Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Atmospheric CO2 inversion validation using vertical profile measurements: Analysis of four independent inversion models

Identifieur interne : 001A63 ( PascalFrancis/Corpus ); précédent : 001A62; suivant : 001A64

Atmospheric CO2 inversion validation using vertical profile measurements: Analysis of four independent inversion models

Auteurs : C. A. Pickett-Heaps ; P. J. Rayner ; R. M. Law ; P. Ciais ; P. K. Patra ; P. Bousquet ; P. Peylin ; S. Maksyutov ; J. Marshall ; C. Rödenbeck ; R. L. Langenfelds ; L. P. Steele ; R. J. Francey ; P. Tans ; C. Sweeney

Source :

RBID : Pascal:11-0355458

Descripteurs français

English descriptors

Abstract

[1] We present the results of a validation of atmospheric inversions of CO2 fluxes using four transport models. Each inversion uses data primarily from surface stations, combined with an atmospheric transport model, to estimate surface fluxes. The validation (or model evaluation) consists of running these optimized fluxes through the forward model and comparing the simulated concentrations with airborne concentration measurements. We focus on profiles from Cape Grim, Tasmania, and Carr, Colorado, while using other profile sites to test the generality of the comparison. Fits to the profiles are generally worse than to the surface data from the inversions and worse than the expected model-data mismatch. Thus inversion estimates are generally not consistent with the profile measurements. The TM3 model does better by some measures than the other three models. Models perform better over Tasmania than Colorado, and other profile sites bear out a general improvement from north to south and from continental to marine locations. There are also errors in the interannual variability of the fit, consistent in time and common across models. This suggests real variations in sources visible to the profile but not the surface measurements.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0148-0227
A03   1    @0 J. geophys. res.
A05       @2 116
A06       @2 D12
A08 01  1  ENG  @1 Atmospheric CO2 inversion validation using vertical profile measurements: Analysis of four independent inversion models
A11 01  1    @1 PICKETT-HEAPS (C. A.)
A11 02  1    @1 RAYNER (P. J.)
A11 03  1    @1 LAW (R. M.)
A11 04  1    @1 CIAIS (P.)
A11 05  1    @1 PATRA (P. K.)
A11 06  1    @1 BOUSQUET (P.)
A11 07  1    @1 PEYLIN (P.)
A11 08  1    @1 MAKSYUTOV (S.)
A11 09  1    @1 MARSHALL (J.)
A11 10  1    @1 RÖDENBECK (C.)
A11 11  1    @1 LANGENFELDS (R. L.)
A11 12  1    @1 STEELE (L. P.)
A11 13  1    @1 FRANCEY (R. J.)
A11 14  1    @1 TANS (P.)
A11 15  1    @1 SWEENEY (C.)
A14 01      @1 Laboratoire des Sciences du Climat et de l'Environnement, IPSL, CEA/CNRS/UVSQ @2 Gif sur Yvette @3 FRA @Z 1 aut. @Z 2 aut. @Z 4 aut. @Z 6 aut. @Z 7 aut.
A14 02      @1 CSIRO Marine and Atmospheric Research @2 Canberra, ACT @3 AUS @Z 1 aut.
A14 03      @1 School of Earth Sciences, University of Melbourne @2 Parkville, Victoria @3 AUS @Z 2 aut.
A14 04      @1 Centre for Australian Weather and Climate Research, CSIRO Marine and Atmospheric Research @2 Aspendale, Victoria @3 AUS @Z 3 aut. @Z 11 aut. @Z 12 aut. @Z 13 aut.
A14 05      @1 Research Institute for Global Change, JAMSTEC @2 Yokohama @3 JPN @Z 5 aut. @Z 8 aut.
A14 06      @1 National Institute for Environmental Science @2 Tsukuba @3 JPN @Z 8 aut.
A14 07      @1 Max Plank Institute for Biogeochemistry @2 Jena @3 DEU @Z 9 aut. @Z 10 aut.
A14 08      @1 Global Monitoring Division, ESRL, NOAA @2 Boulder, Colorado @3 USA @Z 14 aut. @Z 15 aut.
A20       @2 D12305.1-D12305.17
A21       @1 2011
A23 01      @0 ENG
A43 01      @1 INIST @2 3144 @5 354000508553950320
A44       @0 0000 @1 © 2011 INIST-CNRS. All rights reserved.
A45       @0 1 p.
A47 01  1    @0 11-0355458
A60       @1 P
A61       @0 A
A64 01  1    @0 Journal of geophysical research
A66 01      @0 USA
C01 01    ENG  @0 [1] We present the results of a validation of atmospheric inversions of CO2 fluxes using four transport models. Each inversion uses data primarily from surface stations, combined with an atmospheric transport model, to estimate surface fluxes. The validation (or model evaluation) consists of running these optimized fluxes through the forward model and comparing the simulated concentrations with airborne concentration measurements. We focus on profiles from Cape Grim, Tasmania, and Carr, Colorado, while using other profile sites to test the generality of the comparison. Fits to the profiles are generally worse than to the surface data from the inversions and worse than the expected model-data mismatch. Thus inversion estimates are generally not consistent with the profile measurements. The TM3 model does better by some measures than the other three models. Models perform better over Tasmania than Colorado, and other profile sites bear out a general improvement from north to south and from continental to marine locations. There are also errors in the interannual variability of the fit, consistent in time and common across models. This suggests real variations in sources visible to the profile but not the surface measurements.
C02 01  3    @0 001E
C02 02  2    @0 001E01
C02 03  2    @0 220
C03 01  X  FRE  @0 Dioxyde de carbone @2 NK @2 FX @5 01
C03 01  X  ENG  @0 Carbon dioxide @2 NK @2 FX @5 01
C03 01  X  SPA  @0 Carbono dióxido @2 NK @2 FX @5 01
C03 02  2  FRE  @0 Problème inverse @5 02
C03 02  2  ENG  @0 inverse problem @5 02
C03 02  2  SPA  @0 Problema inverso @5 02
C03 03  X  FRE  @0 Validation @5 03
C03 03  X  ENG  @0 Validation @5 03
C03 03  X  SPA  @0 Validación @5 03
C03 04  X  FRE  @0 Profil vertical @5 04
C03 04  X  ENG  @0 Vertical profile @5 04
C03 04  X  SPA  @0 Perfil vertical @5 04
C03 05  2  FRE  @0 Modèle @5 05
C03 05  2  ENG  @0 models @5 05
C03 05  2  SPA  @0 Modelo @5 05
C03 06  X  FRE  @0 Inversion atmosphérique @5 06
C03 06  X  ENG  @0 Atmospheric inversion @5 06
C03 06  X  SPA  @0 Inversión atmosférica @5 06
C03 07  2  FRE  @0 Transport @5 07
C03 07  2  ENG  @0 transport @5 07
C03 07  2  SPA  @0 Transporte @5 07
C03 08  2  FRE  @0 Circulation atmosphérique @5 08
C03 08  2  ENG  @0 atmospheric circulation @5 08
C03 09  2  FRE  @0 Concentration @5 09
C03 09  2  ENG  @0 concentration @5 09
C03 09  2  SPA  @0 Concentración @5 09
C03 10  2  FRE  @0 Foyer @5 10
C03 10  2  ENG  @0 focus @5 10
C03 11  2  FRE  @0 Cap @5 11
C03 11  2  ENG  @0 capes @5 11
C03 11  2  SPA  @0 Cabo @5 11
C03 12  X  FRE  @0 Etude comparative @5 12
C03 12  X  ENG  @0 Comparative study @5 12
C03 12  X  SPA  @0 Estudio comparativo @5 12
C03 13  2  FRE  @0 Erreur @5 13
C03 13  2  ENG  @0 errors @5 13
C03 13  2  SPA  @0 Error @5 13
C03 14  X  FRE  @0 Variation interannuelle @5 14
C03 14  X  ENG  @0 Interannual variation @5 14
C03 14  X  SPA  @0 Variación interanual @5 14
C03 15  2  FRE  @0 Gaz effet serre @5 15
C03 15  2  ENG  @0 greenhouse gas @5 15
C03 16  2  FRE  @0 Tasmanie @2 NG @5 61
C03 16  2  ENG  @0 Tasmania Australia @2 NG @5 61
C03 16  2  SPA  @0 Tasmania @2 NG @5 61
C03 17  2  FRE  @0 Colorado @2 NG @5 62
C03 17  2  ENG  @0 Colorado @2 NG @5 62
C03 17  2  SPA  @0 Colorado @2 NG @5 62
C07 01  2  FRE  @0 Australie @2 NG
C07 01  2  ENG  @0 Australia @2 NG
C07 01  2  SPA  @0 Australia @2 NG
C07 02  2  FRE  @0 Australasie
C07 02  2  ENG  @0 Australasia
C07 02  2  SPA  @0 Australasia
C07 03  2  FRE  @0 Etats Unis @2 NG
C07 03  2  ENG  @0 United States @2 NG
C07 03  2  SPA  @0 Estados Unidos @2 NG
C07 04  2  FRE  @0 Amérique du Nord
C07 04  2  ENG  @0 North America
C07 04  2  SPA  @0 America del norte
N21       @1 241
N44 01      @1 OTO
N82       @1 OTO

Format Inist (serveur)

NO : PASCAL 11-0355458 INIST
ET : Atmospheric CO2 inversion validation using vertical profile measurements: Analysis of four independent inversion models
AU : PICKETT-HEAPS (C. A.); RAYNER (P. J.); LAW (R. M.); CIAIS (P.); PATRA (P. K.); BOUSQUET (P.); PEYLIN (P.); MAKSYUTOV (S.); MARSHALL (J.); RÖDENBECK (C.); LANGENFELDS (R. L.); STEELE (L. P.); FRANCEY (R. J.); TANS (P.); SWEENEY (C.)
AF : Laboratoire des Sciences du Climat et de l'Environnement, IPSL, CEA/CNRS/UVSQ/Gif sur Yvette/France (1 aut., 2 aut., 4 aut., 6 aut., 7 aut.); CSIRO Marine and Atmospheric Research/Canberra, ACT/Australie (1 aut.); School of Earth Sciences, University of Melbourne/Parkville, Victoria/Australie (2 aut.); Centre for Australian Weather and Climate Research, CSIRO Marine and Atmospheric Research/Aspendale, Victoria/Australie (3 aut., 11 aut., 12 aut., 13 aut.); Research Institute for Global Change, JAMSTEC/Yokohama/Japon (5 aut., 8 aut.); National Institute for Environmental Science/Tsukuba/Japon (8 aut.); Max Plank Institute for Biogeochemistry/Jena/Allemagne (9 aut., 10 aut.); Global Monitoring Division, ESRL, NOAA/Boulder, Colorado/Etats-Unis (14 aut., 15 aut.)
DT : Publication en série; Niveau analytique
SO : Journal of geophysical research; ISSN 0148-0227; Etats-Unis; Da. 2011; Vol. 116; No. D12; D12305.1-D12305.17; Bibl. 1 p.
LA : Anglais
EA : [1] We present the results of a validation of atmospheric inversions of CO2 fluxes using four transport models. Each inversion uses data primarily from surface stations, combined with an atmospheric transport model, to estimate surface fluxes. The validation (or model evaluation) consists of running these optimized fluxes through the forward model and comparing the simulated concentrations with airborne concentration measurements. We focus on profiles from Cape Grim, Tasmania, and Carr, Colorado, while using other profile sites to test the generality of the comparison. Fits to the profiles are generally worse than to the surface data from the inversions and worse than the expected model-data mismatch. Thus inversion estimates are generally not consistent with the profile measurements. The TM3 model does better by some measures than the other three models. Models perform better over Tasmania than Colorado, and other profile sites bear out a general improvement from north to south and from continental to marine locations. There are also errors in the interannual variability of the fit, consistent in time and common across models. This suggests real variations in sources visible to the profile but not the surface measurements.
CC : 001E; 001E01; 220
FD : Dioxyde de carbone; Problème inverse; Validation; Profil vertical; Modèle; Inversion atmosphérique; Transport; Circulation atmosphérique; Concentration; Foyer; Cap; Etude comparative; Erreur; Variation interannuelle; Gaz effet serre; Tasmanie; Colorado
FG : Australie; Australasie; Etats Unis; Amérique du Nord
ED : Carbon dioxide; inverse problem; Validation; Vertical profile; models; Atmospheric inversion; transport; atmospheric circulation; concentration; focus; capes; Comparative study; errors; Interannual variation; greenhouse gas; Tasmania Australia; Colorado
EG : Australia; Australasia; United States; North America
SD : Carbono dióxido; Problema inverso; Validación; Perfil vertical; Modelo; Inversión atmosférica; Transporte; Concentración; Cabo; Estudio comparativo; Error; Variación interanual; Tasmania; Colorado
LO : INIST-3144.354000508553950320
ID : 11-0355458

Links to Exploration step

Pascal:11-0355458

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Atmospheric CO2 inversion validation using vertical profile measurements: Analysis of four independent inversion models</title>
<author>
<name sortKey="Pickett Heaps, C A" sort="Pickett Heaps, C A" uniqKey="Pickett Heaps C" first="C. A." last="Pickett-Heaps">C. A. Pickett-Heaps</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Laboratoire des Sciences du Climat et de l'Environnement, IPSL, CEA/CNRS/UVSQ</s1>
<s2>Gif sur Yvette</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>CSIRO Marine and Atmospheric Research</s1>
<s2>Canberra, ACT</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Rayner, P J" sort="Rayner, P J" uniqKey="Rayner P" first="P. J." last="Rayner">P. J. Rayner</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Laboratoire des Sciences du Climat et de l'Environnement, IPSL, CEA/CNRS/UVSQ</s1>
<s2>Gif sur Yvette</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="03">
<s1>School of Earth Sciences, University of Melbourne</s1>
<s2>Parkville, Victoria</s2>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Law, R M" sort="Law, R M" uniqKey="Law R" first="R. M." last="Law">R. M. Law</name>
<affiliation>
<inist:fA14 i1="04">
<s1>Centre for Australian Weather and Climate Research, CSIRO Marine and Atmospheric Research</s1>
<s2>Aspendale, Victoria</s2>
<s3>AUS</s3>
<sZ>3 aut.</sZ>
<sZ>11 aut.</sZ>
<sZ>12 aut.</sZ>
<sZ>13 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Ciais, P" sort="Ciais, P" uniqKey="Ciais P" first="P." last="Ciais">P. Ciais</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Laboratoire des Sciences du Climat et de l'Environnement, IPSL, CEA/CNRS/UVSQ</s1>
<s2>Gif sur Yvette</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Patra, P K" sort="Patra, P K" uniqKey="Patra P" first="P. K." last="Patra">P. K. Patra</name>
<affiliation>
<inist:fA14 i1="05">
<s1>Research Institute for Global Change, JAMSTEC</s1>
<s2>Yokohama</s2>
<s3>JPN</s3>
<sZ>5 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Bousquet, P" sort="Bousquet, P" uniqKey="Bousquet P" first="P." last="Bousquet">P. Bousquet</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Laboratoire des Sciences du Climat et de l'Environnement, IPSL, CEA/CNRS/UVSQ</s1>
<s2>Gif sur Yvette</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Peylin, P" sort="Peylin, P" uniqKey="Peylin P" first="P." last="Peylin">P. Peylin</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Laboratoire des Sciences du Climat et de l'Environnement, IPSL, CEA/CNRS/UVSQ</s1>
<s2>Gif sur Yvette</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Maksyutov, S" sort="Maksyutov, S" uniqKey="Maksyutov S" first="S." last="Maksyutov">S. Maksyutov</name>
<affiliation>
<inist:fA14 i1="05">
<s1>Research Institute for Global Change, JAMSTEC</s1>
<s2>Yokohama</s2>
<s3>JPN</s3>
<sZ>5 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="06">
<s1>National Institute for Environmental Science</s1>
<s2>Tsukuba</s2>
<s3>JPN</s3>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Marshall, J" sort="Marshall, J" uniqKey="Marshall J" first="J." last="Marshall">J. Marshall</name>
<affiliation>
<inist:fA14 i1="07">
<s1>Max Plank Institute for Biogeochemistry</s1>
<s2>Jena</s2>
<s3>DEU</s3>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Rodenbeck, C" sort="Rodenbeck, C" uniqKey="Rodenbeck C" first="C." last="Rödenbeck">C. Rödenbeck</name>
<affiliation>
<inist:fA14 i1="07">
<s1>Max Plank Institute for Biogeochemistry</s1>
<s2>Jena</s2>
<s3>DEU</s3>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Langenfelds, R L" sort="Langenfelds, R L" uniqKey="Langenfelds R" first="R. L." last="Langenfelds">R. L. Langenfelds</name>
<affiliation>
<inist:fA14 i1="04">
<s1>Centre for Australian Weather and Climate Research, CSIRO Marine and Atmospheric Research</s1>
<s2>Aspendale, Victoria</s2>
<s3>AUS</s3>
<sZ>3 aut.</sZ>
<sZ>11 aut.</sZ>
<sZ>12 aut.</sZ>
<sZ>13 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Steele, L P" sort="Steele, L P" uniqKey="Steele L" first="L. P." last="Steele">L. P. Steele</name>
<affiliation>
<inist:fA14 i1="04">
<s1>Centre for Australian Weather and Climate Research, CSIRO Marine and Atmospheric Research</s1>
<s2>Aspendale, Victoria</s2>
<s3>AUS</s3>
<sZ>3 aut.</sZ>
<sZ>11 aut.</sZ>
<sZ>12 aut.</sZ>
<sZ>13 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Francey, R J" sort="Francey, R J" uniqKey="Francey R" first="R. J." last="Francey">R. J. Francey</name>
<affiliation>
<inist:fA14 i1="04">
<s1>Centre for Australian Weather and Climate Research, CSIRO Marine and Atmospheric Research</s1>
<s2>Aspendale, Victoria</s2>
<s3>AUS</s3>
<sZ>3 aut.</sZ>
<sZ>11 aut.</sZ>
<sZ>12 aut.</sZ>
<sZ>13 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Tans, P" sort="Tans, P" uniqKey="Tans P" first="P." last="Tans">P. Tans</name>
<affiliation>
<inist:fA14 i1="08">
<s1>Global Monitoring Division, ESRL, NOAA</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>14 aut.</sZ>
<sZ>15 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Sweeney, C" sort="Sweeney, C" uniqKey="Sweeney C" first="C." last="Sweeney">C. Sweeney</name>
<affiliation>
<inist:fA14 i1="08">
<s1>Global Monitoring Division, ESRL, NOAA</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>14 aut.</sZ>
<sZ>15 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">11-0355458</idno>
<date when="2011">2011</date>
<idno type="stanalyst">PASCAL 11-0355458 INIST</idno>
<idno type="RBID">Pascal:11-0355458</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">001A63</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Atmospheric CO2 inversion validation using vertical profile measurements: Analysis of four independent inversion models</title>
<author>
<name sortKey="Pickett Heaps, C A" sort="Pickett Heaps, C A" uniqKey="Pickett Heaps C" first="C. A." last="Pickett-Heaps">C. A. Pickett-Heaps</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Laboratoire des Sciences du Climat et de l'Environnement, IPSL, CEA/CNRS/UVSQ</s1>
<s2>Gif sur Yvette</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>CSIRO Marine and Atmospheric Research</s1>
<s2>Canberra, ACT</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Rayner, P J" sort="Rayner, P J" uniqKey="Rayner P" first="P. J." last="Rayner">P. J. Rayner</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Laboratoire des Sciences du Climat et de l'Environnement, IPSL, CEA/CNRS/UVSQ</s1>
<s2>Gif sur Yvette</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="03">
<s1>School of Earth Sciences, University of Melbourne</s1>
<s2>Parkville, Victoria</s2>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Law, R M" sort="Law, R M" uniqKey="Law R" first="R. M." last="Law">R. M. Law</name>
<affiliation>
<inist:fA14 i1="04">
<s1>Centre for Australian Weather and Climate Research, CSIRO Marine and Atmospheric Research</s1>
<s2>Aspendale, Victoria</s2>
<s3>AUS</s3>
<sZ>3 aut.</sZ>
<sZ>11 aut.</sZ>
<sZ>12 aut.</sZ>
<sZ>13 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Ciais, P" sort="Ciais, P" uniqKey="Ciais P" first="P." last="Ciais">P. Ciais</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Laboratoire des Sciences du Climat et de l'Environnement, IPSL, CEA/CNRS/UVSQ</s1>
<s2>Gif sur Yvette</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Patra, P K" sort="Patra, P K" uniqKey="Patra P" first="P. K." last="Patra">P. K. Patra</name>
<affiliation>
<inist:fA14 i1="05">
<s1>Research Institute for Global Change, JAMSTEC</s1>
<s2>Yokohama</s2>
<s3>JPN</s3>
<sZ>5 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Bousquet, P" sort="Bousquet, P" uniqKey="Bousquet P" first="P." last="Bousquet">P. Bousquet</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Laboratoire des Sciences du Climat et de l'Environnement, IPSL, CEA/CNRS/UVSQ</s1>
<s2>Gif sur Yvette</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Peylin, P" sort="Peylin, P" uniqKey="Peylin P" first="P." last="Peylin">P. Peylin</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Laboratoire des Sciences du Climat et de l'Environnement, IPSL, CEA/CNRS/UVSQ</s1>
<s2>Gif sur Yvette</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Maksyutov, S" sort="Maksyutov, S" uniqKey="Maksyutov S" first="S." last="Maksyutov">S. Maksyutov</name>
<affiliation>
<inist:fA14 i1="05">
<s1>Research Institute for Global Change, JAMSTEC</s1>
<s2>Yokohama</s2>
<s3>JPN</s3>
<sZ>5 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="06">
<s1>National Institute for Environmental Science</s1>
<s2>Tsukuba</s2>
<s3>JPN</s3>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Marshall, J" sort="Marshall, J" uniqKey="Marshall J" first="J." last="Marshall">J. Marshall</name>
<affiliation>
<inist:fA14 i1="07">
<s1>Max Plank Institute for Biogeochemistry</s1>
<s2>Jena</s2>
<s3>DEU</s3>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Rodenbeck, C" sort="Rodenbeck, C" uniqKey="Rodenbeck C" first="C." last="Rödenbeck">C. Rödenbeck</name>
<affiliation>
<inist:fA14 i1="07">
<s1>Max Plank Institute for Biogeochemistry</s1>
<s2>Jena</s2>
<s3>DEU</s3>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Langenfelds, R L" sort="Langenfelds, R L" uniqKey="Langenfelds R" first="R. L." last="Langenfelds">R. L. Langenfelds</name>
<affiliation>
<inist:fA14 i1="04">
<s1>Centre for Australian Weather and Climate Research, CSIRO Marine and Atmospheric Research</s1>
<s2>Aspendale, Victoria</s2>
<s3>AUS</s3>
<sZ>3 aut.</sZ>
<sZ>11 aut.</sZ>
<sZ>12 aut.</sZ>
<sZ>13 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Steele, L P" sort="Steele, L P" uniqKey="Steele L" first="L. P." last="Steele">L. P. Steele</name>
<affiliation>
<inist:fA14 i1="04">
<s1>Centre for Australian Weather and Climate Research, CSIRO Marine and Atmospheric Research</s1>
<s2>Aspendale, Victoria</s2>
<s3>AUS</s3>
<sZ>3 aut.</sZ>
<sZ>11 aut.</sZ>
<sZ>12 aut.</sZ>
<sZ>13 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Francey, R J" sort="Francey, R J" uniqKey="Francey R" first="R. J." last="Francey">R. J. Francey</name>
<affiliation>
<inist:fA14 i1="04">
<s1>Centre for Australian Weather and Climate Research, CSIRO Marine and Atmospheric Research</s1>
<s2>Aspendale, Victoria</s2>
<s3>AUS</s3>
<sZ>3 aut.</sZ>
<sZ>11 aut.</sZ>
<sZ>12 aut.</sZ>
<sZ>13 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Tans, P" sort="Tans, P" uniqKey="Tans P" first="P." last="Tans">P. Tans</name>
<affiliation>
<inist:fA14 i1="08">
<s1>Global Monitoring Division, ESRL, NOAA</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>14 aut.</sZ>
<sZ>15 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Sweeney, C" sort="Sweeney, C" uniqKey="Sweeney C" first="C." last="Sweeney">C. Sweeney</name>
<affiliation>
<inist:fA14 i1="08">
<s1>Global Monitoring Division, ESRL, NOAA</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>14 aut.</sZ>
<sZ>15 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Journal of geophysical research</title>
<title level="j" type="abbreviated">J. geophys. res.</title>
<idno type="ISSN">0148-0227</idno>
<imprint>
<date when="2011">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Journal of geophysical research</title>
<title level="j" type="abbreviated">J. geophys. res.</title>
<idno type="ISSN">0148-0227</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Atmospheric inversion</term>
<term>Carbon dioxide</term>
<term>Colorado</term>
<term>Comparative study</term>
<term>Interannual variation</term>
<term>Tasmania Australia</term>
<term>Validation</term>
<term>Vertical profile</term>
<term>atmospheric circulation</term>
<term>capes</term>
<term>concentration</term>
<term>errors</term>
<term>focus</term>
<term>greenhouse gas</term>
<term>inverse problem</term>
<term>models</term>
<term>transport</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Dioxyde de carbone</term>
<term>Problème inverse</term>
<term>Validation</term>
<term>Profil vertical</term>
<term>Modèle</term>
<term>Inversion atmosphérique</term>
<term>Transport</term>
<term>Circulation atmosphérique</term>
<term>Concentration</term>
<term>Foyer</term>
<term>Cap</term>
<term>Etude comparative</term>
<term>Erreur</term>
<term>Variation interannuelle</term>
<term>Gaz effet serre</term>
<term>Tasmanie</term>
<term>Colorado</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">[1] We present the results of a validation of atmospheric inversions of CO2 fluxes using four transport models. Each inversion uses data primarily from surface stations, combined with an atmospheric transport model, to estimate surface fluxes. The validation (or model evaluation) consists of running these optimized fluxes through the forward model and comparing the simulated concentrations with airborne concentration measurements. We focus on profiles from Cape Grim, Tasmania, and Carr, Colorado, while using other profile sites to test the generality of the comparison. Fits to the profiles are generally worse than to the surface data from the inversions and worse than the expected model-data mismatch. Thus inversion estimates are generally not consistent with the profile measurements. The TM3 model does better by some measures than the other three models. Models perform better over Tasmania than Colorado, and other profile sites bear out a general improvement from north to south and from continental to marine locations. There are also errors in the interannual variability of the fit, consistent in time and common across models. This suggests real variations in sources visible to the profile but not the surface measurements.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0148-0227</s0>
</fA01>
<fA03 i2="1">
<s0>J. geophys. res.</s0>
</fA03>
<fA05>
<s2>116</s2>
</fA05>
<fA06>
<s2>D12</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Atmospheric CO2 inversion validation using vertical profile measurements: Analysis of four independent inversion models</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>PICKETT-HEAPS (C. A.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>RAYNER (P. J.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>LAW (R. M.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>CIAIS (P.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>PATRA (P. K.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>BOUSQUET (P.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>PEYLIN (P.)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>MAKSYUTOV (S.)</s1>
</fA11>
<fA11 i1="09" i2="1">
<s1>MARSHALL (J.)</s1>
</fA11>
<fA11 i1="10" i2="1">
<s1>RÖDENBECK (C.)</s1>
</fA11>
<fA11 i1="11" i2="1">
<s1>LANGENFELDS (R. L.)</s1>
</fA11>
<fA11 i1="12" i2="1">
<s1>STEELE (L. P.)</s1>
</fA11>
<fA11 i1="13" i2="1">
<s1>FRANCEY (R. J.)</s1>
</fA11>
<fA11 i1="14" i2="1">
<s1>TANS (P.)</s1>
</fA11>
<fA11 i1="15" i2="1">
<s1>SWEENEY (C.)</s1>
</fA11>
<fA14 i1="01">
<s1>Laboratoire des Sciences du Climat et de l'Environnement, IPSL, CEA/CNRS/UVSQ</s1>
<s2>Gif sur Yvette</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>CSIRO Marine and Atmospheric Research</s1>
<s2>Canberra, ACT</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>School of Earth Sciences, University of Melbourne</s1>
<s2>Parkville, Victoria</s2>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Centre for Australian Weather and Climate Research, CSIRO Marine and Atmospheric Research</s1>
<s2>Aspendale, Victoria</s2>
<s3>AUS</s3>
<sZ>3 aut.</sZ>
<sZ>11 aut.</sZ>
<sZ>12 aut.</sZ>
<sZ>13 aut.</sZ>
</fA14>
<fA14 i1="05">
<s1>Research Institute for Global Change, JAMSTEC</s1>
<s2>Yokohama</s2>
<s3>JPN</s3>
<sZ>5 aut.</sZ>
<sZ>8 aut.</sZ>
</fA14>
<fA14 i1="06">
<s1>National Institute for Environmental Science</s1>
<s2>Tsukuba</s2>
<s3>JPN</s3>
<sZ>8 aut.</sZ>
</fA14>
<fA14 i1="07">
<s1>Max Plank Institute for Biogeochemistry</s1>
<s2>Jena</s2>
<s3>DEU</s3>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</fA14>
<fA14 i1="08">
<s1>Global Monitoring Division, ESRL, NOAA</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>14 aut.</sZ>
<sZ>15 aut.</sZ>
</fA14>
<fA20>
<s2>D12305.1-D12305.17</s2>
</fA20>
<fA21>
<s1>2011</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>3144</s2>
<s5>354000508553950320</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2011 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>1 p.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>11-0355458</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of geophysical research</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>[1] We present the results of a validation of atmospheric inversions of CO2 fluxes using four transport models. Each inversion uses data primarily from surface stations, combined with an atmospheric transport model, to estimate surface fluxes. The validation (or model evaluation) consists of running these optimized fluxes through the forward model and comparing the simulated concentrations with airborne concentration measurements. We focus on profiles from Cape Grim, Tasmania, and Carr, Colorado, while using other profile sites to test the generality of the comparison. Fits to the profiles are generally worse than to the surface data from the inversions and worse than the expected model-data mismatch. Thus inversion estimates are generally not consistent with the profile measurements. The TM3 model does better by some measures than the other three models. Models perform better over Tasmania than Colorado, and other profile sites bear out a general improvement from north to south and from continental to marine locations. There are also errors in the interannual variability of the fit, consistent in time and common across models. This suggests real variations in sources visible to the profile but not the surface measurements.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001E</s0>
</fC02>
<fC02 i1="02" i2="2">
<s0>001E01</s0>
</fC02>
<fC02 i1="03" i2="2">
<s0>220</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Dioxyde de carbone</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Carbon dioxide</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Carbono dióxido</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="2" l="FRE">
<s0>Problème inverse</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="2" l="ENG">
<s0>inverse problem</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="2" l="SPA">
<s0>Problema inverso</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Validation</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Validation</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Validación</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Profil vertical</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Vertical profile</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Perfil vertical</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="2" l="FRE">
<s0>Modèle</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="2" l="ENG">
<s0>models</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="2" l="SPA">
<s0>Modelo</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Inversion atmosphérique</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Atmospheric inversion</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Inversión atmosférica</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="2" l="FRE">
<s0>Transport</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="2" l="ENG">
<s0>transport</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="2" l="SPA">
<s0>Transporte</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="2" l="FRE">
<s0>Circulation atmosphérique</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="2" l="ENG">
<s0>atmospheric circulation</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="2" l="FRE">
<s0>Concentration</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="2" l="ENG">
<s0>concentration</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="2" l="SPA">
<s0>Concentración</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="2" l="FRE">
<s0>Foyer</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="2" l="ENG">
<s0>focus</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="2" l="FRE">
<s0>Cap</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="2" l="ENG">
<s0>capes</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="2" l="SPA">
<s0>Cabo</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Etude comparative</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Comparative study</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Estudio comparativo</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="2" l="FRE">
<s0>Erreur</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="2" l="ENG">
<s0>errors</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="2" l="SPA">
<s0>Error</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Variation interannuelle</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Interannual variation</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Variación interanual</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="2" l="FRE">
<s0>Gaz effet serre</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="2" l="ENG">
<s0>greenhouse gas</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="2" l="FRE">
<s0>Tasmanie</s0>
<s2>NG</s2>
<s5>61</s5>
</fC03>
<fC03 i1="16" i2="2" l="ENG">
<s0>Tasmania Australia</s0>
<s2>NG</s2>
<s5>61</s5>
</fC03>
<fC03 i1="16" i2="2" l="SPA">
<s0>Tasmania</s0>
<s2>NG</s2>
<s5>61</s5>
</fC03>
<fC03 i1="17" i2="2" l="FRE">
<s0>Colorado</s0>
<s2>NG</s2>
<s5>62</s5>
</fC03>
<fC03 i1="17" i2="2" l="ENG">
<s0>Colorado</s0>
<s2>NG</s2>
<s5>62</s5>
</fC03>
<fC03 i1="17" i2="2" l="SPA">
<s0>Colorado</s0>
<s2>NG</s2>
<s5>62</s5>
</fC03>
<fC07 i1="01" i2="2" l="FRE">
<s0>Australie</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="01" i2="2" l="ENG">
<s0>Australia</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="01" i2="2" l="SPA">
<s0>Australia</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="02" i2="2" l="FRE">
<s0>Australasie</s0>
</fC07>
<fC07 i1="02" i2="2" l="ENG">
<s0>Australasia</s0>
</fC07>
<fC07 i1="02" i2="2" l="SPA">
<s0>Australasia</s0>
</fC07>
<fC07 i1="03" i2="2" l="FRE">
<s0>Etats Unis</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="03" i2="2" l="ENG">
<s0>United States</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="03" i2="2" l="SPA">
<s0>Estados Unidos</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="04" i2="2" l="FRE">
<s0>Amérique du Nord</s0>
</fC07>
<fC07 i1="04" i2="2" l="ENG">
<s0>North America</s0>
</fC07>
<fC07 i1="04" i2="2" l="SPA">
<s0>America del norte</s0>
</fC07>
<fN21>
<s1>241</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 11-0355458 INIST</NO>
<ET>Atmospheric CO2 inversion validation using vertical profile measurements: Analysis of four independent inversion models</ET>
<AU>PICKETT-HEAPS (C. A.); RAYNER (P. J.); LAW (R. M.); CIAIS (P.); PATRA (P. K.); BOUSQUET (P.); PEYLIN (P.); MAKSYUTOV (S.); MARSHALL (J.); RÖDENBECK (C.); LANGENFELDS (R. L.); STEELE (L. P.); FRANCEY (R. J.); TANS (P.); SWEENEY (C.)</AU>
<AF>Laboratoire des Sciences du Climat et de l'Environnement, IPSL, CEA/CNRS/UVSQ/Gif sur Yvette/France (1 aut., 2 aut., 4 aut., 6 aut., 7 aut.); CSIRO Marine and Atmospheric Research/Canberra, ACT/Australie (1 aut.); School of Earth Sciences, University of Melbourne/Parkville, Victoria/Australie (2 aut.); Centre for Australian Weather and Climate Research, CSIRO Marine and Atmospheric Research/Aspendale, Victoria/Australie (3 aut., 11 aut., 12 aut., 13 aut.); Research Institute for Global Change, JAMSTEC/Yokohama/Japon (5 aut., 8 aut.); National Institute for Environmental Science/Tsukuba/Japon (8 aut.); Max Plank Institute for Biogeochemistry/Jena/Allemagne (9 aut., 10 aut.); Global Monitoring Division, ESRL, NOAA/Boulder, Colorado/Etats-Unis (14 aut., 15 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Journal of geophysical research; ISSN 0148-0227; Etats-Unis; Da. 2011; Vol. 116; No. D12; D12305.1-D12305.17; Bibl. 1 p.</SO>
<LA>Anglais</LA>
<EA>[1] We present the results of a validation of atmospheric inversions of CO2 fluxes using four transport models. Each inversion uses data primarily from surface stations, combined with an atmospheric transport model, to estimate surface fluxes. The validation (or model evaluation) consists of running these optimized fluxes through the forward model and comparing the simulated concentrations with airborne concentration measurements. We focus on profiles from Cape Grim, Tasmania, and Carr, Colorado, while using other profile sites to test the generality of the comparison. Fits to the profiles are generally worse than to the surface data from the inversions and worse than the expected model-data mismatch. Thus inversion estimates are generally not consistent with the profile measurements. The TM3 model does better by some measures than the other three models. Models perform better over Tasmania than Colorado, and other profile sites bear out a general improvement from north to south and from continental to marine locations. There are also errors in the interannual variability of the fit, consistent in time and common across models. This suggests real variations in sources visible to the profile but not the surface measurements.</EA>
<CC>001E; 001E01; 220</CC>
<FD>Dioxyde de carbone; Problème inverse; Validation; Profil vertical; Modèle; Inversion atmosphérique; Transport; Circulation atmosphérique; Concentration; Foyer; Cap; Etude comparative; Erreur; Variation interannuelle; Gaz effet serre; Tasmanie; Colorado</FD>
<FG>Australie; Australasie; Etats Unis; Amérique du Nord</FG>
<ED>Carbon dioxide; inverse problem; Validation; Vertical profile; models; Atmospheric inversion; transport; atmospheric circulation; concentration; focus; capes; Comparative study; errors; Interannual variation; greenhouse gas; Tasmania Australia; Colorado</ED>
<EG>Australia; Australasia; United States; North America</EG>
<SD>Carbono dióxido; Problema inverso; Validación; Perfil vertical; Modelo; Inversión atmosférica; Transporte; Concentración; Cabo; Estudio comparativo; Error; Variación interanual; Tasmania; Colorado</SD>
<LO>INIST-3144.354000508553950320</LO>
<ID>11-0355458</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001A63 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 001A63 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:11-0355458
   |texte=   Atmospheric CO2 inversion validation using vertical profile measurements: Analysis of four independent inversion models
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024