester, Jodrell Bank Observatory, Macclesfield</s1>
<s2>Cheshire SK1I 9DL</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>School of Physics, University of New South Wales</s1>
<s2>Sydney, NSW 2052</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Longmore, S N" sort="Longmore, S N" uniqKey="Longmore S" first="S. N." last="Longmore">S. N. Longmore</name>
<affiliation>
<inist:fA14 i1="02">
<s1>School of Physics, University of New South Wales</s1>
<s2>Sydney, NSW 2052</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="03">
<s1>Harvard-Smithsonian Center For Astrophysics, 60 Garden Street</s1>
<s2>Cambridge, MA 02138</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="04">
<s1>CSIRO Australia Telescope National Facility, PO Box 76</s1>
<s2>Epping, NSW 1710</s2>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Burton, M G" sort="Burton, M G" uniqKey="Burton M" first="M. G." last="Burton">M. G. Burton</name>
<affiliation>
<inist:fA14 i1="02">
<s1>School of Physics, University of New South Wales</s1>
<s2>Sydney, NSW 2052</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Walsh, A J" sort="Walsh, A J" uniqKey="Walsh A" first="A. J." last="Walsh">A. J. Walsh</name>
<affiliation>
<inist:fA14 i1="02">
<s1>School of Physics, University of New South Wales</s1>
<s2>Sydney, NSW 2052</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="05">
<s1>Centre for Astronomy, James Cook University</s1>
<s2>Townsville, QLD 4811</s2>
<s3>AUS</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Minier, V" sort="Minier, V" uniqKey="Minier V" first="V." last="Minier">V. Minier</name>
<affiliation>
<inist:fA14 i1="02">
<s1>School of Physics, University of New South Wales</s1>
<s2>Sydney, NSW 2052</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="06">
<s1>Service d'Astrophysique, DAPNIA/DSM/CEA Saclay</s1>
<s2>91191 Gif-sur-Yvette</s2>
<s3>FRA</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="07">
<s1>AIM, Unité Mixte de Recherche, CEA-CNRS-Université Paris VII, UMR 7158, CEA/Saclay</s1>
<s2>91191 Gif-sur-Yvette</s2>
<s3>FRA</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Cunningham, M R" sort="Cunningham, M R" uniqKey="Cunningham M" first="M. R." last="Cunningham">M. R. Cunningham</name>
<affiliation>
<inist:fA14 i1="02">
<s1>School of Physics, University of New South Wales</s1>
<s2>Sydney, NSW 2052</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Balasubramanyam, R" sort="Balasubramanyam, R" uniqKey="Balasubramanyam R" first="R." last="Balasubramanyam">R. Balasubramanyam</name>
<affiliation>
<inist:fA14 i1="02">
<s1>School of Physics, University of New South Wales</s1>
<s2>Sydney, NSW 2052</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="08">
<s1>Raman Research Institute</s1>
<s2>Sadashivanagar, Bangalore 560 080</s2>
<s3>IND</s3>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">09-0150586</idno>
<date when="2009">2009</date>
<idno type="stanalyst">PASCAL 09-0150586 INIST</idno>
<idno type="RBID">Pascal:09-0150586</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">002F04</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Physical and chemical conditions in methanol maser selected hot cores and UCH II regions</title>
<author>
<name sortKey="Purcell, C R" sort="Purcell, C R" uniqKey="Purcell C" first="C. R." last="Purcell">C. R. Purcell</name>
<affiliation>
<inist:fA14 i1="01">
<s1>University of Manchester, Jodrell Bank Observatory, Macclesfield</s1>
<s2>Cheshire SK1I 9DL</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>School of Physics, University of New South Wales</s1>
<s2>Sydney, NSW 2052</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Longmore, S N" sort="Longmore, S N" uniqKey="Longmore S" first="S. N." last="Longmore">S. N. Longmore</name>
<affiliation>
<inist:fA14 i1="02">
<s1>School of Physics, University of New South Wales</s1>
<s2>Sydney, NSW 2052</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="03">
<s1>Harvard-Smithsonian Center For Astrophysics, 60 Garden Street</s1>
<s2>Cambridge, MA 02138</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="04">
<s1>CSIRO Australia Telescope National Facility, PO Box 76</s1>
<s2>Epping, NSW 1710</s2>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Burton, M G" sort="Burton, M G" uniqKey="Burton M" first="M. G." last="Burton">M. G. Burton</name>
<affiliation>
<inist:fA14 i1="02">
<s1>School of Physics, University of New South Wales</s1>
<s2>Sydney, NSW 2052</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Walsh, A J" sort="Walsh, A J" uniqKey="Walsh A" first="A. J." last="Walsh">A. J. Walsh</name>
<affiliation>
<inist:fA14 i1="02">
<s1>School of Physics, University of New South Wales</s1>
<s2>Sydney, NSW 2052</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="05">
<s1>Centre for Astronomy, James Cook University</s1>
<s2>Townsville, QLD 4811</s2>
<s3>AUS</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Minier, V" sort="Minier, V" uniqKey="Minier V" first="V." last="Minier">V. Minier</name>
<affiliation>
<inist:fA14 i1="02">
<s1>School of Physics, University of New South Wales</s1>
<s2>Sydney, NSW 2052</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="06">
<s1>Service d'Astrophysique, DAPNIA/DSM/CEA Saclay</s1>
<s2>91191 Gif-sur-Yvette</s2>
<s3>FRA</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="07">
<s1>AIM, Unité Mixte de Recherche, CEA-CNRS-Université Paris VII, UMR 7158, CEA/Saclay</s1>
<s2>91191 Gif-sur-Yvette</s2>
<s3>FRA</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Cunningham, M R" sort="Cunningham, M R" uniqKey="Cunningham M" first="M. R." last="Cunningham">M. R. Cunningham</name>
<affiliation>
<inist:fA14 i1="02">
<s1>School of Physics, University of New South Wales</s1>
<s2>Sydney, NSW 2052</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Balasubramanyam, R" sort="Balasubramanyam, R" uniqKey="Balasubramanyam R" first="R." last="Balasubramanyam">R. Balasubramanyam</name>
<affiliation>
<inist:fA14 i1="02">
<s1>School of Physics, University of New South Wales</s1>
<s2>Sydney, NSW 2052</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="08">
<s1>Raman Research Institute</s1>
<s2>Sadashivanagar, Bangalore 560 080</s2>
<s3>IND</s3>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Monthly Notices of the Royal Astronomical Society</title>
<title level="j" type="abbreviated">Mon. Not. R. Astron. Soc.</title>
<idno type="ISSN">0035-8711</idno>
<imprint>
<date when="2009">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Monthly Notices of the Royal Astronomical Society</title>
<title level="j" type="abbreviated">Mon. Not. R. Astron. Soc.</title>
<idno type="ISSN">0035-8711</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Abundance</term>
<term>Emission line</term>
<term>HII regions</term>
<term>Hydrogen cyanides</term>
<term>LTE</term>
<term>Luminosity</term>
<term>Main sequence stars</term>
<term>Masers</term>
<term>Massive stars</term>
<term>Methanol</term>
<term>Radio emission</term>
<term>Rotational temperature</term>
<term>Star formation</term>
<term>Stellar content</term>
<term>Tracers</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Méthanol</term>
<term>Maser</term>
<term>Raie émission</term>
<term>Cyanure d'hydrogène</term>
<term>Equilibre thermodynamique local</term>
<term>Température rotationnelle</term>
<term>Abondance</term>
<term>Emission radioélectrique</term>
<term>Région HII</term>
<term>Traceur</term>
<term>Formation stellaire</term>
<term>Luminosité</term>
<term>Etoile massive</term>
<term>Etoile séquence principale</term>
<term>Contenu stellaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We present the results of a targeted 3-mm spectral line survey towards the eighty-three 6.67 GHz methanol maser selected star-forming clumps observed by Purcell. In addition to the previously reported measurements of HCO
<sup>+</sup>
(1-0), H
<sup>13</sup>
CO
<sup>+</sup>
(1-0) and CH
<sub>3</sub>
CN (5-4) and (6-5), we used the Mopra antenna to detect emission lines of N
<sub>2</sub>
H
<sup>+</sup>
(1-0), HCN(1-0) and HNC (1-0) towards 82/83 clumps (99 per cent), and CH
<sub>3</sub>
OH (2-1) towards 78/83 clumps (94 per cent). The molecular line data have been used to derive virial and local thermodynamic equilibrium masses, rotational temperatures and chemical abundances in the clumps, and these properties have been compared between subsamples associated with different indicators of evolution. The greatest differences are found between clumps associated with 8.6 GHz radio emission, indicating the presence of an Ultra-Compact H II (UCHII) region, and 'isolated' masers (without associated radio emission), and between clumps exhibiting CH
<sub>3</sub>
CN emission and those without. In particular, thermal CH
<sub>3</sub>
OH is found to be brighter and more abundant in UCHII regions and in sources with detected CH
<sub>3</sub>
CN, and may constitute a crude molecular clock in single dish observations. Clumps associated with 8.6 GHz radio emission tend to be more massive and more luminous than clumps without radio emission. This is likely because the most massive clumps evolve so rapidly that a Hyper-Compact H II or UCH II region is the first visible tracer of star formation. The gas mass to submm/infrared luminosity relation for the combined sample was found to be L M
<sup>0.68</sup>
, considerably shallower than expected for massive main-sequence stars. This implies that the mass of the clumps is comparable to, or greater than, the mass of the stellar content. We also find that the mass of the hot core is correlated with the mass of the clump in which it is embedded.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0035-8711</s0>
</fA01>
<fA02 i1="01">
<s0>MNRAA4</s0>
</fA02>
<fA03 i2="1">
<s0>Mon. Not. R. Astron. Soc.</s0>
</fA03>
<fA05>
<s2>394</s2>
</fA05>
<fA06>
<s2>1</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Physical and chemical conditions in methanol maser selected hot cores and UCH II regions</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>PURCELL (C. R.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>LONGMORE (S. N.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>BURTON (M. G.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>WALSH (A. J.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>MINIER (V.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>CUNNINGHAM (M. R.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>BALASUBRAMANYAM (R.)</s1>
</fA11>
<fA14 i1="01">
<s1>University of Manchester, Jodrell Bank Observatory, Macclesfield</s1>
<s2>Cheshire SK1I 9DL</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>School of Physics, University of New South Wales</s1>
<s2>Sydney, NSW 2052</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Harvard-Smithsonian Center For Astrophysics, 60 Garden Street</s1>
<s2>Cambridge, MA 02138</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>CSIRO Australia Telescope National Facility, PO Box 76</s1>
<s2>Epping, NSW 1710</s2>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="05">
<s1>Centre for Astronomy, James Cook University</s1>
<s2>Townsville, QLD 4811</s2>
<s3>AUS</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="06">
<s1>Service d'Astrophysique, DAPNIA/DSM/CEA Saclay</s1>
<s2>91191 Gif-sur-Yvette</s2>
<s3>FRA</s3>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="07">
<s1>AIM, Unité Mixte de Recherche, CEA-CNRS-Université Paris VII, UMR 7158, CEA/Saclay</s1>
<s2>91191 Gif-sur-Yvette</s2>
<s3>FRA</s3>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="08">
<s1>Raman Research Institute</s1>
<s2>Sadashivanagar, Bangalore 560 080</s2>
<s3>IND</s3>
<sZ>7 aut.</sZ>
</fA14>
<fA20>
<s1>323-339</s1>
</fA20>
<fA21>
<s1>2009</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>2067</s2>
<s5>354000185551290250</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2009 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>3/4 p.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>09-0150586</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Monthly Notices of the Royal Astronomical Society</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>We present the results of a targeted 3-mm spectral line survey towards the eighty-three 6.67 GHz methanol maser selected star-forming clumps observed by Purcell. In addition to the previously reported measurements of HCO
<sup>+</sup>
(1-0), H
<sup>13</sup>
CO
<sup>+</sup>
(1-0) and CH
<sub>3</sub>
CN (5-4) and (6-5), we used the Mopra antenna to detect emission lines of N
<sub>2</sub>
H
<sup>+</sup>
(1-0), HCN(1-0) and HNC (1-0) towards 82/83 clumps (99 per cent), and CH
<sub>3</sub>
OH (2-1) towards 78/83 clumps (94 per cent). The molecular line data have been used to derive virial and local thermodynamic equilibrium masses, rotational temperatures and chemical abundances in the clumps, and these properties have been compared between subsamples associated with different indicators of evolution. The greatest differences are found between clumps associated with 8.6 GHz radio emission, indicating the presence of an Ultra-Compact H II (UCHII) region, and 'isolated' masers (without associated radio emission), and between clumps exhibiting CH
<sub>3</sub>
CN emission and those without. In particular, thermal CH
<sub>3</sub>
OH is found to be brighter and more abundant in UCHII regions and in sources with detected CH
<sub>3</sub>
CN, and may constitute a crude molecular clock in single dish observations. Clumps associated with 8.6 GHz radio emission tend to be more massive and more luminous than clumps without radio emission. This is likely because the most massive clumps evolve so rapidly that a Hyper-Compact H II or UCH II region is the first visible tracer of star formation. The gas mass to submm/infrared luminosity relation for the combined sample was found to be L M
<sup>0.68</sup>
, considerably shallower than expected for massive main-sequence stars. This implies that the mass of the clumps is comparable to, or greater than, the mass of the stellar content. We also find that the mass of the hot core is correlated with the mass of the clump in which it is embedded.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001E03</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Méthanol</s0>
<s2>NK</s2>
<s5>26</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Methanol</s0>
<s2>NK</s2>
<s5>26</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Maser</s0>
<s5>27</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Masers</s0>
<s5>27</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Raie émission</s0>
<s5>28</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Emission line</s0>
<s5>28</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Raya emisión</s0>
<s5>28</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Cyanure d'hydrogène</s0>
<s5>29</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Hydrogen cyanides</s0>
<s5>29</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Hidrogeno cianuro</s0>
<s5>29</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Equilibre thermodynamique local</s0>
<s5>30</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>LTE</s0>
<s5>30</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Température rotationnelle</s0>
<s5>31</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Rotational temperature</s0>
<s5>31</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Temperatura rotacional</s0>
<s5>31</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Abondance</s0>
<s5>32</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Abundance</s0>
<s5>32</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Emission radioélectrique</s0>
<s5>33</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Radio emission</s0>
<s5>33</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Emisión radioeléctrica</s0>
<s5>33</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Région HII</s0>
<s5>34</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>HII regions</s0>
<s5>34</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Traceur</s0>
<s5>35</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Tracers</s0>
<s5>35</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Formation stellaire</s0>
<s5>36</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Star formation</s0>
<s5>36</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Luminosité</s0>
<s5>37</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Luminosity</s0>
<s5>37</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Etoile massive</s0>
<s5>38</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Massive stars</s0>
<s5>38</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Etoile séquence principale</s0>
<s5>39</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Main sequence stars</s0>
<s5>39</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Contenu stellaire</s0>
<s5>40</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Stellar content</s0>
<s5>40</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Contenido estelar</s0>
<s5>40</s5>
</fC03>
<fN21>
<s1>103</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 09-0150586 INIST</NO>
<ET>Physical and chemical conditions in methanol maser selected hot cores and UCH II regions</ET>
<AU>PURCELL (C. R.); LONGMORE (S. N.); BURTON (M. G.); WALSH (A. J.); MINIER (V.); CUNNINGHAM (M. R.); BALASUBRAMANYAM (R.)</AU>
<AF>University of Manchester, Jodrell Bank Observatory, Macclesfield/Cheshire SK1I 9DL/Royaume-Uni (1 aut.); School of Physics, University of New South Wales/Sydney, NSW 2052/Australie (1 aut., 2 aut., 3 aut., 4 aut., 5 aut., 6 aut., 7 aut.); Harvard-Smithsonian Center For Astrophysics, 60 Garden Street/Cambridge, MA 02138/Etats-Unis (2 aut.); CSIRO Australia Telescope National Facility, PO Box 76/Epping, NSW 1710/Australie (2 aut.); Centre for Astronomy, James Cook University/Townsville, QLD 4811/Australie (4 aut.); Service d'Astrophysique, DAPNIA/DSM/CEA Saclay/91191 Gif-sur-Yvette/France (5 aut.); AIM, Unité Mixte de Recherche, CEA-CNRS-Université Paris VII, UMR 7158, CEA/Saclay/91191 Gif-sur-Yvette/France (5 aut.); Raman Research Institute/Sadashivanagar, Bangalore 560 080/Inde (7 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Monthly Notices of the Royal Astronomical Society; ISSN 0035-8711; Coden MNRAA4; Royaume-Uni; Da. 2009; Vol. 394; No. 1; Pp. 323-339; Bibl. 3/4 p.</SO>
<LA>Anglais</LA>
<EA>We present the results of a targeted 3-mm spectral line survey towards the eighty-three 6.67 GHz methanol maser selected star-forming clumps observed by Purcell. In addition to the previously reported measurements of HCO
<sup>+</sup>
(1-0), H
<sup>13</sup>
CO
<sup>+</sup>
(1-0) and CH
<sub>3</sub>
CN (5-4) and (6-5), we used the Mopra antenna to detect emission lines of N
<sub>2</sub>
H
<sup>+</sup>
(1-0), HCN(1-0) and HNC (1-0) towards 82/83 clumps (99 per cent), and CH
<sub>3</sub>
OH (2-1) towards 78/83 clumps (94 per cent). The molecular line data have been used to derive virial and local thermodynamic equilibrium masses, rotational temperatures and chemical abundances in the clumps, and these properties have been compared between subsamples associated with different indicators of evolution. The greatest differences are found between clumps associated with 8.6 GHz radio emission, indicating the presence of an Ultra-Compact H II (UCHII) region, and 'isolated' masers (without associated radio emission), and between clumps exhibiting CH
<sub>3</sub>
CN emission and those without. In particular, thermal CH
<sub>3</sub>
OH is found to be brighter and more abundant in UCHII regions and in sources with detected CH
<sub>3</sub>
CN, and may constitute a crude molecular clock in single dish observations. Clumps associated with 8.6 GHz radio emission tend to be more massive and more luminous than clumps without radio emission. This is likely because the most massive clumps evolve so rapidly that a Hyper-Compact H II or UCH II region is the first visible tracer of star formation. The gas mass to submm/infrared luminosity relation for the combined sample was found to be L M
<sup>0.68</sup>
, considerably shallower than expected for massive main-sequence stars. This implies that the mass of the clumps is comparable to, or greater than, the mass of the stellar content. We also find that the mass of the hot core is correlated with the mass of the clump in which it is embedded.</EA>
<CC>001E03</CC>
<FD>Méthanol; Maser; Raie émission; Cyanure d'hydrogène; Equilibre thermodynamique local; Température rotationnelle; Abondance; Emission radioélectrique; Région HII; Traceur; Formation stellaire; Luminosité; Etoile massive; Etoile séquence principale; Contenu stellaire</FD>
<ED>Methanol; Masers; Emission line; Hydrogen cyanides; LTE; Rotational temperature; Abundance; Radio emission; HII regions; Tracers; Star formation; Luminosity; Massive stars; Main sequence stars; Stellar content</ED>
<SD>Raya emisión; Hidrogeno cianuro; Temperatura rotacional; Emisión radioeléctrica; Contenido estelar</SD>
<LO>INIST-2067.354000185551290250</LO>
<ID>09-0150586</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002F04 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 002F04 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:09-0150586
   |texte=   Physical and chemical conditions in methanol maser selected hot cores and UCH II regions
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024