Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Flow over a cylinder subjected to combined translational and rotational oscillations

Identifieur interne : 001112 ( PascalFrancis/Corpus ); précédent : 001111; suivant : 001113

Flow over a cylinder subjected to combined translational and rotational oscillations

Auteurs : Mehdi Nazarinia ; David Lo Jacono ; Mark C. Thompson ; John Sheridan

Source :

RBID : Pascal:12-0330614

Descripteurs français

English descriptors

Abstract

The experimental research reported here employs particle image velocimetry to extend the study of Nazarinia et al. (2009a), recording detailed vorticity fields in the near-wake of a circular cylinder undergoing combined translational and rotational oscillatory motions. The focus of the present study is to examine the effect of the ratio between the cross-stream translational and rotational velocities and frequencies on the synchronization of the near-wake structures for multiple phase differences between the two motions. The frequencies are fixed close to that of the natural frequency of vortex shedding. The results are presented for a fixed amplitude of rotational oscillation of 1 rad and a range of ratios between the translational and rotational velocities (VR) = [0.25, 0.5, 1.0, 1.5] and for a rang of frequency ratios (FR) = [0.5, 1.0,2.0]. In particular, it was found that varying the VR value changed the near-wake structure. The results show that at the lower value of VR = 0.25, for all of the phase differences examined, the vortices are shed in a single-row 2S mode aligned in the medial plane with a slight offset from the centreline and also synchronized with the combined oscillatory motion. As VR increases the vortex shedding mode changes from a 2S single-row to a 2S double-row structure and eventually back to the single-row (at VR = 0.5). Increasing VR further resulted in the loss of lock-on over the range of negative phase angles and a transition from the 2S to P+S mode for the in-phase case. There was transition back to the 2S wake mode with a further decrease in ϕ. For higher VR the range of desynchronization increased. In the second and third parts of this paper it is shown that the occurrence of unlocked wake flow as the phase angle is varied is greater when the frequency ratio between the imposed oscillatory motions and the natural vortex shedding frequency FRN is higher than unity. The vortices are synchronized in the near-wake at FRN values less than unity and unlocked when FRN > 1.0. In particular, the near-wake structures have also been shown to be synchronized for FR = 0.5 and unlocked for FR = 2.0.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0889-9746
A02 01      @0 JFSTEF
A03   1    @0 J. fluids struct.
A05       @2 32
A08 01  1  ENG  @1 Flow over a cylinder subjected to combined translational and rotational oscillations
A09 01  1  ENG  @1 The 7th International Symposium on Fluid-Structure Interactions, Flow-Sound Interactions, and Flow-Induced Vibrations & Noise
A11 01  1    @1 NAZARINIA (Mehdi)
A11 02  1    @1 LO JACONO (David)
A11 03  1    @1 THOMPSON (Mark C.)
A11 04  1    @1 SHERIDAN (John)
A12 01  1    @1 DALTON (Charles) @9 ed.
A12 02  1    @1 DE LANGRE (Emmanuel) @9 ed.
A14 01      @1 Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical and Aerospace Engineering, Monash University, P.O. Box 31 @2 Melbourne, Victoria 3800 @3 AUS @Z 1 aut. @Z 2 aut. @Z 3 aut. @Z 4 aut.
A14 02      @1 Université de Toulouse; INPT, UPS; IMFT (Institut de Mecanique des Fluides de Toulouse); Allée Camille Soula @2 31400, Toulouse @3 FRA @Z 2 aut.
A14 03      @1 CNRS; IMFT @2 31400 Toulouse @3 FRA @Z 2 aut.
A15 01      @1 Department of Mechanical Engineering, University of Houston @2 Houston, TX 77204-4006 @3 USA @Z 1 aut.
A15 02      @1 Hydrodynamics Laboratory - LadHyx, Ecole Polytechnique @2 91128 Palaiseau @3 FRA @Z 2 aut.
A20       @1 135-145
A21       @1 2012
A23 01      @0 ENG
A43 01      @1 INIST @2 21394 @5 354000500824610100
A44       @0 0000 @1 © 2012 INIST-CNRS. All rights reserved.
A45       @0 3/4 p.
A47 01  1    @0 12-0330614
A60       @1 P @2 C
A61       @0 A
A64 01  1    @0 Journal of fluids and structures
A66 01      @0 GBR
C01 01    ENG  @0 The experimental research reported here employs particle image velocimetry to extend the study of Nazarinia et al. (2009a), recording detailed vorticity fields in the near-wake of a circular cylinder undergoing combined translational and rotational oscillatory motions. The focus of the present study is to examine the effect of the ratio between the cross-stream translational and rotational velocities and frequencies on the synchronization of the near-wake structures for multiple phase differences between the two motions. The frequencies are fixed close to that of the natural frequency of vortex shedding. The results are presented for a fixed amplitude of rotational oscillation of 1 rad and a range of ratios between the translational and rotational velocities (VR) = [0.25, 0.5, 1.0, 1.5] and for a rang of frequency ratios (FR) = [0.5, 1.0,2.0]. In particular, it was found that varying the VR value changed the near-wake structure. The results show that at the lower value of VR = 0.25, for all of the phase differences examined, the vortices are shed in a single-row 2S mode aligned in the medial plane with a slight offset from the centreline and also synchronized with the combined oscillatory motion. As VR increases the vortex shedding mode changes from a 2S single-row to a 2S double-row structure and eventually back to the single-row (at VR = 0.5). Increasing VR further resulted in the loss of lock-on over the range of negative phase angles and a transition from the 2S to P+S mode for the in-phase case. There was transition back to the 2S wake mode with a further decrease in ϕ. For higher VR the range of desynchronization increased. In the second and third parts of this paper it is shown that the occurrence of unlocked wake flow as the phase angle is varied is greater when the frequency ratio between the imposed oscillatory motions and the natural vortex shedding frequency FRN is higher than unity. The vortices are synchronized in the near-wake at FRN values less than unity and unlocked when FRN > 1.0. In particular, the near-wake structures have also been shown to be synchronized for FR = 0.5 and unlocked for FR = 2.0.
C02 01  3    @0 001B40G27V
C02 02  3    @0 001B40G32F
C03 01  3  FRE  @0 Ecoulement turbulent @5 06
C03 01  3  ENG  @0 Turbulent flow @5 06
C03 02  3  FRE  @0 Vorticité @5 07
C03 02  3  ENG  @0 Vorticity @5 07
C03 03  3  FRE  @0 Ecoulement tourbillonnaire @5 08
C03 03  3  ENG  @0 Vortex flow @5 08
C03 04  X  FRE  @0 Sillage proche @5 09
C03 04  X  ENG  @0 Near wake @5 09
C03 04  X  SPA  @0 Estela próxima @5 09
C03 05  3  FRE  @0 Déphasage @5 10
C03 05  3  ENG  @0 Phase shift @5 10
C03 06  3  FRE  @0 Fréquence propre @5 11
C03 06  3  ENG  @0 Eigenfrequency @5 11
C03 07  X  FRE  @0 Détachement tourbillonnaire @5 12
C03 07  X  ENG  @0 Vortex shedding @5 12
C03 07  X  SPA  @0 Desprendimiento vorticial @5 12
C03 08  3  FRE  @0 Résonance @5 13
C03 08  3  ENG  @0 Resonance @5 13
C03 09  X  FRE  @0 Transition phase @5 14
C03 09  X  ENG  @0 Phase transitions @5 14
C03 09  X  SPA  @0 Transición fase @5 14
C03 10  X  FRE  @0 Corps arête vive @5 15
C03 10  X  ENG  @0 Bluff body @5 15
C03 10  X  SPA  @0 Cuerpo arista viva @5 15
C03 11  X  FRE  @0 Cylindre circulaire @5 16
C03 11  X  ENG  @0 Circular cylinder @5 16
C03 11  X  SPA  @0 Cilindro circular @5 16
C03 12  X  FRE  @0 Système tournant @5 17
C03 12  X  ENG  @0 Rotating system @5 17
C03 12  X  SPA  @0 Sistema giratorio @5 17
C03 13  3  FRE  @0 Synchronisation @5 18
C03 13  3  ENG  @0 Synchronization @5 18
C03 14  X  FRE  @0 Champ proche @5 23
C03 14  X  ENG  @0 Near field @5 23
C03 14  X  SPA  @0 Campo próximo @5 23
C03 15  X  FRE  @0 Phase multiple @5 24
C03 15  X  ENG  @0 Multiple phase @5 24
C03 15  X  SPA  @0 Fase múltiple @5 24
C03 16  3  FRE  @0 Etude expérimentale @5 33
C03 16  3  ENG  @0 Experimental study @5 33
C03 17  3  FRE  @0 . @4 INC @5 82
C03 18  3  FRE  @0 Vélocimétrie image particule @4 CD @5 96
C03 18  3  ENG  @0 Particle image velocimetry @4 CD @5 96
C03 18  3  SPA  @0 Velocímetro por imagen de partículas @4 CD @5 96
N21       @1 254
N44 01      @1 OTO
N82       @1 OTO
pR  
A30 01  1  ENG  @1 International Symposium on Fluid-Structure Interactions, Flow-Sound Interactions, and Flow-Induced Vibrations & Noise @2 7 @3 Montreal CAN @4 2010-08-01

Format Inist (serveur)

NO : PASCAL 12-0330614 INIST
ET : Flow over a cylinder subjected to combined translational and rotational oscillations
AU : NAZARINIA (Mehdi); LO JACONO (David); THOMPSON (Mark C.); SHERIDAN (John); DALTON (Charles); DE LANGRE (Emmanuel)
AF : Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical and Aerospace Engineering, Monash University, P.O. Box 31/Melbourne, Victoria 3800/Australie (1 aut., 2 aut., 3 aut., 4 aut.); Université de Toulouse; INPT, UPS; IMFT (Institut de Mecanique des Fluides de Toulouse); Allée Camille Soula/31400, Toulouse/France (2 aut.); CNRS; IMFT/31400 Toulouse/France (2 aut.); Department of Mechanical Engineering, University of Houston/Houston, TX 77204-4006/Etats-Unis (1 aut.); Hydrodynamics Laboratory - LadHyx, Ecole Polytechnique/91128 Palaiseau/France (2 aut.)
DT : Publication en série; Congrès; Niveau analytique
SO : Journal of fluids and structures; ISSN 0889-9746; Coden JFSTEF; Royaume-Uni; Da. 2012; Vol. 32; Pp. 135-145; Bibl. 3/4 p.
LA : Anglais
EA : The experimental research reported here employs particle image velocimetry to extend the study of Nazarinia et al. (2009a), recording detailed vorticity fields in the near-wake of a circular cylinder undergoing combined translational and rotational oscillatory motions. The focus of the present study is to examine the effect of the ratio between the cross-stream translational and rotational velocities and frequencies on the synchronization of the near-wake structures for multiple phase differences between the two motions. The frequencies are fixed close to that of the natural frequency of vortex shedding. The results are presented for a fixed amplitude of rotational oscillation of 1 rad and a range of ratios between the translational and rotational velocities (VR) = [0.25, 0.5, 1.0, 1.5] and for a rang of frequency ratios (FR) = [0.5, 1.0,2.0]. In particular, it was found that varying the VR value changed the near-wake structure. The results show that at the lower value of VR = 0.25, for all of the phase differences examined, the vortices are shed in a single-row 2S mode aligned in the medial plane with a slight offset from the centreline and also synchronized with the combined oscillatory motion. As VR increases the vortex shedding mode changes from a 2S single-row to a 2S double-row structure and eventually back to the single-row (at VR = 0.5). Increasing VR further resulted in the loss of lock-on over the range of negative phase angles and a transition from the 2S to P+S mode for the in-phase case. There was transition back to the 2S wake mode with a further decrease in ϕ. For higher VR the range of desynchronization increased. In the second and third parts of this paper it is shown that the occurrence of unlocked wake flow as the phase angle is varied is greater when the frequency ratio between the imposed oscillatory motions and the natural vortex shedding frequency FRN is higher than unity. The vortices are synchronized in the near-wake at FRN values less than unity and unlocked when FRN > 1.0. In particular, the near-wake structures have also been shown to be synchronized for FR = 0.5 and unlocked for FR = 2.0.
CC : 001B40G27V; 001B40G32F
FD : Ecoulement turbulent; Vorticité; Ecoulement tourbillonnaire; Sillage proche; Déphasage; Fréquence propre; Détachement tourbillonnaire; Résonance; Transition phase; Corps arête vive; Cylindre circulaire; Système tournant; Synchronisation; Champ proche; Phase multiple; Etude expérimentale; .; Vélocimétrie image particule
ED : Turbulent flow; Vorticity; Vortex flow; Near wake; Phase shift; Eigenfrequency; Vortex shedding; Resonance; Phase transitions; Bluff body; Circular cylinder; Rotating system; Synchronization; Near field; Multiple phase; Experimental study; Particle image velocimetry
SD : Estela próxima; Desprendimiento vorticial; Transición fase; Cuerpo arista viva; Cilindro circular; Sistema giratorio; Campo próximo; Fase múltiple; Velocímetro por imagen de partículas
LO : INIST-21394.354000500824610100
ID : 12-0330614

Links to Exploration step

Pascal:12-0330614

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Flow over a cylinder subjected to combined translational and rotational oscillations</title>
<author>
<name sortKey="Nazarinia, Mehdi" sort="Nazarinia, Mehdi" uniqKey="Nazarinia M" first="Mehdi" last="Nazarinia">Mehdi Nazarinia</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical and Aerospace Engineering, Monash University, P.O. Box 31</s1>
<s2>Melbourne, Victoria 3800</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Lo Jacono, David" sort="Lo Jacono, David" uniqKey="Lo Jacono D" first="David" last="Lo Jacono">David Lo Jacono</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical and Aerospace Engineering, Monash University, P.O. Box 31</s1>
<s2>Melbourne, Victoria 3800</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Université de Toulouse; INPT, UPS; IMFT (Institut de Mecanique des Fluides de Toulouse); Allée Camille Soula</s1>
<s2>31400, Toulouse</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="03">
<s1>CNRS; IMFT</s1>
<s2>31400 Toulouse</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Thompson, Mark C" sort="Thompson, Mark C" uniqKey="Thompson M" first="Mark C." last="Thompson">Mark C. Thompson</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical and Aerospace Engineering, Monash University, P.O. Box 31</s1>
<s2>Melbourne, Victoria 3800</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Sheridan, John" sort="Sheridan, John" uniqKey="Sheridan J" first="John" last="Sheridan">John Sheridan</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical and Aerospace Engineering, Monash University, P.O. Box 31</s1>
<s2>Melbourne, Victoria 3800</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">12-0330614</idno>
<date when="2012">2012</date>
<idno type="stanalyst">PASCAL 12-0330614 INIST</idno>
<idno type="RBID">Pascal:12-0330614</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">001112</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Flow over a cylinder subjected to combined translational and rotational oscillations</title>
<author>
<name sortKey="Nazarinia, Mehdi" sort="Nazarinia, Mehdi" uniqKey="Nazarinia M" first="Mehdi" last="Nazarinia">Mehdi Nazarinia</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical and Aerospace Engineering, Monash University, P.O. Box 31</s1>
<s2>Melbourne, Victoria 3800</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Lo Jacono, David" sort="Lo Jacono, David" uniqKey="Lo Jacono D" first="David" last="Lo Jacono">David Lo Jacono</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical and Aerospace Engineering, Monash University, P.O. Box 31</s1>
<s2>Melbourne, Victoria 3800</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Université de Toulouse; INPT, UPS; IMFT (Institut de Mecanique des Fluides de Toulouse); Allée Camille Soula</s1>
<s2>31400, Toulouse</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="03">
<s1>CNRS; IMFT</s1>
<s2>31400 Toulouse</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Thompson, Mark C" sort="Thompson, Mark C" uniqKey="Thompson M" first="Mark C." last="Thompson">Mark C. Thompson</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical and Aerospace Engineering, Monash University, P.O. Box 31</s1>
<s2>Melbourne, Victoria 3800</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Sheridan, John" sort="Sheridan, John" uniqKey="Sheridan J" first="John" last="Sheridan">John Sheridan</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical and Aerospace Engineering, Monash University, P.O. Box 31</s1>
<s2>Melbourne, Victoria 3800</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Journal of fluids and structures</title>
<title level="j" type="abbreviated">J. fluids struct.</title>
<idno type="ISSN">0889-9746</idno>
<imprint>
<date when="2012">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Journal of fluids and structures</title>
<title level="j" type="abbreviated">J. fluids struct.</title>
<idno type="ISSN">0889-9746</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Bluff body</term>
<term>Circular cylinder</term>
<term>Eigenfrequency</term>
<term>Experimental study</term>
<term>Multiple phase</term>
<term>Near field</term>
<term>Near wake</term>
<term>Particle image velocimetry</term>
<term>Phase shift</term>
<term>Phase transitions</term>
<term>Resonance</term>
<term>Rotating system</term>
<term>Synchronization</term>
<term>Turbulent flow</term>
<term>Vortex flow</term>
<term>Vortex shedding</term>
<term>Vorticity</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Ecoulement turbulent</term>
<term>Vorticité</term>
<term>Ecoulement tourbillonnaire</term>
<term>Sillage proche</term>
<term>Déphasage</term>
<term>Fréquence propre</term>
<term>Détachement tourbillonnaire</term>
<term>Résonance</term>
<term>Transition phase</term>
<term>Corps arête vive</term>
<term>Cylindre circulaire</term>
<term>Système tournant</term>
<term>Synchronisation</term>
<term>Champ proche</term>
<term>Phase multiple</term>
<term>Etude expérimentale</term>
<term>.</term>
<term>Vélocimétrie image particule</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The experimental research reported here employs particle image velocimetry to extend the study of Nazarinia et al. (2009a), recording detailed vorticity fields in the near-wake of a circular cylinder undergoing combined translational and rotational oscillatory motions. The focus of the present study is to examine the effect of the ratio between the cross-stream translational and rotational velocities and frequencies on the synchronization of the near-wake structures for multiple phase differences between the two motions. The frequencies are fixed close to that of the natural frequency of vortex shedding. The results are presented for a fixed amplitude of rotational oscillation of 1 rad and a range of ratios between the translational and rotational velocities (V
<sub>R</sub>
) = [0.25, 0.5, 1.0, 1.5] and for a rang of frequency ratios (F
<sub>R</sub>
)
<sub>=</sub>
[0.5, 1.0,2.0]. In particular, it was found that varying the V
<sub>R</sub>
value changed the near-wake structure. The results show that at the lower value of V
<sub>R</sub>
= 0.25, for all of the phase differences examined, the vortices are shed in a single-row 2S mode aligned in the medial plane with a slight offset from the centreline and also synchronized with the combined oscillatory motion. As V
<sub>R</sub>
increases the vortex shedding mode changes from a 2S single-row to a 2S double-row structure and eventually back to the single-row (at V
<sub>R</sub>
= 0.5). Increasing V
<sub>R</sub>
further resulted in the loss of lock-on over the range of negative phase angles and a transition from the 2S to P+S mode for the in-phase case. There was transition back to the 2S wake mode with a further decrease in ϕ. For higher V
<sub>R</sub>
the range of desynchronization increased. In the second and third parts of this paper it is shown that the occurrence of unlocked wake flow as the phase angle is varied is greater when the frequency ratio between the imposed oscillatory motions and the natural vortex shedding frequency F
<sub>RN</sub>
is higher than unity. The vortices are synchronized in the near-wake at F
<sub>RN</sub>
values less than unity and unlocked when F
<sub>RN</sub>
> 1.0. In particular, the near-wake structures have also been shown to be synchronized for F
<sub>R</sub>
= 0.5 and unlocked for F
<sub>R</sub>
= 2.0.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0889-9746</s0>
</fA01>
<fA02 i1="01">
<s0>JFSTEF</s0>
</fA02>
<fA03 i2="1">
<s0>J. fluids struct.</s0>
</fA03>
<fA05>
<s2>32</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Flow over a cylinder subjected to combined translational and rotational oscillations</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>The 7th International Symposium on Fluid-Structure Interactions, Flow-Sound Interactions, and Flow-Induced Vibrations & Noise</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>NAZARINIA (Mehdi)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>LO JACONO (David)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>THOMPSON (Mark C.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>SHERIDAN (John)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>DALTON (Charles)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>DE LANGRE (Emmanuel)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical and Aerospace Engineering, Monash University, P.O. Box 31</s1>
<s2>Melbourne, Victoria 3800</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Université de Toulouse; INPT, UPS; IMFT (Institut de Mecanique des Fluides de Toulouse); Allée Camille Soula</s1>
<s2>31400, Toulouse</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>CNRS; IMFT</s1>
<s2>31400 Toulouse</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA15 i1="01">
<s1>Department of Mechanical Engineering, University of Houston</s1>
<s2>Houston, TX 77204-4006</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</fA15>
<fA15 i1="02">
<s1>Hydrodynamics Laboratory - LadHyx, Ecole Polytechnique</s1>
<s2>91128 Palaiseau</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</fA15>
<fA20>
<s1>135-145</s1>
</fA20>
<fA21>
<s1>2012</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>21394</s2>
<s5>354000500824610100</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2012 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>3/4 p.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>12-0330614</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of fluids and structures</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The experimental research reported here employs particle image velocimetry to extend the study of Nazarinia et al. (2009a), recording detailed vorticity fields in the near-wake of a circular cylinder undergoing combined translational and rotational oscillatory motions. The focus of the present study is to examine the effect of the ratio between the cross-stream translational and rotational velocities and frequencies on the synchronization of the near-wake structures for multiple phase differences between the two motions. The frequencies are fixed close to that of the natural frequency of vortex shedding. The results are presented for a fixed amplitude of rotational oscillation of 1 rad and a range of ratios between the translational and rotational velocities (V
<sub>R</sub>
) = [0.25, 0.5, 1.0, 1.5] and for a rang of frequency ratios (F
<sub>R</sub>
)
<sub>=</sub>
[0.5, 1.0,2.0]. In particular, it was found that varying the V
<sub>R</sub>
value changed the near-wake structure. The results show that at the lower value of V
<sub>R</sub>
= 0.25, for all of the phase differences examined, the vortices are shed in a single-row 2S mode aligned in the medial plane with a slight offset from the centreline and also synchronized with the combined oscillatory motion. As V
<sub>R</sub>
increases the vortex shedding mode changes from a 2S single-row to a 2S double-row structure and eventually back to the single-row (at V
<sub>R</sub>
= 0.5). Increasing V
<sub>R</sub>
further resulted in the loss of lock-on over the range of negative phase angles and a transition from the 2S to P+S mode for the in-phase case. There was transition back to the 2S wake mode with a further decrease in ϕ. For higher V
<sub>R</sub>
the range of desynchronization increased. In the second and third parts of this paper it is shown that the occurrence of unlocked wake flow as the phase angle is varied is greater when the frequency ratio between the imposed oscillatory motions and the natural vortex shedding frequency F
<sub>RN</sub>
is higher than unity. The vortices are synchronized in the near-wake at F
<sub>RN</sub>
values less than unity and unlocked when F
<sub>RN</sub>
> 1.0. In particular, the near-wake structures have also been shown to be synchronized for F
<sub>R</sub>
= 0.5 and unlocked for F
<sub>R</sub>
= 2.0.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B40G27V</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B40G32F</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Ecoulement turbulent</s0>
<s5>06</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Turbulent flow</s0>
<s5>06</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Vorticité</s0>
<s5>07</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Vorticity</s0>
<s5>07</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Ecoulement tourbillonnaire</s0>
<s5>08</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Vortex flow</s0>
<s5>08</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Sillage proche</s0>
<s5>09</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Near wake</s0>
<s5>09</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Estela próxima</s0>
<s5>09</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Déphasage</s0>
<s5>10</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Phase shift</s0>
<s5>10</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Fréquence propre</s0>
<s5>11</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Eigenfrequency</s0>
<s5>11</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Détachement tourbillonnaire</s0>
<s5>12</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Vortex shedding</s0>
<s5>12</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Desprendimiento vorticial</s0>
<s5>12</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Résonance</s0>
<s5>13</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Resonance</s0>
<s5>13</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Transition phase</s0>
<s5>14</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Phase transitions</s0>
<s5>14</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Transición fase</s0>
<s5>14</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Corps arête vive</s0>
<s5>15</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Bluff body</s0>
<s5>15</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Cuerpo arista viva</s0>
<s5>15</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Cylindre circulaire</s0>
<s5>16</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Circular cylinder</s0>
<s5>16</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Cilindro circular</s0>
<s5>16</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Système tournant</s0>
<s5>17</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Rotating system</s0>
<s5>17</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Sistema giratorio</s0>
<s5>17</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Synchronisation</s0>
<s5>18</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Synchronization</s0>
<s5>18</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Champ proche</s0>
<s5>23</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Near field</s0>
<s5>23</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Campo próximo</s0>
<s5>23</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Phase multiple</s0>
<s5>24</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Multiple phase</s0>
<s5>24</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Fase múltiple</s0>
<s5>24</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Etude expérimentale</s0>
<s5>33</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Experimental study</s0>
<s5>33</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>.</s0>
<s4>INC</s4>
<s5>82</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Vélocimétrie image particule</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Particle image velocimetry</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="18" i2="3" l="SPA">
<s0>Velocímetro por imagen de partículas</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fN21>
<s1>254</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>International Symposium on Fluid-Structure Interactions, Flow-Sound Interactions, and Flow-Induced Vibrations & Noise</s1>
<s2>7</s2>
<s3>Montreal CAN</s3>
<s4>2010-08-01</s4>
</fA30>
</pR>
</standard>
<server>
<NO>PASCAL 12-0330614 INIST</NO>
<ET>Flow over a cylinder subjected to combined translational and rotational oscillations</ET>
<AU>NAZARINIA (Mehdi); LO JACONO (David); THOMPSON (Mark C.); SHERIDAN (John); DALTON (Charles); DE LANGRE (Emmanuel)</AU>
<AF>Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical and Aerospace Engineering, Monash University, P.O. Box 31/Melbourne, Victoria 3800/Australie (1 aut., 2 aut., 3 aut., 4 aut.); Université de Toulouse; INPT, UPS; IMFT (Institut de Mecanique des Fluides de Toulouse); Allée Camille Soula/31400, Toulouse/France (2 aut.); CNRS; IMFT/31400 Toulouse/France (2 aut.); Department of Mechanical Engineering, University of Houston/Houston, TX 77204-4006/Etats-Unis (1 aut.); Hydrodynamics Laboratory - LadHyx, Ecole Polytechnique/91128 Palaiseau/France (2 aut.)</AF>
<DT>Publication en série; Congrès; Niveau analytique</DT>
<SO>Journal of fluids and structures; ISSN 0889-9746; Coden JFSTEF; Royaume-Uni; Da. 2012; Vol. 32; Pp. 135-145; Bibl. 3/4 p.</SO>
<LA>Anglais</LA>
<EA>The experimental research reported here employs particle image velocimetry to extend the study of Nazarinia et al. (2009a), recording detailed vorticity fields in the near-wake of a circular cylinder undergoing combined translational and rotational oscillatory motions. The focus of the present study is to examine the effect of the ratio between the cross-stream translational and rotational velocities and frequencies on the synchronization of the near-wake structures for multiple phase differences between the two motions. The frequencies are fixed close to that of the natural frequency of vortex shedding. The results are presented for a fixed amplitude of rotational oscillation of 1 rad and a range of ratios between the translational and rotational velocities (V
<sub>R</sub>
) = [0.25, 0.5, 1.0, 1.5] and for a rang of frequency ratios (F
<sub>R</sub>
)
<sub>=</sub>
[0.5, 1.0,2.0]. In particular, it was found that varying the V
<sub>R</sub>
value changed the near-wake structure. The results show that at the lower value of V
<sub>R</sub>
= 0.25, for all of the phase differences examined, the vortices are shed in a single-row 2S mode aligned in the medial plane with a slight offset from the centreline and also synchronized with the combined oscillatory motion. As V
<sub>R</sub>
increases the vortex shedding mode changes from a 2S single-row to a 2S double-row structure and eventually back to the single-row (at V
<sub>R</sub>
= 0.5). Increasing V
<sub>R</sub>
further resulted in the loss of lock-on over the range of negative phase angles and a transition from the 2S to P+S mode for the in-phase case. There was transition back to the 2S wake mode with a further decrease in ϕ. For higher V
<sub>R</sub>
the range of desynchronization increased. In the second and third parts of this paper it is shown that the occurrence of unlocked wake flow as the phase angle is varied is greater when the frequency ratio between the imposed oscillatory motions and the natural vortex shedding frequency F
<sub>RN</sub>
is higher than unity. The vortices are synchronized in the near-wake at F
<sub>RN</sub>
values less than unity and unlocked when F
<sub>RN</sub>
> 1.0. In particular, the near-wake structures have also been shown to be synchronized for F
<sub>R</sub>
= 0.5 and unlocked for F
<sub>R</sub>
= 2.0.</EA>
<CC>001B40G27V; 001B40G32F</CC>
<FD>Ecoulement turbulent; Vorticité; Ecoulement tourbillonnaire; Sillage proche; Déphasage; Fréquence propre; Détachement tourbillonnaire; Résonance; Transition phase; Corps arête vive; Cylindre circulaire; Système tournant; Synchronisation; Champ proche; Phase multiple; Etude expérimentale; .; Vélocimétrie image particule</FD>
<ED>Turbulent flow; Vorticity; Vortex flow; Near wake; Phase shift; Eigenfrequency; Vortex shedding; Resonance; Phase transitions; Bluff body; Circular cylinder; Rotating system; Synchronization; Near field; Multiple phase; Experimental study; Particle image velocimetry</ED>
<SD>Estela próxima; Desprendimiento vorticial; Transición fase; Cuerpo arista viva; Cilindro circular; Sistema giratorio; Campo próximo; Fase múltiple; Velocímetro por imagen de partículas</SD>
<LO>INIST-21394.354000500824610100</LO>
<ID>12-0330614</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001112 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 001112 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:12-0330614
   |texte=   Flow over a cylinder subjected to combined translational and rotational oscillations
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024