Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The accuracy of tomographic particle image velocimetry for measurements of a turbulent boundary layer

Identifieur interne : 001B44 ( PascalFrancis/Corpus ); précédent : 001B43; suivant : 001B45

The accuracy of tomographic particle image velocimetry for measurements of a turbulent boundary layer

Auteurs : Callum Atkinson ; Sebastien Coudert ; Jean-Marc Foucaut ; Michel Stanislas ; Julio Soria

Source :

RBID : Pascal:11-0305212

Descripteurs français

English descriptors

Abstract

To investigate the accuracy of tomographic particle image velocimetry (Tomo-PIV) for turbulent boundary layer measurements, a series of synthetic image-based simulations and practical experiments are performed on a high Reynolds number turbulent boundary layer at Reθ = 7,800. Two different approaches to Tomo-PIV are examined using a full-volume slab measurement and a thin-volume "fat" light sheet approach. Tomographic reconstruction is performed using both the standard MART technique and the more efficient MLOS-SMART approach, showing a 10-time increase in processing speed. Random and bias errors are quantified under the influence of the near-wall velocity gradient, reconstruction method, ghost particles, seeding density and volume thickness, using synthetic images. Experimental Tomo-PIV results are compared with hot-wire measurements and errors are examined in terms of the measured mean and fluctuating profiles, probability density functions of the fluctuations, distributions of fluctuating divergence through the volume and velocity power spectra. Velocity gradients have a large effect on errors near the wall and also increase the errors associated with ghost particles, which convect at mean velocities through the volume thickness. Tomo-PIV provides accurate experimental measurements at low wave numbers; however, reconstruction introduces high noise levels that reduces the effective spatial resolution. A thinner volume is shown to provide a higher measurement accuracy at the expense of the measurement domain, albeit still at a lower effective spatial resolution than planar and Stereo-PIV.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0723-4864
A02 01      @0 EXFLDU
A03   1    @0 Exp. fluids
A05       @2 50
A06       @2 4
A08 01  1  ENG  @1 The accuracy of tomographic particle image velocimetry for measurements of a turbulent boundary layer
A09 01  1  ENG  @1 Eighth International Symposium on Particle Image Velocimetry (PIV'09)
A11 01  1    @1 ATKINSON (Callum)
A11 02  1    @1 COUDERT (Sebastien)
A11 03  1    @1 FOUCAUT (Jean-Marc)
A11 04  1    @1 STANISLAS (Michel)
A11 05  1    @1 SORIA (Julio)
A12 01  1    @1 SORIA (Julio) @9 ed.
A12 02  1    @1 CLEMENS (Noel T.) @9 ed.
A14 01      @1 Laboratory for Turbulence Research in Aerospace and Combustion, Department of Mechanical and Aerospace Engineering, Monash University @2 Victoria 3800 @3 AUS @Z 5 aut.
A14 02      @1 Laboratoire de Mecanique de Lille (UMR CNRS 8107), Ecole Centrale de Lille, Bd Paul Langevin, Cite Scientifique @2 59655 Villeneuve d'Ascq @3 FRA @Z 1 aut. @Z 2 aut. @Z 3 aut. @Z 4 aut.
A15 01      @1 Laboratory for Turbulence Research in Aerospace and Combustion, Department of Mechanical and Aerospace Engineering, Monash University, Clayton Campus @2 Melbourne, VIC 3800 @3 AUS @Z 1 aut.
A15 02      @1 Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, 1 University Station C0600 @2 Austin, TX 78712 @3 USA @Z 2 aut.
A18 01  1    @1 Monash University @2 Victoria @3 AUS @9 org-cong.
A20       @1 1031-1056
A21       @1 2011
A23 01      @0 ENG
A43 01      @1 INIST @2 19904 @5 354000192957660200
A44       @0 0000 @1 © 2011 INIST-CNRS. All rights reserved.
A45       @0 1 p.
A47 01  1    @0 11-0305212
A60       @1 P @2 C
A61       @0 A
A64 01  1    @0 Experiments in fluids
A66 01      @0 DEU
C01 01    ENG  @0 To investigate the accuracy of tomographic particle image velocimetry (Tomo-PIV) for turbulent boundary layer measurements, a series of synthetic image-based simulations and practical experiments are performed on a high Reynolds number turbulent boundary layer at Reθ = 7,800. Two different approaches to Tomo-PIV are examined using a full-volume slab measurement and a thin-volume "fat" light sheet approach. Tomographic reconstruction is performed using both the standard MART technique and the more efficient MLOS-SMART approach, showing a 10-time increase in processing speed. Random and bias errors are quantified under the influence of the near-wall velocity gradient, reconstruction method, ghost particles, seeding density and volume thickness, using synthetic images. Experimental Tomo-PIV results are compared with hot-wire measurements and errors are examined in terms of the measured mean and fluctuating profiles, probability density functions of the fluctuations, distributions of fluctuating divergence through the volume and velocity power spectra. Velocity gradients have a large effect on errors near the wall and also increase the errors associated with ghost particles, which convect at mean velocities through the volume thickness. Tomo-PIV provides accurate experimental measurements at low wave numbers; however, reconstruction introduces high noise levels that reduces the effective spatial resolution. A thinner volume is shown to provide a higher measurement accuracy at the expense of the measurement domain, albeit still at a lower effective spatial resolution than planar and Stereo-PIV.
C02 01  3    @0 001B40G80
C02 02  3    @0 001B40G27N
C03 01  3  FRE  @0 Couche limite @5 02
C03 01  3  ENG  @0 Boundary layers @5 02
C03 02  3  FRE  @0 Ecoulement turbulent @5 03
C03 02  3  ENG  @0 Turbulent flow @5 03
C03 03  X  FRE  @0 Estimation erreur @5 08
C03 03  X  ENG  @0 Error estimation @5 08
C03 03  X  SPA  @0 Estimación error @5 08
C03 04  3  FRE  @0 Etude expérimentale @5 15
C03 04  3  ENG  @0 Experimental study @5 15
C03 05  3  FRE  @0 Vélocimétrie image particule @5 17
C03 05  3  ENG  @0 Particle image velocimetry @5 17
C03 06  3  FRE  @0 Mesure vitesse @5 18
C03 06  3  ENG  @0 Velocity measurement @5 18
C03 07  3  FRE  @0 Tomographie @5 19
C03 07  3  ENG  @0 Tomography @5 19
C03 08  3  FRE  @0 Installation essai @5 20
C03 08  3  ENG  @0 Test facilities @5 20
C03 09  3  FRE  @0 4780 @4 INC @5 56
C03 10  3  FRE  @0 4727N @4 INC @5 57
N21       @1 206
pR  
A30 01  1  ENG  @1 International Symposium on Particle Image Velocimetry (PIV'09) @3 Melbourne AUS @4 2009-08-25

Format Inist (serveur)

NO : PASCAL 11-0305212 INIST
ET : The accuracy of tomographic particle image velocimetry for measurements of a turbulent boundary layer
AU : ATKINSON (Callum); COUDERT (Sebastien); FOUCAUT (Jean-Marc); STANISLAS (Michel); SORIA (Julio); SORIA (Julio); CLEMENS (Noel T.)
AF : Laboratory for Turbulence Research in Aerospace and Combustion, Department of Mechanical and Aerospace Engineering, Monash University/Victoria 3800/Australie (5 aut.); Laboratoire de Mecanique de Lille (UMR CNRS 8107), Ecole Centrale de Lille, Bd Paul Langevin, Cite Scientifique/59655 Villeneuve d'Ascq/France (1 aut., 2 aut., 3 aut., 4 aut.); Laboratory for Turbulence Research in Aerospace and Combustion, Department of Mechanical and Aerospace Engineering, Monash University, Clayton Campus/Melbourne, VIC 3800/Australie (1 aut.); Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, 1 University Station C0600/Austin, TX 78712/Etats-Unis (2 aut.)
DT : Publication en série; Congrès; Niveau analytique
SO : Experiments in fluids; ISSN 0723-4864; Coden EXFLDU; Allemagne; Da. 2011; Vol. 50; No. 4; Pp. 1031-1056; Bibl. 1 p.
LA : Anglais
EA : To investigate the accuracy of tomographic particle image velocimetry (Tomo-PIV) for turbulent boundary layer measurements, a series of synthetic image-based simulations and practical experiments are performed on a high Reynolds number turbulent boundary layer at Reθ = 7,800. Two different approaches to Tomo-PIV are examined using a full-volume slab measurement and a thin-volume "fat" light sheet approach. Tomographic reconstruction is performed using both the standard MART technique and the more efficient MLOS-SMART approach, showing a 10-time increase in processing speed. Random and bias errors are quantified under the influence of the near-wall velocity gradient, reconstruction method, ghost particles, seeding density and volume thickness, using synthetic images. Experimental Tomo-PIV results are compared with hot-wire measurements and errors are examined in terms of the measured mean and fluctuating profiles, probability density functions of the fluctuations, distributions of fluctuating divergence through the volume and velocity power spectra. Velocity gradients have a large effect on errors near the wall and also increase the errors associated with ghost particles, which convect at mean velocities through the volume thickness. Tomo-PIV provides accurate experimental measurements at low wave numbers; however, reconstruction introduces high noise levels that reduces the effective spatial resolution. A thinner volume is shown to provide a higher measurement accuracy at the expense of the measurement domain, albeit still at a lower effective spatial resolution than planar and Stereo-PIV.
CC : 001B40G80; 001B40G27N
FD : Couche limite; Ecoulement turbulent; Estimation erreur; Etude expérimentale; Vélocimétrie image particule; Mesure vitesse; Tomographie; Installation essai; 4780; 4727N
ED : Boundary layers; Turbulent flow; Error estimation; Experimental study; Particle image velocimetry; Velocity measurement; Tomography; Test facilities
SD : Estimación error
LO : INIST-19904.354000192957660200
ID : 11-0305212

Links to Exploration step

Pascal:11-0305212

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">The accuracy of tomographic particle image velocimetry for measurements of a turbulent boundary layer</title>
<author>
<name sortKey="Atkinson, Callum" sort="Atkinson, Callum" uniqKey="Atkinson C" first="Callum" last="Atkinson">Callum Atkinson</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Laboratoire de Mecanique de Lille (UMR CNRS 8107), Ecole Centrale de Lille, Bd Paul Langevin, Cite Scientifique</s1>
<s2>59655 Villeneuve d'Ascq</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Coudert, Sebastien" sort="Coudert, Sebastien" uniqKey="Coudert S" first="Sebastien" last="Coudert">Sebastien Coudert</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Laboratoire de Mecanique de Lille (UMR CNRS 8107), Ecole Centrale de Lille, Bd Paul Langevin, Cite Scientifique</s1>
<s2>59655 Villeneuve d'Ascq</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Foucaut, Jean Marc" sort="Foucaut, Jean Marc" uniqKey="Foucaut J" first="Jean-Marc" last="Foucaut">Jean-Marc Foucaut</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Laboratoire de Mecanique de Lille (UMR CNRS 8107), Ecole Centrale de Lille, Bd Paul Langevin, Cite Scientifique</s1>
<s2>59655 Villeneuve d'Ascq</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Stanislas, Michel" sort="Stanislas, Michel" uniqKey="Stanislas M" first="Michel" last="Stanislas">Michel Stanislas</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Laboratoire de Mecanique de Lille (UMR CNRS 8107), Ecole Centrale de Lille, Bd Paul Langevin, Cite Scientifique</s1>
<s2>59655 Villeneuve d'Ascq</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Soria, Julio" sort="Soria, Julio" uniqKey="Soria J" first="Julio" last="Soria">Julio Soria</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Laboratory for Turbulence Research in Aerospace and Combustion, Department of Mechanical and Aerospace Engineering, Monash University</s1>
<s2>Victoria 3800</s2>
<s3>AUS</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">11-0305212</idno>
<date when="2011">2011</date>
<idno type="stanalyst">PASCAL 11-0305212 INIST</idno>
<idno type="RBID">Pascal:11-0305212</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">001B44</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">The accuracy of tomographic particle image velocimetry for measurements of a turbulent boundary layer</title>
<author>
<name sortKey="Atkinson, Callum" sort="Atkinson, Callum" uniqKey="Atkinson C" first="Callum" last="Atkinson">Callum Atkinson</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Laboratoire de Mecanique de Lille (UMR CNRS 8107), Ecole Centrale de Lille, Bd Paul Langevin, Cite Scientifique</s1>
<s2>59655 Villeneuve d'Ascq</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Coudert, Sebastien" sort="Coudert, Sebastien" uniqKey="Coudert S" first="Sebastien" last="Coudert">Sebastien Coudert</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Laboratoire de Mecanique de Lille (UMR CNRS 8107), Ecole Centrale de Lille, Bd Paul Langevin, Cite Scientifique</s1>
<s2>59655 Villeneuve d'Ascq</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Foucaut, Jean Marc" sort="Foucaut, Jean Marc" uniqKey="Foucaut J" first="Jean-Marc" last="Foucaut">Jean-Marc Foucaut</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Laboratoire de Mecanique de Lille (UMR CNRS 8107), Ecole Centrale de Lille, Bd Paul Langevin, Cite Scientifique</s1>
<s2>59655 Villeneuve d'Ascq</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Stanislas, Michel" sort="Stanislas, Michel" uniqKey="Stanislas M" first="Michel" last="Stanislas">Michel Stanislas</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Laboratoire de Mecanique de Lille (UMR CNRS 8107), Ecole Centrale de Lille, Bd Paul Langevin, Cite Scientifique</s1>
<s2>59655 Villeneuve d'Ascq</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Soria, Julio" sort="Soria, Julio" uniqKey="Soria J" first="Julio" last="Soria">Julio Soria</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Laboratory for Turbulence Research in Aerospace and Combustion, Department of Mechanical and Aerospace Engineering, Monash University</s1>
<s2>Victoria 3800</s2>
<s3>AUS</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Experiments in fluids</title>
<title level="j" type="abbreviated">Exp. fluids</title>
<idno type="ISSN">0723-4864</idno>
<imprint>
<date when="2011">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Experiments in fluids</title>
<title level="j" type="abbreviated">Exp. fluids</title>
<idno type="ISSN">0723-4864</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Boundary layers</term>
<term>Error estimation</term>
<term>Experimental study</term>
<term>Particle image velocimetry</term>
<term>Test facilities</term>
<term>Tomography</term>
<term>Turbulent flow</term>
<term>Velocity measurement</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Couche limite</term>
<term>Ecoulement turbulent</term>
<term>Estimation erreur</term>
<term>Etude expérimentale</term>
<term>Vélocimétrie image particule</term>
<term>Mesure vitesse</term>
<term>Tomographie</term>
<term>Installation essai</term>
<term>4780</term>
<term>4727N</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">To investigate the accuracy of tomographic particle image velocimetry (Tomo-PIV) for turbulent boundary layer measurements, a series of synthetic image-based simulations and practical experiments are performed on a high Reynolds number turbulent boundary layer at Re
<sub>θ</sub>
= 7,800. Two different approaches to Tomo-PIV are examined using a full-volume slab measurement and a thin-volume "fat" light sheet approach. Tomographic reconstruction is performed using both the standard MART technique and the more efficient MLOS-SMART approach, showing a 10-time increase in processing speed. Random and bias errors are quantified under the influence of the near-wall velocity gradient, reconstruction method, ghost particles, seeding density and volume thickness, using synthetic images. Experimental Tomo-PIV results are compared with hot-wire measurements and errors are examined in terms of the measured mean and fluctuating profiles, probability density functions of the fluctuations, distributions of fluctuating divergence through the volume and velocity power spectra. Velocity gradients have a large effect on errors near the wall and also increase the errors associated with ghost particles, which convect at mean velocities through the volume thickness. Tomo-PIV provides accurate experimental measurements at low wave numbers; however, reconstruction introduces high noise levels that reduces the effective spatial resolution. A thinner volume is shown to provide a higher measurement accuracy at the expense of the measurement domain, albeit still at a lower effective spatial resolution than planar and Stereo-PIV.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0723-4864</s0>
</fA01>
<fA02 i1="01">
<s0>EXFLDU</s0>
</fA02>
<fA03 i2="1">
<s0>Exp. fluids</s0>
</fA03>
<fA05>
<s2>50</s2>
</fA05>
<fA06>
<s2>4</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>The accuracy of tomographic particle image velocimetry for measurements of a turbulent boundary layer</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Eighth International Symposium on Particle Image Velocimetry (PIV'09)</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>ATKINSON (Callum)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>COUDERT (Sebastien)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>FOUCAUT (Jean-Marc)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>STANISLAS (Michel)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>SORIA (Julio)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>SORIA (Julio)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>CLEMENS (Noel T.)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Laboratory for Turbulence Research in Aerospace and Combustion, Department of Mechanical and Aerospace Engineering, Monash University</s1>
<s2>Victoria 3800</s2>
<s3>AUS</s3>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Laboratoire de Mecanique de Lille (UMR CNRS 8107), Ecole Centrale de Lille, Bd Paul Langevin, Cite Scientifique</s1>
<s2>59655 Villeneuve d'Ascq</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA15 i1="01">
<s1>Laboratory for Turbulence Research in Aerospace and Combustion, Department of Mechanical and Aerospace Engineering, Monash University, Clayton Campus</s1>
<s2>Melbourne, VIC 3800</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
</fA15>
<fA15 i1="02">
<s1>Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, 1 University Station C0600</s1>
<s2>Austin, TX 78712</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</fA15>
<fA18 i1="01" i2="1">
<s1>Monash University</s1>
<s2>Victoria</s2>
<s3>AUS</s3>
<s9>org-cong.</s9>
</fA18>
<fA20>
<s1>1031-1056</s1>
</fA20>
<fA21>
<s1>2011</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>19904</s2>
<s5>354000192957660200</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2011 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>1 p.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>11-0305212</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Experiments in fluids</s0>
</fA64>
<fA66 i1="01">
<s0>DEU</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>To investigate the accuracy of tomographic particle image velocimetry (Tomo-PIV) for turbulent boundary layer measurements, a series of synthetic image-based simulations and practical experiments are performed on a high Reynolds number turbulent boundary layer at Re
<sub>θ</sub>
= 7,800. Two different approaches to Tomo-PIV are examined using a full-volume slab measurement and a thin-volume "fat" light sheet approach. Tomographic reconstruction is performed using both the standard MART technique and the more efficient MLOS-SMART approach, showing a 10-time increase in processing speed. Random and bias errors are quantified under the influence of the near-wall velocity gradient, reconstruction method, ghost particles, seeding density and volume thickness, using synthetic images. Experimental Tomo-PIV results are compared with hot-wire measurements and errors are examined in terms of the measured mean and fluctuating profiles, probability density functions of the fluctuations, distributions of fluctuating divergence through the volume and velocity power spectra. Velocity gradients have a large effect on errors near the wall and also increase the errors associated with ghost particles, which convect at mean velocities through the volume thickness. Tomo-PIV provides accurate experimental measurements at low wave numbers; however, reconstruction introduces high noise levels that reduces the effective spatial resolution. A thinner volume is shown to provide a higher measurement accuracy at the expense of the measurement domain, albeit still at a lower effective spatial resolution than planar and Stereo-PIV.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B40G80</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B40G27N</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Couche limite</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Boundary layers</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Ecoulement turbulent</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Turbulent flow</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Estimation erreur</s0>
<s5>08</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Error estimation</s0>
<s5>08</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Estimación error</s0>
<s5>08</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Etude expérimentale</s0>
<s5>15</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Experimental study</s0>
<s5>15</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Vélocimétrie image particule</s0>
<s5>17</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Particle image velocimetry</s0>
<s5>17</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Mesure vitesse</s0>
<s5>18</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Velocity measurement</s0>
<s5>18</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Tomographie</s0>
<s5>19</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Tomography</s0>
<s5>19</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Installation essai</s0>
<s5>20</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Test facilities</s0>
<s5>20</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>4780</s0>
<s4>INC</s4>
<s5>56</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>4727N</s0>
<s4>INC</s4>
<s5>57</s5>
</fC03>
<fN21>
<s1>206</s1>
</fN21>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>International Symposium on Particle Image Velocimetry (PIV'09)</s1>
<s3>Melbourne AUS</s3>
<s4>2009-08-25</s4>
</fA30>
</pR>
</standard>
<server>
<NO>PASCAL 11-0305212 INIST</NO>
<ET>The accuracy of tomographic particle image velocimetry for measurements of a turbulent boundary layer</ET>
<AU>ATKINSON (Callum); COUDERT (Sebastien); FOUCAUT (Jean-Marc); STANISLAS (Michel); SORIA (Julio); SORIA (Julio); CLEMENS (Noel T.)</AU>
<AF>Laboratory for Turbulence Research in Aerospace and Combustion, Department of Mechanical and Aerospace Engineering, Monash University/Victoria 3800/Australie (5 aut.); Laboratoire de Mecanique de Lille (UMR CNRS 8107), Ecole Centrale de Lille, Bd Paul Langevin, Cite Scientifique/59655 Villeneuve d'Ascq/France (1 aut., 2 aut., 3 aut., 4 aut.); Laboratory for Turbulence Research in Aerospace and Combustion, Department of Mechanical and Aerospace Engineering, Monash University, Clayton Campus/Melbourne, VIC 3800/Australie (1 aut.); Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, 1 University Station C0600/Austin, TX 78712/Etats-Unis (2 aut.)</AF>
<DT>Publication en série; Congrès; Niveau analytique</DT>
<SO>Experiments in fluids; ISSN 0723-4864; Coden EXFLDU; Allemagne; Da. 2011; Vol. 50; No. 4; Pp. 1031-1056; Bibl. 1 p.</SO>
<LA>Anglais</LA>
<EA>To investigate the accuracy of tomographic particle image velocimetry (Tomo-PIV) for turbulent boundary layer measurements, a series of synthetic image-based simulations and practical experiments are performed on a high Reynolds number turbulent boundary layer at Re
<sub>θ</sub>
= 7,800. Two different approaches to Tomo-PIV are examined using a full-volume slab measurement and a thin-volume "fat" light sheet approach. Tomographic reconstruction is performed using both the standard MART technique and the more efficient MLOS-SMART approach, showing a 10-time increase in processing speed. Random and bias errors are quantified under the influence of the near-wall velocity gradient, reconstruction method, ghost particles, seeding density and volume thickness, using synthetic images. Experimental Tomo-PIV results are compared with hot-wire measurements and errors are examined in terms of the measured mean and fluctuating profiles, probability density functions of the fluctuations, distributions of fluctuating divergence through the volume and velocity power spectra. Velocity gradients have a large effect on errors near the wall and also increase the errors associated with ghost particles, which convect at mean velocities through the volume thickness. Tomo-PIV provides accurate experimental measurements at low wave numbers; however, reconstruction introduces high noise levels that reduces the effective spatial resolution. A thinner volume is shown to provide a higher measurement accuracy at the expense of the measurement domain, albeit still at a lower effective spatial resolution than planar and Stereo-PIV.</EA>
<CC>001B40G80; 001B40G27N</CC>
<FD>Couche limite; Ecoulement turbulent; Estimation erreur; Etude expérimentale; Vélocimétrie image particule; Mesure vitesse; Tomographie; Installation essai; 4780; 4727N</FD>
<ED>Boundary layers; Turbulent flow; Error estimation; Experimental study; Particle image velocimetry; Velocity measurement; Tomography; Test facilities</ED>
<SD>Estimación error</SD>
<LO>INIST-19904.354000192957660200</LO>
<ID>11-0305212</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001B44 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 001B44 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:11-0305212
   |texte=   The accuracy of tomographic particle image velocimetry for measurements of a turbulent boundary layer
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024