Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Transition to chaos in the wake of a rolling sphere

Identifieur interne : 001268 ( PascalFrancis/Corpus ); précédent : 001267; suivant : 001269

Transition to chaos in the wake of a rolling sphere

Auteurs : A. Rao ; P.-Y. Passaggia ; H. Bolnot ; M. C. Thompson ; T. Leweke ; K. Hourigan

Source :

RBID : Pascal:12-0264427

Descripteurs français

English descriptors

Abstract

The wake of a sphere rolling along a wall at low Reynolds number is investigated numerically and experimentally. Two successive transitions are identified in this flow, as the Reynolds number is increased. The first leads to the periodic shedding of planar symmetric hairpin vortices. The second and previously unknown transition involves a loss of planar symmetry and a low-frequency lateral oscillation of the wake, exhibiting a surprising 7:3 resonance with the hairpin vortex shedding. The two transitions are characterized by dye visualizations and quantitative information obtained from numerical simulations, such as force coefficients and wake frequencies (Strouhal numbers). Both transitions are found to be supercritical. Further increasing the Reynolds number, the flow becomes progressively more disorganized and chaotic. Overall, the transition sequence for the rolling sphere is closer to the one for a non-rotating sphere in a free stream than to that of a non-rotating sphere close to a wall.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0022-1120
A02 01      @0 JFLSA7
A03   1    @0 J. Fluid Mech.
A05       @2 695
A08 01  1  ENG  @1 Transition to chaos in the wake of a rolling sphere
A11 01  1    @1 RAO (A.)
A11 02  1    @1 PASSAGGIA (P.-Y.)
A11 03  1    @1 BOLNOT (H.)
A11 04  1    @1 THOMPSON (M. C.)
A11 05  1    @1 LEWEKE (T.)
A11 06  1    @1 HOURIGAN (K.)
A14 01      @1 Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical and Aerospace Engineering, Monash University @2 Melbourne, VIC 3800 @3 AUS @Z 1 aut. @Z 4 aut. @Z 6 aut.
A14 02      @1 Institut de Recherche sur les Phenomenes Hors-Équilibre (IRPHE), CNRS/Aix-Marseille Universite @2 13384 Marseille @3 FRA @Z 2 aut. @Z 3 aut. @Z 5 aut.
A14 03      @1 Division of Biological Engineering, Monash University @2 Melbourne, VIC 3800 @3 AUS @Z 6 aut.
A20       @1 135-148
A21       @1 2012
A23 01      @0 ENG
A43 01      @1 INIST @2 5180 @5 354000509322280060
A44       @0 0000 @1 © 2012 INIST-CNRS. All rights reserved.
A45       @0 1 p.1/4
A47 01  1    @0 12-0264427
A60       @1 P
A61       @0 A
A64 01  1    @0 Journal of Fluid Mechanics
A66 01      @0 GBR
C01 01    ENG  @0 The wake of a sphere rolling along a wall at low Reynolds number is investigated numerically and experimentally. Two successive transitions are identified in this flow, as the Reynolds number is increased. The first leads to the periodic shedding of planar symmetric hairpin vortices. The second and previously unknown transition involves a loss of planar symmetry and a low-frequency lateral oscillation of the wake, exhibiting a surprising 7:3 resonance with the hairpin vortex shedding. The two transitions are characterized by dye visualizations and quantitative information obtained from numerical simulations, such as force coefficients and wake frequencies (Strouhal numbers). Both transitions are found to be supercritical. Further increasing the Reynolds number, the flow becomes progressively more disorganized and chaotic. Overall, the transition sequence for the rolling sphere is closer to the one for a non-rotating sphere in a free stream than to that of a non-rotating sphere close to a wall.
C02 01  3    @0 001B40G32F
C02 02  3    @0 001B40G52
C03 01  3  FRE  @0 Ecoulement tourbillonnaire @5 02
C03 01  3  ENG  @0 Vortex flow @5 02
C03 02  X  FRE  @0 Détachement tourbillonnaire @5 03
C03 02  X  ENG  @0 Vortex shedding @5 03
C03 02  X  SPA  @0 Desprendimiento vorticial @5 03
C03 03  3  FRE  @0 Système chaotique @5 08
C03 03  3  ENG  @0 Chaotic systems @5 08
C03 04  3  FRE  @0 Sillage @5 09
C03 04  3  ENG  @0 Wakes @5 09
C03 05  3  FRE  @0 Simulation numérique @5 15
C03 05  3  ENG  @0 Digital simulation @5 15
C03 06  3  FRE  @0 Etude expérimentale @5 16
C03 06  3  ENG  @0 Experimental study @5 16
C03 07  X  FRE  @0 Roulement @5 29
C03 07  X  ENG  @0 Rolling (mechanics) @5 29
C03 07  X  SPA  @0 Rodadura @5 29
C03 08  3  FRE  @0 Sphère @5 30
C03 08  3  ENG  @0 Spheres @5 30
C03 09  3  FRE  @0 4732F @4 INC @5 56
C03 10  3  FRE  @0 4752 @4 INC @5 57
N21       @1 198

Format Inist (serveur)

NO : PASCAL 12-0264427 INIST
ET : Transition to chaos in the wake of a rolling sphere
AU : RAO (A.); PASSAGGIA (P.-Y.); BOLNOT (H.); THOMPSON (M. C.); LEWEKE (T.); HOURIGAN (K.)
AF : Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical and Aerospace Engineering, Monash University/Melbourne, VIC 3800/Australie (1 aut., 4 aut., 6 aut.); Institut de Recherche sur les Phenomenes Hors-Équilibre (IRPHE), CNRS/Aix-Marseille Universite/13384 Marseille/France (2 aut., 3 aut., 5 aut.); Division of Biological Engineering, Monash University/Melbourne, VIC 3800/Australie (6 aut.)
DT : Publication en série; Niveau analytique
SO : Journal of Fluid Mechanics; ISSN 0022-1120; Coden JFLSA7; Royaume-Uni; Da. 2012; Vol. 695; Pp. 135-148; Bibl. 1 p.1/4
LA : Anglais
EA : The wake of a sphere rolling along a wall at low Reynolds number is investigated numerically and experimentally. Two successive transitions are identified in this flow, as the Reynolds number is increased. The first leads to the periodic shedding of planar symmetric hairpin vortices. The second and previously unknown transition involves a loss of planar symmetry and a low-frequency lateral oscillation of the wake, exhibiting a surprising 7:3 resonance with the hairpin vortex shedding. The two transitions are characterized by dye visualizations and quantitative information obtained from numerical simulations, such as force coefficients and wake frequencies (Strouhal numbers). Both transitions are found to be supercritical. Further increasing the Reynolds number, the flow becomes progressively more disorganized and chaotic. Overall, the transition sequence for the rolling sphere is closer to the one for a non-rotating sphere in a free stream than to that of a non-rotating sphere close to a wall.
CC : 001B40G32F; 001B40G52
FD : Ecoulement tourbillonnaire; Détachement tourbillonnaire; Système chaotique; Sillage; Simulation numérique; Etude expérimentale; Roulement; Sphère; 4732F; 4752
ED : Vortex flow; Vortex shedding; Chaotic systems; Wakes; Digital simulation; Experimental study; Rolling (mechanics); Spheres
SD : Desprendimiento vorticial; Rodadura
LO : INIST-5180.354000509322280060
ID : 12-0264427

Links to Exploration step

Pascal:12-0264427

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Transition to chaos in the wake of a rolling sphere</title>
<author>
<name sortKey="Rao, A" sort="Rao, A" uniqKey="Rao A" first="A." last="Rao">A. Rao</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical and Aerospace Engineering, Monash University</s1>
<s2>Melbourne, VIC 3800</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Passaggia, P Y" sort="Passaggia, P Y" uniqKey="Passaggia P" first="P.-Y." last="Passaggia">P.-Y. Passaggia</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Institut de Recherche sur les Phenomenes Hors-Équilibre (IRPHE), CNRS/Aix-Marseille Universite</s1>
<s2>13384 Marseille</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Bolnot, H" sort="Bolnot, H" uniqKey="Bolnot H" first="H." last="Bolnot">H. Bolnot</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Institut de Recherche sur les Phenomenes Hors-Équilibre (IRPHE), CNRS/Aix-Marseille Universite</s1>
<s2>13384 Marseille</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Thompson, M C" sort="Thompson, M C" uniqKey="Thompson M" first="M. C." last="Thompson">M. C. Thompson</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical and Aerospace Engineering, Monash University</s1>
<s2>Melbourne, VIC 3800</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Leweke, T" sort="Leweke, T" uniqKey="Leweke T" first="T." last="Leweke">T. Leweke</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Institut de Recherche sur les Phenomenes Hors-Équilibre (IRPHE), CNRS/Aix-Marseille Universite</s1>
<s2>13384 Marseille</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Hourigan, K" sort="Hourigan, K" uniqKey="Hourigan K" first="K." last="Hourigan">K. Hourigan</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical and Aerospace Engineering, Monash University</s1>
<s2>Melbourne, VIC 3800</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="03">
<s1>Division of Biological Engineering, Monash University</s1>
<s2>Melbourne, VIC 3800</s2>
<s3>AUS</s3>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">12-0264427</idno>
<date when="2012">2012</date>
<idno type="stanalyst">PASCAL 12-0264427 INIST</idno>
<idno type="RBID">Pascal:12-0264427</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">001268</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Transition to chaos in the wake of a rolling sphere</title>
<author>
<name sortKey="Rao, A" sort="Rao, A" uniqKey="Rao A" first="A." last="Rao">A. Rao</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical and Aerospace Engineering, Monash University</s1>
<s2>Melbourne, VIC 3800</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Passaggia, P Y" sort="Passaggia, P Y" uniqKey="Passaggia P" first="P.-Y." last="Passaggia">P.-Y. Passaggia</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Institut de Recherche sur les Phenomenes Hors-Équilibre (IRPHE), CNRS/Aix-Marseille Universite</s1>
<s2>13384 Marseille</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Bolnot, H" sort="Bolnot, H" uniqKey="Bolnot H" first="H." last="Bolnot">H. Bolnot</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Institut de Recherche sur les Phenomenes Hors-Équilibre (IRPHE), CNRS/Aix-Marseille Universite</s1>
<s2>13384 Marseille</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Thompson, M C" sort="Thompson, M C" uniqKey="Thompson M" first="M. C." last="Thompson">M. C. Thompson</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical and Aerospace Engineering, Monash University</s1>
<s2>Melbourne, VIC 3800</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Leweke, T" sort="Leweke, T" uniqKey="Leweke T" first="T." last="Leweke">T. Leweke</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Institut de Recherche sur les Phenomenes Hors-Équilibre (IRPHE), CNRS/Aix-Marseille Universite</s1>
<s2>13384 Marseille</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Hourigan, K" sort="Hourigan, K" uniqKey="Hourigan K" first="K." last="Hourigan">K. Hourigan</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical and Aerospace Engineering, Monash University</s1>
<s2>Melbourne, VIC 3800</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="03">
<s1>Division of Biological Engineering, Monash University</s1>
<s2>Melbourne, VIC 3800</s2>
<s3>AUS</s3>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Journal of Fluid Mechanics</title>
<title level="j" type="abbreviated">J. Fluid Mech.</title>
<idno type="ISSN">0022-1120</idno>
<imprint>
<date when="2012">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Journal of Fluid Mechanics</title>
<title level="j" type="abbreviated">J. Fluid Mech.</title>
<idno type="ISSN">0022-1120</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Chaotic systems</term>
<term>Digital simulation</term>
<term>Experimental study</term>
<term>Rolling (mechanics)</term>
<term>Spheres</term>
<term>Vortex flow</term>
<term>Vortex shedding</term>
<term>Wakes</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Ecoulement tourbillonnaire</term>
<term>Détachement tourbillonnaire</term>
<term>Système chaotique</term>
<term>Sillage</term>
<term>Simulation numérique</term>
<term>Etude expérimentale</term>
<term>Roulement</term>
<term>Sphère</term>
<term>4732F</term>
<term>4752</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The wake of a sphere rolling along a wall at low Reynolds number is investigated numerically and experimentally. Two successive transitions are identified in this flow, as the Reynolds number is increased. The first leads to the periodic shedding of planar symmetric hairpin vortices. The second and previously unknown transition involves a loss of planar symmetry and a low-frequency lateral oscillation of the wake, exhibiting a surprising 7:3 resonance with the hairpin vortex shedding. The two transitions are characterized by dye visualizations and quantitative information obtained from numerical simulations, such as force coefficients and wake frequencies (Strouhal numbers). Both transitions are found to be supercritical. Further increasing the Reynolds number, the flow becomes progressively more disorganized and chaotic. Overall, the transition sequence for the rolling sphere is closer to the one for a non-rotating sphere in a free stream than to that of a non-rotating sphere close to a wall.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0022-1120</s0>
</fA01>
<fA02 i1="01">
<s0>JFLSA7</s0>
</fA02>
<fA03 i2="1">
<s0>J. Fluid Mech.</s0>
</fA03>
<fA05>
<s2>695</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Transition to chaos in the wake of a rolling sphere</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>RAO (A.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>PASSAGGIA (P.-Y.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>BOLNOT (H.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>THOMPSON (M. C.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>LEWEKE (T.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>HOURIGAN (K.)</s1>
</fA11>
<fA14 i1="01">
<s1>Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical and Aerospace Engineering, Monash University</s1>
<s2>Melbourne, VIC 3800</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Institut de Recherche sur les Phenomenes Hors-Équilibre (IRPHE), CNRS/Aix-Marseille Universite</s1>
<s2>13384 Marseille</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Division of Biological Engineering, Monash University</s1>
<s2>Melbourne, VIC 3800</s2>
<s3>AUS</s3>
<sZ>6 aut.</sZ>
</fA14>
<fA20>
<s1>135-148</s1>
</fA20>
<fA21>
<s1>2012</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>5180</s2>
<s5>354000509322280060</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2012 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>1 p.1/4</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>12-0264427</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of Fluid Mechanics</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The wake of a sphere rolling along a wall at low Reynolds number is investigated numerically and experimentally. Two successive transitions are identified in this flow, as the Reynolds number is increased. The first leads to the periodic shedding of planar symmetric hairpin vortices. The second and previously unknown transition involves a loss of planar symmetry and a low-frequency lateral oscillation of the wake, exhibiting a surprising 7:3 resonance with the hairpin vortex shedding. The two transitions are characterized by dye visualizations and quantitative information obtained from numerical simulations, such as force coefficients and wake frequencies (Strouhal numbers). Both transitions are found to be supercritical. Further increasing the Reynolds number, the flow becomes progressively more disorganized and chaotic. Overall, the transition sequence for the rolling sphere is closer to the one for a non-rotating sphere in a free stream than to that of a non-rotating sphere close to a wall.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B40G32F</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B40G52</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Ecoulement tourbillonnaire</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Vortex flow</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Détachement tourbillonnaire</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Vortex shedding</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Desprendimiento vorticial</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Système chaotique</s0>
<s5>08</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Chaotic systems</s0>
<s5>08</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Sillage</s0>
<s5>09</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Wakes</s0>
<s5>09</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Simulation numérique</s0>
<s5>15</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Digital simulation</s0>
<s5>15</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Etude expérimentale</s0>
<s5>16</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Experimental study</s0>
<s5>16</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Roulement</s0>
<s5>29</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Rolling (mechanics)</s0>
<s5>29</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Rodadura</s0>
<s5>29</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Sphère</s0>
<s5>30</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Spheres</s0>
<s5>30</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>4732F</s0>
<s4>INC</s4>
<s5>56</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>4752</s0>
<s4>INC</s4>
<s5>57</s5>
</fC03>
<fN21>
<s1>198</s1>
</fN21>
</pA>
</standard>
<server>
<NO>PASCAL 12-0264427 INIST</NO>
<ET>Transition to chaos in the wake of a rolling sphere</ET>
<AU>RAO (A.); PASSAGGIA (P.-Y.); BOLNOT (H.); THOMPSON (M. C.); LEWEKE (T.); HOURIGAN (K.)</AU>
<AF>Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical and Aerospace Engineering, Monash University/Melbourne, VIC 3800/Australie (1 aut., 4 aut., 6 aut.); Institut de Recherche sur les Phenomenes Hors-Équilibre (IRPHE), CNRS/Aix-Marseille Universite/13384 Marseille/France (2 aut., 3 aut., 5 aut.); Division of Biological Engineering, Monash University/Melbourne, VIC 3800/Australie (6 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Journal of Fluid Mechanics; ISSN 0022-1120; Coden JFLSA7; Royaume-Uni; Da. 2012; Vol. 695; Pp. 135-148; Bibl. 1 p.1/4</SO>
<LA>Anglais</LA>
<EA>The wake of a sphere rolling along a wall at low Reynolds number is investigated numerically and experimentally. Two successive transitions are identified in this flow, as the Reynolds number is increased. The first leads to the periodic shedding of planar symmetric hairpin vortices. The second and previously unknown transition involves a loss of planar symmetry and a low-frequency lateral oscillation of the wake, exhibiting a surprising 7:3 resonance with the hairpin vortex shedding. The two transitions are characterized by dye visualizations and quantitative information obtained from numerical simulations, such as force coefficients and wake frequencies (Strouhal numbers). Both transitions are found to be supercritical. Further increasing the Reynolds number, the flow becomes progressively more disorganized and chaotic. Overall, the transition sequence for the rolling sphere is closer to the one for a non-rotating sphere in a free stream than to that of a non-rotating sphere close to a wall.</EA>
<CC>001B40G32F; 001B40G52</CC>
<FD>Ecoulement tourbillonnaire; Détachement tourbillonnaire; Système chaotique; Sillage; Simulation numérique; Etude expérimentale; Roulement; Sphère; 4732F; 4752</FD>
<ED>Vortex flow; Vortex shedding; Chaotic systems; Wakes; Digital simulation; Experimental study; Rolling (mechanics); Spheres</ED>
<SD>Desprendimiento vorticial; Rodadura</SD>
<LO>INIST-5180.354000509322280060</LO>
<ID>12-0264427</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001268 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 001268 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:12-0264427
   |texte=   Transition to chaos in the wake of a rolling sphere
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024