Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Expansion and relaxation of magnetic mirror domains in a Pt/Co/Pt/Co/Pt multilayer with antiferromagnetic interlayer coupling

Identifieur interne : 001624 ( PascalFrancis/Corpus ); précédent : 001623; suivant : 001625

Expansion and relaxation of magnetic mirror domains in a Pt/Co/Pt/Co/Pt multilayer with antiferromagnetic interlayer coupling

Auteurs : P. J. Metaxas ; R. L. Stamps ; J.-P. Jamet ; J. Ferre ; V. Baltz ; B. Rodmacq

Source :

RBID : Pascal:12-0072625

Descripteurs français

English descriptors

Abstract

We detail measurements of field-driven expansion and zero-field relaxation of magnetic mirror domains in antiferromagnetically coupled perpendicularly magnetized ultrathin Co layers. The zero-field stability of aligned ('mirror') domains in such systems results from non-homogeneous dipolar stray fields which exist in the vicinity of the domain walls. During field-driven domain expansion, we evidence a separation of the domain walls which form the mirror domain boundary. However, the walls realign, thereby reforming a mirror domain, if their final separation is below a critical distance at the end of the field pulse. This critical distance marks the point at which the effective net interaction between the walls changes from attractive to repulsive.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0953-8984
A02 01      @0 JCOMEL
A03   1    @0 J. phys., Condens. matter : (Print)
A05       @2 24
A06       @2 2
A08 01  1  ENG  @1 Expansion and relaxation of magnetic mirror domains in a Pt/Co/Pt/Co/Pt multilayer with antiferromagnetic interlayer coupling
A09 01  1  ENG  @1 Domain wall dynamics in nanostructures
A11 01  1    @1 METAXAS (P. J.)
A11 02  1    @1 STAMPS (R. L.)
A11 03  1    @1 JAMET (J.-P.)
A11 04  1    @1 FERRE (J.)
A11 05  1    @1 BALTZ (V.)
A11 06  1    @1 RODMACQ (B.)
A12 01  1    @1 MARROWS (C. H.) @9 ed.
A12 02  1    @1 MEIER (G.) @9 ed.
A14 01      @1 School of Physics, M013, University of Western Australia, 35 Stirling Hwy @2 Crawley WA 6009 @3 AUS @Z 1 aut. @Z 2 aut.
A14 02      @1 Laboratoire de Physique des Solides, UMR CNRS 8502. Université Paris-Sud 11 @2 91405 Orsay @3 FRA @Z 1 aut. @Z 3 aut. @Z 4 aut.
A14 03      @1 SUPA-School of Physics and Astronomy, University of Glasgow @2 G 12 8QQ Glasgow @3 GBR @Z 2 aut.
A14 04      @1 SPINTEC, UMR-8191, CEA-INAC/CNRS/UJF-Grenoble 1/Grenoble-INP, 17 rue des Martyrs @2 38054 Grenoble @3 FRA @Z 5 aut. @Z 6 aut.
A15 01      @1 School of Physics and Astronomy, University of Leeds @2 Leeds, LS2 9JT @3 GBR @Z 1 aut.
A15 02      @1 Institut für Angewandte Physik und Zentrum für Mikrostrukturforschung, Universität Hamburg, Jungiustrasse 11 @2 20355 Hamburg @3 DEU @Z 2 aut.
A20       @2 024212.1-024212.5
A21       @1 2012
A23 01      @0 ENG
A43 01      @1 INIST @2 577E2 @5 354000506094380120
A44       @0 0000 @1 © 2012 INIST-CNRS. All rights reserved.
A45       @0 29 ref.
A47 01  1    @0 12-0072625
A60       @1 P
A61       @0 A
A64 01  1    @0 Journal of physics. Condensed matter : (Print)
A66 01      @0 GBR
C01 01    ENG  @0 We detail measurements of field-driven expansion and zero-field relaxation of magnetic mirror domains in antiferromagnetically coupled perpendicularly magnetized ultrathin Co layers. The zero-field stability of aligned ('mirror') domains in such systems results from non-homogeneous dipolar stray fields which exist in the vicinity of the domain walls. During field-driven domain expansion, we evidence a separation of the domain walls which form the mirror domain boundary. However, the walls realign, thereby reforming a mirror domain, if their final separation is below a critical distance at the end of the field pulse. This critical distance marks the point at which the effective net interaction between the walls changes from attractive to repulsive.
C02 01  3    @0 001B70E70K
C03 01  3  FRE  @0 Relaxation magnétique @5 02
C03 01  3  ENG  @0 Magnetic relaxation @5 02
C03 02  3  FRE  @0 Interaction échange @5 03
C03 02  3  ENG  @0 Exchange interactions @5 03
C03 03  3  FRE  @0 Paroi domaine @5 04
C03 03  3  ENG  @0 Domain walls @5 04
C03 04  X  FRE  @0 Champ impulsionnel @5 05
C03 04  X  ENG  @0 Pulsed field @5 05
C03 04  X  SPA  @0 Campo impulsional @5 05
C03 05  3  FRE  @0 Domaine magnétique @5 06
C03 05  3  ENG  @0 Magnetic domains @5 06
C03 06  3  FRE  @0 Effet Kerr magnétooptique @5 07
C03 06  3  ENG  @0 Kerr magneto-optical effect @5 07
C03 07  3  FRE  @0 Structure domaine @5 08
C03 07  3  ENG  @0 Domain structure @5 08
C03 08  3  FRE  @0 Stabilité @5 11
C03 08  3  ENG  @0 Stability @5 11
C03 09  X  FRE  @0 Imagerie optique @5 12
C03 09  X  ENG  @0 Optical imaging @5 12
C03 09  X  SPA  @0 Imaginería óptica @5 12
C03 10  3  FRE  @0 Multicouche @5 15
C03 10  3  ENG  @0 Multilayers @5 15
C03 11  3  FRE  @0 Platine @2 NC @5 16
C03 11  3  ENG  @0 Platinum @2 NC @5 16
C03 12  3  FRE  @0 Cobalt @2 NC @5 17
C03 12  3  ENG  @0 Cobalt @2 NC @5 17
C03 13  3  FRE  @0 Couche ultramince @5 18
C03 13  3  ENG  @0 Ultrathin films @5 18
C03 14  3  FRE  @0 Métal transition @5 48
C03 14  3  ENG  @0 Transition elements @5 48
N21       @1 051

Format Inist (serveur)

NO : PASCAL 12-0072625 INIST
ET : Expansion and relaxation of magnetic mirror domains in a Pt/Co/Pt/Co/Pt multilayer with antiferromagnetic interlayer coupling
AU : METAXAS (P. J.); STAMPS (R. L.); JAMET (J.-P.); FERRE (J.); BALTZ (V.); RODMACQ (B.); MARROWS (C. H.); MEIER (G.)
AF : School of Physics, M013, University of Western Australia, 35 Stirling Hwy/Crawley WA 6009/Australie (1 aut., 2 aut.); Laboratoire de Physique des Solides, UMR CNRS 8502. Université Paris-Sud 11/91405 Orsay/France (1 aut., 3 aut., 4 aut.); SUPA-School of Physics and Astronomy, University of Glasgow/G 12 8QQ Glasgow/Royaume-Uni (2 aut.); SPINTEC, UMR-8191, CEA-INAC/CNRS/UJF-Grenoble 1/Grenoble-INP, 17 rue des Martyrs/38054 Grenoble/France (5 aut., 6 aut.); School of Physics and Astronomy, University of Leeds/Leeds, LS2 9JT/Royaume-Uni (1 aut.); Institut für Angewandte Physik und Zentrum für Mikrostrukturforschung, Universität Hamburg, Jungiustrasse 11/20355 Hamburg/Allemagne (2 aut.)
DT : Publication en série; Niveau analytique
SO : Journal of physics. Condensed matter : (Print); ISSN 0953-8984; Coden JCOMEL; Royaume-Uni; Da. 2012; Vol. 24; No. 2; 024212.1-024212.5; Bibl. 29 ref.
LA : Anglais
EA : We detail measurements of field-driven expansion and zero-field relaxation of magnetic mirror domains in antiferromagnetically coupled perpendicularly magnetized ultrathin Co layers. The zero-field stability of aligned ('mirror') domains in such systems results from non-homogeneous dipolar stray fields which exist in the vicinity of the domain walls. During field-driven domain expansion, we evidence a separation of the domain walls which form the mirror domain boundary. However, the walls realign, thereby reforming a mirror domain, if their final separation is below a critical distance at the end of the field pulse. This critical distance marks the point at which the effective net interaction between the walls changes from attractive to repulsive.
CC : 001B70E70K
FD : Relaxation magnétique; Interaction échange; Paroi domaine; Champ impulsionnel; Domaine magnétique; Effet Kerr magnétooptique; Structure domaine; Stabilité; Imagerie optique; Multicouche; Platine; Cobalt; Couche ultramince; Métal transition
ED : Magnetic relaxation; Exchange interactions; Domain walls; Pulsed field; Magnetic domains; Kerr magneto-optical effect; Domain structure; Stability; Optical imaging; Multilayers; Platinum; Cobalt; Ultrathin films; Transition elements
SD : Campo impulsional; Imaginería óptica
LO : INIST-577E2.354000506094380120
ID : 12-0072625

Links to Exploration step

Pascal:12-0072625

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Expansion and relaxation of magnetic mirror domains in a Pt/Co/Pt/Co/Pt multilayer with antiferromagnetic interlayer coupling</title>
<author>
<name sortKey="Metaxas, P J" sort="Metaxas, P J" uniqKey="Metaxas P" first="P. J." last="Metaxas">P. J. Metaxas</name>
<affiliation>
<inist:fA14 i1="01">
<s1>School of Physics, M013, University of Western Australia, 35 Stirling Hwy</s1>
<s2>Crawley WA 6009</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Laboratoire de Physique des Solides, UMR CNRS 8502. Université Paris-Sud 11</s1>
<s2>91405 Orsay</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Stamps, R L" sort="Stamps, R L" uniqKey="Stamps R" first="R. L." last="Stamps">R. L. Stamps</name>
<affiliation>
<inist:fA14 i1="01">
<s1>School of Physics, M013, University of Western Australia, 35 Stirling Hwy</s1>
<s2>Crawley WA 6009</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="03">
<s1>SUPA-School of Physics and Astronomy, University of Glasgow</s1>
<s2>G 12 8QQ Glasgow</s2>
<s3>GBR</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Jamet, J P" sort="Jamet, J P" uniqKey="Jamet J" first="J.-P." last="Jamet">J.-P. Jamet</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Laboratoire de Physique des Solides, UMR CNRS 8502. Université Paris-Sud 11</s1>
<s2>91405 Orsay</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Ferre, J" sort="Ferre, J" uniqKey="Ferre J" first="J." last="Ferre">J. Ferre</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Laboratoire de Physique des Solides, UMR CNRS 8502. Université Paris-Sud 11</s1>
<s2>91405 Orsay</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Baltz, V" sort="Baltz, V" uniqKey="Baltz V" first="V." last="Baltz">V. Baltz</name>
<affiliation>
<inist:fA14 i1="04">
<s1>SPINTEC, UMR-8191, CEA-INAC/CNRS/UJF-Grenoble 1/Grenoble-INP, 17 rue des Martyrs</s1>
<s2>38054 Grenoble</s2>
<s3>FRA</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Rodmacq, B" sort="Rodmacq, B" uniqKey="Rodmacq B" first="B." last="Rodmacq">B. Rodmacq</name>
<affiliation>
<inist:fA14 i1="04">
<s1>SPINTEC, UMR-8191, CEA-INAC/CNRS/UJF-Grenoble 1/Grenoble-INP, 17 rue des Martyrs</s1>
<s2>38054 Grenoble</s2>
<s3>FRA</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">12-0072625</idno>
<date when="2012">2012</date>
<idno type="stanalyst">PASCAL 12-0072625 INIST</idno>
<idno type="RBID">Pascal:12-0072625</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">001624</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Expansion and relaxation of magnetic mirror domains in a Pt/Co/Pt/Co/Pt multilayer with antiferromagnetic interlayer coupling</title>
<author>
<name sortKey="Metaxas, P J" sort="Metaxas, P J" uniqKey="Metaxas P" first="P. J." last="Metaxas">P. J. Metaxas</name>
<affiliation>
<inist:fA14 i1="01">
<s1>School of Physics, M013, University of Western Australia, 35 Stirling Hwy</s1>
<s2>Crawley WA 6009</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Laboratoire de Physique des Solides, UMR CNRS 8502. Université Paris-Sud 11</s1>
<s2>91405 Orsay</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Stamps, R L" sort="Stamps, R L" uniqKey="Stamps R" first="R. L." last="Stamps">R. L. Stamps</name>
<affiliation>
<inist:fA14 i1="01">
<s1>School of Physics, M013, University of Western Australia, 35 Stirling Hwy</s1>
<s2>Crawley WA 6009</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="03">
<s1>SUPA-School of Physics and Astronomy, University of Glasgow</s1>
<s2>G 12 8QQ Glasgow</s2>
<s3>GBR</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Jamet, J P" sort="Jamet, J P" uniqKey="Jamet J" first="J.-P." last="Jamet">J.-P. Jamet</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Laboratoire de Physique des Solides, UMR CNRS 8502. Université Paris-Sud 11</s1>
<s2>91405 Orsay</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Ferre, J" sort="Ferre, J" uniqKey="Ferre J" first="J." last="Ferre">J. Ferre</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Laboratoire de Physique des Solides, UMR CNRS 8502. Université Paris-Sud 11</s1>
<s2>91405 Orsay</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Baltz, V" sort="Baltz, V" uniqKey="Baltz V" first="V." last="Baltz">V. Baltz</name>
<affiliation>
<inist:fA14 i1="04">
<s1>SPINTEC, UMR-8191, CEA-INAC/CNRS/UJF-Grenoble 1/Grenoble-INP, 17 rue des Martyrs</s1>
<s2>38054 Grenoble</s2>
<s3>FRA</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Rodmacq, B" sort="Rodmacq, B" uniqKey="Rodmacq B" first="B." last="Rodmacq">B. Rodmacq</name>
<affiliation>
<inist:fA14 i1="04">
<s1>SPINTEC, UMR-8191, CEA-INAC/CNRS/UJF-Grenoble 1/Grenoble-INP, 17 rue des Martyrs</s1>
<s2>38054 Grenoble</s2>
<s3>FRA</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Journal of physics. Condensed matter : (Print)</title>
<title level="j" type="abbreviated">J. phys., Condens. matter : (Print)</title>
<idno type="ISSN">0953-8984</idno>
<imprint>
<date when="2012">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Journal of physics. Condensed matter : (Print)</title>
<title level="j" type="abbreviated">J. phys., Condens. matter : (Print)</title>
<idno type="ISSN">0953-8984</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Cobalt</term>
<term>Domain structure</term>
<term>Domain walls</term>
<term>Exchange interactions</term>
<term>Kerr magneto-optical effect</term>
<term>Magnetic domains</term>
<term>Magnetic relaxation</term>
<term>Multilayers</term>
<term>Optical imaging</term>
<term>Platinum</term>
<term>Pulsed field</term>
<term>Stability</term>
<term>Transition elements</term>
<term>Ultrathin films</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Relaxation magnétique</term>
<term>Interaction échange</term>
<term>Paroi domaine</term>
<term>Champ impulsionnel</term>
<term>Domaine magnétique</term>
<term>Effet Kerr magnétooptique</term>
<term>Structure domaine</term>
<term>Stabilité</term>
<term>Imagerie optique</term>
<term>Multicouche</term>
<term>Platine</term>
<term>Cobalt</term>
<term>Couche ultramince</term>
<term>Métal transition</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We detail measurements of field-driven expansion and zero-field relaxation of magnetic mirror domains in antiferromagnetically coupled perpendicularly magnetized ultrathin Co layers. The zero-field stability of aligned ('mirror') domains in such systems results from non-homogeneous dipolar stray fields which exist in the vicinity of the domain walls. During field-driven domain expansion, we evidence a separation of the domain walls which form the mirror domain boundary. However, the walls realign, thereby reforming a mirror domain, if their final separation is below a critical distance at the end of the field pulse. This critical distance marks the point at which the effective net interaction between the walls changes from attractive to repulsive.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0953-8984</s0>
</fA01>
<fA02 i1="01">
<s0>JCOMEL</s0>
</fA02>
<fA03 i2="1">
<s0>J. phys., Condens. matter : (Print)</s0>
</fA03>
<fA05>
<s2>24</s2>
</fA05>
<fA06>
<s2>2</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Expansion and relaxation of magnetic mirror domains in a Pt/Co/Pt/Co/Pt multilayer with antiferromagnetic interlayer coupling</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Domain wall dynamics in nanostructures</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>METAXAS (P. J.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>STAMPS (R. L.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>JAMET (J.-P.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>FERRE (J.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>BALTZ (V.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>RODMACQ (B.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>MARROWS (C. H.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>MEIER (G.)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>School of Physics, M013, University of Western Australia, 35 Stirling Hwy</s1>
<s2>Crawley WA 6009</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Laboratoire de Physique des Solides, UMR CNRS 8502. Université Paris-Sud 11</s1>
<s2>91405 Orsay</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>SUPA-School of Physics and Astronomy, University of Glasgow</s1>
<s2>G 12 8QQ Glasgow</s2>
<s3>GBR</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>SPINTEC, UMR-8191, CEA-INAC/CNRS/UJF-Grenoble 1/Grenoble-INP, 17 rue des Martyrs</s1>
<s2>38054 Grenoble</s2>
<s3>FRA</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA15 i1="01">
<s1>School of Physics and Astronomy, University of Leeds</s1>
<s2>Leeds, LS2 9JT</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
</fA15>
<fA15 i1="02">
<s1>Institut für Angewandte Physik und Zentrum für Mikrostrukturforschung, Universität Hamburg, Jungiustrasse 11</s1>
<s2>20355 Hamburg</s2>
<s3>DEU</s3>
<sZ>2 aut.</sZ>
</fA15>
<fA20>
<s2>024212.1-024212.5</s2>
</fA20>
<fA21>
<s1>2012</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>577E2</s2>
<s5>354000506094380120</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2012 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>29 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>12-0072625</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of physics. Condensed matter : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>We detail measurements of field-driven expansion and zero-field relaxation of magnetic mirror domains in antiferromagnetically coupled perpendicularly magnetized ultrathin Co layers. The zero-field stability of aligned ('mirror') domains in such systems results from non-homogeneous dipolar stray fields which exist in the vicinity of the domain walls. During field-driven domain expansion, we evidence a separation of the domain walls which form the mirror domain boundary. However, the walls realign, thereby reforming a mirror domain, if their final separation is below a critical distance at the end of the field pulse. This critical distance marks the point at which the effective net interaction between the walls changes from attractive to repulsive.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70E70K</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Relaxation magnétique</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Magnetic relaxation</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Interaction échange</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Exchange interactions</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Paroi domaine</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Domain walls</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Champ impulsionnel</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Pulsed field</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Campo impulsional</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Domaine magnétique</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Magnetic domains</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Effet Kerr magnétooptique</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Kerr magneto-optical effect</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Structure domaine</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Domain structure</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Stabilité</s0>
<s5>11</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Stability</s0>
<s5>11</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Imagerie optique</s0>
<s5>12</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Optical imaging</s0>
<s5>12</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Imaginería óptica</s0>
<s5>12</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Multicouche</s0>
<s5>15</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Multilayers</s0>
<s5>15</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Platine</s0>
<s2>NC</s2>
<s5>16</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Platinum</s0>
<s2>NC</s2>
<s5>16</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Cobalt</s0>
<s2>NC</s2>
<s5>17</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Cobalt</s0>
<s2>NC</s2>
<s5>17</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Couche ultramince</s0>
<s5>18</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Ultrathin films</s0>
<s5>18</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Métal transition</s0>
<s5>48</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Transition elements</s0>
<s5>48</s5>
</fC03>
<fN21>
<s1>051</s1>
</fN21>
</pA>
</standard>
<server>
<NO>PASCAL 12-0072625 INIST</NO>
<ET>Expansion and relaxation of magnetic mirror domains in a Pt/Co/Pt/Co/Pt multilayer with antiferromagnetic interlayer coupling</ET>
<AU>METAXAS (P. J.); STAMPS (R. L.); JAMET (J.-P.); FERRE (J.); BALTZ (V.); RODMACQ (B.); MARROWS (C. H.); MEIER (G.)</AU>
<AF>School of Physics, M013, University of Western Australia, 35 Stirling Hwy/Crawley WA 6009/Australie (1 aut., 2 aut.); Laboratoire de Physique des Solides, UMR CNRS 8502. Université Paris-Sud 11/91405 Orsay/France (1 aut., 3 aut., 4 aut.); SUPA-School of Physics and Astronomy, University of Glasgow/G 12 8QQ Glasgow/Royaume-Uni (2 aut.); SPINTEC, UMR-8191, CEA-INAC/CNRS/UJF-Grenoble 1/Grenoble-INP, 17 rue des Martyrs/38054 Grenoble/France (5 aut., 6 aut.); School of Physics and Astronomy, University of Leeds/Leeds, LS2 9JT/Royaume-Uni (1 aut.); Institut für Angewandte Physik und Zentrum für Mikrostrukturforschung, Universität Hamburg, Jungiustrasse 11/20355 Hamburg/Allemagne (2 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Journal of physics. Condensed matter : (Print); ISSN 0953-8984; Coden JCOMEL; Royaume-Uni; Da. 2012; Vol. 24; No. 2; 024212.1-024212.5; Bibl. 29 ref.</SO>
<LA>Anglais</LA>
<EA>We detail measurements of field-driven expansion and zero-field relaxation of magnetic mirror domains in antiferromagnetically coupled perpendicularly magnetized ultrathin Co layers. The zero-field stability of aligned ('mirror') domains in such systems results from non-homogeneous dipolar stray fields which exist in the vicinity of the domain walls. During field-driven domain expansion, we evidence a separation of the domain walls which form the mirror domain boundary. However, the walls realign, thereby reforming a mirror domain, if their final separation is below a critical distance at the end of the field pulse. This critical distance marks the point at which the effective net interaction between the walls changes from attractive to repulsive.</EA>
<CC>001B70E70K</CC>
<FD>Relaxation magnétique; Interaction échange; Paroi domaine; Champ impulsionnel; Domaine magnétique; Effet Kerr magnétooptique; Structure domaine; Stabilité; Imagerie optique; Multicouche; Platine; Cobalt; Couche ultramince; Métal transition</FD>
<ED>Magnetic relaxation; Exchange interactions; Domain walls; Pulsed field; Magnetic domains; Kerr magneto-optical effect; Domain structure; Stability; Optical imaging; Multilayers; Platinum; Cobalt; Ultrathin films; Transition elements</ED>
<SD>Campo impulsional; Imaginería óptica</SD>
<LO>INIST-577E2.354000506094380120</LO>
<ID>12-0072625</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001624 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 001624 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:12-0072625
   |texte=   Expansion and relaxation of magnetic mirror domains in a Pt/Co/Pt/Co/Pt multilayer with antiferromagnetic interlayer coupling
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024