Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Microfluidic Solvent Extraction of Metal Ions and Complexes from Leach Solutions Containing Nanoparticles

Identifieur interne : 001113 ( PascalFrancis/Corpus ); précédent : 001112; suivant : 001114

Microfluidic Solvent Extraction of Metal Ions and Complexes from Leach Solutions Containing Nanoparticles

Auteurs : Craig Priest ; JINGFANG ZHOU ; Stefan Klink ; Rossen Sedev ; John Ralston

Source :

RBID : Pascal:12-0330322

Descripteurs français

English descriptors

Abstract

Solvent extraction is often hindered by the presence of particles and surfactants that increase the stability of emulsion phases, i.e., crud, thus preventing full recovery of the organic phase and the valuable metal species. It is shown that bypassing the formation of a particle-stabilized crud using a stream-based microfluidic extraction approach has great potential for handling these more challenging and industry-relevant systems provided sufficient throughputs can be realized. Metal ions and complexes are extracted from copper oxide and chromite leach solutions at high efficiencies and extraction rates within the confinement of a microchannel and in the presence of silica nanoparticles. These findings and their implications for process intensification are discussed.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0930-7516
A02 01      @0 CETEER
A03   1    @0 Chem. eng. technol.
A05       @2 35
A06       @2 7
A08 01  1  ENG  @1 Microfluidic Solvent Extraction of Metal Ions and Complexes from Leach Solutions Containing Nanoparticles
A09 01  1  ENG  @1 Reactor Design & Process Intensification
A11 01  1    @1 PRIEST (Craig)
A11 02  1    @1 JINGFANG ZHOU
A11 03  1    @1 KLINK (Stefan)
A11 04  1    @1 SEDEV (Rossen)
A11 05  1    @1 RALSTON (John)
A12 01  1    @1 CHARPENTIER (Jean-Claude) @9 ed.
A14 01      @1 Ian Wark Research Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes @2 South Australia @3 AUS @Z 1 aut. @Z 2 aut. @Z 3 aut. @Z 4 aut. @Z 5 aut.
A15 01      @1 Laboratoire Réactions et Génie des Procédés, CNRS/ENSIC Université de Lorraine @2 Nancy @3 FRA @Z 1 aut.
A20       @1 1312-1319
A21       @1 2012
A23 01      @0 ENG
A43 01      @1 INIST @2 20728 @5 354000500864540190
A44       @0 0000 @1 © 2012 INIST-CNRS. All rights reserved.
A45       @0 47 ref.
A47 01  1    @0 12-0330322
A60       @1 P
A61       @0 A
A64 01  1    @0 Chemical engineering & technology
A66 01      @0 DEU
C01 01    ENG  @0 Solvent extraction is often hindered by the presence of particles and surfactants that increase the stability of emulsion phases, i.e., crud, thus preventing full recovery of the organic phase and the valuable metal species. It is shown that bypassing the formation of a particle-stabilized crud using a stream-based microfluidic extraction approach has great potential for handling these more challenging and industry-relevant systems provided sufficient throughputs can be realized. Metal ions and complexes are extracted from copper oxide and chromite leach solutions at high efficiencies and extraction rates within the confinement of a microchannel and in the presence of silica nanoparticles. These findings and their implications for process intensification are discussed.
C02 01  X    @0 001D07L
C03 01  X  FRE  @0 Microfluidique @5 01
C03 01  X  ENG  @0 Microfluidics @5 01
C03 01  X  SPA  @0 Microfluidic @5 01
C03 02  X  FRE  @0 Extraction solvant @5 02
C03 02  X  ENG  @0 Solvent extraction @5 02
C03 02  X  SPA  @0 Extracción solvente @5 02
C03 03  X  FRE  @0 Ion métallique @5 03
C03 03  X  ENG  @0 Metal ion @5 03
C03 03  X  SPA  @0 Ión metálico @5 03
C03 04  X  FRE  @0 Nanoparticule @5 04
C03 04  X  ENG  @0 Nanoparticle @5 04
C03 04  X  SPA  @0 Nanopartícula @5 04
C03 05  X  FRE  @0 Agent surface @2 FX @5 05
C03 05  X  ENG  @0 Surfactant @2 FX @5 05
C03 05  X  SPA  @0 Agente superficie @2 FX @5 05
C03 06  X  FRE  @0 Stabilité @5 06
C03 06  X  ENG  @0 Stability @5 06
C03 06  X  SPA  @0 Estabilidad @5 06
C03 07  X  FRE  @0 Emulsion @5 07
C03 07  X  ENG  @0 Emulsion @5 07
C03 07  X  SPA  @0 Emulsión @5 07
C03 08  X  FRE  @0 Manutention @5 08
C03 08  X  ENG  @0 Handling @5 08
C03 08  X  SPA  @0 Manutención @5 08
C03 09  X  FRE  @0 Extrait @5 09
C03 09  X  ENG  @0 Extract @5 09
C03 09  X  SPA  @0 Extracto @5 09
C03 10  X  FRE  @0 Confinement @5 10
C03 10  X  ENG  @0 Confinement @5 10
C03 10  X  SPA  @0 Confinamiento @5 10
C07 01  X  FRE  @0 Mécanique fluide
C07 01  X  ENG  @0 Fluid mechanics
C07 01  X  SPA  @0 Mecánica flúido
N21       @1 254
N44 01      @1 OTO
N82       @1 OTO

Format Inist (serveur)

NO : PASCAL 12-0330322 INIST
ET : Microfluidic Solvent Extraction of Metal Ions and Complexes from Leach Solutions Containing Nanoparticles
AU : PRIEST (Craig); JINGFANG ZHOU; KLINK (Stefan); SEDEV (Rossen); RALSTON (John); CHARPENTIER (Jean-Claude)
AF : Ian Wark Research Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes/South Australia/Australie (1 aut., 2 aut., 3 aut., 4 aut., 5 aut.); Laboratoire Réactions et Génie des Procédés, CNRS/ENSIC Université de Lorraine/Nancy/France (1 aut.)
DT : Publication en série; Niveau analytique
SO : Chemical engineering & technology; ISSN 0930-7516; Coden CETEER; Allemagne; Da. 2012; Vol. 35; No. 7; Pp. 1312-1319; Bibl. 47 ref.
LA : Anglais
EA : Solvent extraction is often hindered by the presence of particles and surfactants that increase the stability of emulsion phases, i.e., crud, thus preventing full recovery of the organic phase and the valuable metal species. It is shown that bypassing the formation of a particle-stabilized crud using a stream-based microfluidic extraction approach has great potential for handling these more challenging and industry-relevant systems provided sufficient throughputs can be realized. Metal ions and complexes are extracted from copper oxide and chromite leach solutions at high efficiencies and extraction rates within the confinement of a microchannel and in the presence of silica nanoparticles. These findings and their implications for process intensification are discussed.
CC : 001D07L
FD : Microfluidique; Extraction solvant; Ion métallique; Nanoparticule; Agent surface; Stabilité; Emulsion; Manutention; Extrait; Confinement
FG : Mécanique fluide
ED : Microfluidics; Solvent extraction; Metal ion; Nanoparticle; Surfactant; Stability; Emulsion; Handling; Extract; Confinement
EG : Fluid mechanics
SD : Microfluidic; Extracción solvente; Ión metálico; Nanopartícula; Agente superficie; Estabilidad; Emulsión; Manutención; Extracto; Confinamiento
LO : INIST-20728.354000500864540190
ID : 12-0330322

Links to Exploration step

Pascal:12-0330322

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Microfluidic Solvent Extraction of Metal Ions and Complexes from Leach Solutions Containing Nanoparticles</title>
<author>
<name sortKey="Priest, Craig" sort="Priest, Craig" uniqKey="Priest C" first="Craig" last="Priest">Craig Priest</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Ian Wark Research Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes</s1>
<s2>South Australia</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Jingfang Zhou" sort="Jingfang Zhou" uniqKey="Jingfang Zhou" last="Jingfang Zhou">JINGFANG ZHOU</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Ian Wark Research Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes</s1>
<s2>South Australia</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Klink, Stefan" sort="Klink, Stefan" uniqKey="Klink S" first="Stefan" last="Klink">Stefan Klink</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Ian Wark Research Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes</s1>
<s2>South Australia</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Sedev, Rossen" sort="Sedev, Rossen" uniqKey="Sedev R" first="Rossen" last="Sedev">Rossen Sedev</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Ian Wark Research Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes</s1>
<s2>South Australia</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Ralston, John" sort="Ralston, John" uniqKey="Ralston J" first="John" last="Ralston">John Ralston</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Ian Wark Research Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes</s1>
<s2>South Australia</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">12-0330322</idno>
<date when="2012">2012</date>
<idno type="stanalyst">PASCAL 12-0330322 INIST</idno>
<idno type="RBID">Pascal:12-0330322</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">001113</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Microfluidic Solvent Extraction of Metal Ions and Complexes from Leach Solutions Containing Nanoparticles</title>
<author>
<name sortKey="Priest, Craig" sort="Priest, Craig" uniqKey="Priest C" first="Craig" last="Priest">Craig Priest</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Ian Wark Research Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes</s1>
<s2>South Australia</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Jingfang Zhou" sort="Jingfang Zhou" uniqKey="Jingfang Zhou" last="Jingfang Zhou">JINGFANG ZHOU</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Ian Wark Research Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes</s1>
<s2>South Australia</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Klink, Stefan" sort="Klink, Stefan" uniqKey="Klink S" first="Stefan" last="Klink">Stefan Klink</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Ian Wark Research Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes</s1>
<s2>South Australia</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Sedev, Rossen" sort="Sedev, Rossen" uniqKey="Sedev R" first="Rossen" last="Sedev">Rossen Sedev</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Ian Wark Research Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes</s1>
<s2>South Australia</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Ralston, John" sort="Ralston, John" uniqKey="Ralston J" first="John" last="Ralston">John Ralston</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Ian Wark Research Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes</s1>
<s2>South Australia</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Chemical engineering & technology</title>
<title level="j" type="abbreviated">Chem. eng. technol.</title>
<idno type="ISSN">0930-7516</idno>
<imprint>
<date when="2012">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Chemical engineering & technology</title>
<title level="j" type="abbreviated">Chem. eng. technol.</title>
<idno type="ISSN">0930-7516</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Confinement</term>
<term>Emulsion</term>
<term>Extract</term>
<term>Handling</term>
<term>Metal ion</term>
<term>Microfluidics</term>
<term>Nanoparticle</term>
<term>Solvent extraction</term>
<term>Stability</term>
<term>Surfactant</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Microfluidique</term>
<term>Extraction solvant</term>
<term>Ion métallique</term>
<term>Nanoparticule</term>
<term>Agent surface</term>
<term>Stabilité</term>
<term>Emulsion</term>
<term>Manutention</term>
<term>Extrait</term>
<term>Confinement</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Solvent extraction is often hindered by the presence of particles and surfactants that increase the stability of emulsion phases, i.e., crud, thus preventing full recovery of the organic phase and the valuable metal species. It is shown that bypassing the formation of a particle-stabilized crud using a stream-based microfluidic extraction approach has great potential for handling these more challenging and industry-relevant systems provided sufficient throughputs can be realized. Metal ions and complexes are extracted from copper oxide and chromite leach solutions at high efficiencies and extraction rates within the confinement of a microchannel and in the presence of silica nanoparticles. These findings and their implications for process intensification are discussed.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0930-7516</s0>
</fA01>
<fA02 i1="01">
<s0>CETEER</s0>
</fA02>
<fA03 i2="1">
<s0>Chem. eng. technol.</s0>
</fA03>
<fA05>
<s2>35</s2>
</fA05>
<fA06>
<s2>7</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Microfluidic Solvent Extraction of Metal Ions and Complexes from Leach Solutions Containing Nanoparticles</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Reactor Design & Process Intensification</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>PRIEST (Craig)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>JINGFANG ZHOU</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>KLINK (Stefan)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>SEDEV (Rossen)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>RALSTON (John)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>CHARPENTIER (Jean-Claude)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Ian Wark Research Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes</s1>
<s2>South Australia</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA15 i1="01">
<s1>Laboratoire Réactions et Génie des Procédés, CNRS/ENSIC Université de Lorraine</s1>
<s2>Nancy</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</fA15>
<fA20>
<s1>1312-1319</s1>
</fA20>
<fA21>
<s1>2012</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>20728</s2>
<s5>354000500864540190</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2012 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>47 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>12-0330322</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Chemical engineering & technology</s0>
</fA64>
<fA66 i1="01">
<s0>DEU</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Solvent extraction is often hindered by the presence of particles and surfactants that increase the stability of emulsion phases, i.e., crud, thus preventing full recovery of the organic phase and the valuable metal species. It is shown that bypassing the formation of a particle-stabilized crud using a stream-based microfluidic extraction approach has great potential for handling these more challenging and industry-relevant systems provided sufficient throughputs can be realized. Metal ions and complexes are extracted from copper oxide and chromite leach solutions at high efficiencies and extraction rates within the confinement of a microchannel and in the presence of silica nanoparticles. These findings and their implications for process intensification are discussed.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D07L</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Microfluidique</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Microfluidics</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Microfluidic</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Extraction solvant</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Solvent extraction</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Extracción solvente</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Ion métallique</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Metal ion</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Ión metálico</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Nanoparticule</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Nanoparticle</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Nanopartícula</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Agent surface</s0>
<s2>FX</s2>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Surfactant</s0>
<s2>FX</s2>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Agente superficie</s0>
<s2>FX</s2>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Stabilité</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Stability</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Estabilidad</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Emulsion</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Emulsion</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Emulsión</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Manutention</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Handling</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Manutención</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Extrait</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Extract</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Extracto</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Confinement</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Confinement</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Confinamiento</s0>
<s5>10</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Mécanique fluide</s0>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>Fluid mechanics</s0>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Mecánica flúido</s0>
</fC07>
<fN21>
<s1>254</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 12-0330322 INIST</NO>
<ET>Microfluidic Solvent Extraction of Metal Ions and Complexes from Leach Solutions Containing Nanoparticles</ET>
<AU>PRIEST (Craig); JINGFANG ZHOU; KLINK (Stefan); SEDEV (Rossen); RALSTON (John); CHARPENTIER (Jean-Claude)</AU>
<AF>Ian Wark Research Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes/South Australia/Australie (1 aut., 2 aut., 3 aut., 4 aut., 5 aut.); Laboratoire Réactions et Génie des Procédés, CNRS/ENSIC Université de Lorraine/Nancy/France (1 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Chemical engineering & technology; ISSN 0930-7516; Coden CETEER; Allemagne; Da. 2012; Vol. 35; No. 7; Pp. 1312-1319; Bibl. 47 ref.</SO>
<LA>Anglais</LA>
<EA>Solvent extraction is often hindered by the presence of particles and surfactants that increase the stability of emulsion phases, i.e., crud, thus preventing full recovery of the organic phase and the valuable metal species. It is shown that bypassing the formation of a particle-stabilized crud using a stream-based microfluidic extraction approach has great potential for handling these more challenging and industry-relevant systems provided sufficient throughputs can be realized. Metal ions and complexes are extracted from copper oxide and chromite leach solutions at high efficiencies and extraction rates within the confinement of a microchannel and in the presence of silica nanoparticles. These findings and their implications for process intensification are discussed.</EA>
<CC>001D07L</CC>
<FD>Microfluidique; Extraction solvant; Ion métallique; Nanoparticule; Agent surface; Stabilité; Emulsion; Manutention; Extrait; Confinement</FD>
<FG>Mécanique fluide</FG>
<ED>Microfluidics; Solvent extraction; Metal ion; Nanoparticle; Surfactant; Stability; Emulsion; Handling; Extract; Confinement</ED>
<EG>Fluid mechanics</EG>
<SD>Microfluidic; Extracción solvente; Ión metálico; Nanopartícula; Agente superficie; Estabilidad; Emulsión; Manutención; Extracto; Confinamiento</SD>
<LO>INIST-20728.354000500864540190</LO>
<ID>12-0330322</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001113 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 001113 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:12-0330322
   |texte=   Microfluidic Solvent Extraction of Metal Ions and Complexes from Leach Solutions Containing Nanoparticles
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024